linux/drivers/spi/spi-geni-qcom.c
Amit Kumar Mahapatra via Alsa-devel 9e264f3f85
spi: Replace all spi->chip_select and spi->cs_gpiod references with function call
Supporting multi-cs in spi drivers would require the chip_select & cs_gpiod
members of struct spi_device to be an array. But changing the type of these
members to array would break the spi driver functionality. To make the
transition smoother introduced four new APIs to get/set the
spi->chip_select & spi->cs_gpiod and replaced all spi->chip_select and
spi->cs_gpiod references with get or set API calls.
While adding multi-cs support in further patches the chip_select & cs_gpiod
members of the spi_device structure would be converted to arrays & the
"idx" parameter of the APIs would be used as array index i.e.,
spi->chip_select[idx] & spi->cs_gpiod[idx] respectively.

Signed-off-by: Amit Kumar Mahapatra <amit.kumar-mahapatra@amd.com>
Acked-by: Heiko Stuebner <heiko@sntech.de> # Rockchip drivers
Reviewed-by: Michal Simek <michal.simek@amd.com>
Reviewed-by: Cédric Le Goater <clg@kaod.org> # Aspeed driver
Reviewed-by: Dhruva Gole <d-gole@ti.com> # SPI Cadence QSPI
Reviewed-by: Patrice Chotard <patrice.chotard@foss.st.com> # spi-stm32-qspi
Acked-by: William Zhang <william.zhang@broadcom.com> # bcm63xx-hsspi driver
Reviewed-by: Serge Semin <fancer.lancer@gmail.com> # DW SSI part
Link: https://lore.kernel.org/r/167847070432.26.15076794204368669839@mailman-core.alsa-project.org
Signed-off-by: Mark Brown <broonie@kernel.org>
2023-03-11 12:34:01 +00:00

1221 lines
33 KiB
C

// SPDX-License-Identifier: GPL-2.0
// Copyright (c) 2017-2018, The Linux foundation. All rights reserved.
#include <linux/clk.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/dma/qcom-gpi-dma.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/log2.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/pm_opp.h>
#include <linux/pm_runtime.h>
#include <linux/soc/qcom/geni-se.h>
#include <linux/spi/spi.h>
#include <linux/spinlock.h>
/* SPI SE specific registers and respective register fields */
#define SE_SPI_CPHA 0x224
#define CPHA BIT(0)
#define SE_SPI_LOOPBACK 0x22c
#define LOOPBACK_ENABLE 0x1
#define NORMAL_MODE 0x0
#define LOOPBACK_MSK GENMASK(1, 0)
#define SE_SPI_CPOL 0x230
#define CPOL BIT(2)
#define SE_SPI_DEMUX_OUTPUT_INV 0x24c
#define CS_DEMUX_OUTPUT_INV_MSK GENMASK(3, 0)
#define SE_SPI_DEMUX_SEL 0x250
#define CS_DEMUX_OUTPUT_SEL GENMASK(3, 0)
#define SE_SPI_TRANS_CFG 0x25c
#define CS_TOGGLE BIT(0)
#define SE_SPI_WORD_LEN 0x268
#define WORD_LEN_MSK GENMASK(9, 0)
#define MIN_WORD_LEN 4
#define SE_SPI_TX_TRANS_LEN 0x26c
#define SE_SPI_RX_TRANS_LEN 0x270
#define TRANS_LEN_MSK GENMASK(23, 0)
#define SE_SPI_PRE_POST_CMD_DLY 0x274
#define SE_SPI_DELAY_COUNTERS 0x278
#define SPI_INTER_WORDS_DELAY_MSK GENMASK(9, 0)
#define SPI_CS_CLK_DELAY_MSK GENMASK(19, 10)
#define SPI_CS_CLK_DELAY_SHFT 10
/* M_CMD OP codes for SPI */
#define SPI_TX_ONLY 1
#define SPI_RX_ONLY 2
#define SPI_TX_RX 7
#define SPI_CS_ASSERT 8
#define SPI_CS_DEASSERT 9
#define SPI_SCK_ONLY 10
/* M_CMD params for SPI */
#define SPI_PRE_CMD_DELAY BIT(0)
#define TIMESTAMP_BEFORE BIT(1)
#define FRAGMENTATION BIT(2)
#define TIMESTAMP_AFTER BIT(3)
#define POST_CMD_DELAY BIT(4)
#define GSI_LOOPBACK_EN BIT(0)
#define GSI_CS_TOGGLE BIT(3)
#define GSI_CPHA BIT(4)
#define GSI_CPOL BIT(5)
struct spi_geni_master {
struct geni_se se;
struct device *dev;
u32 tx_fifo_depth;
u32 fifo_width_bits;
u32 tx_wm;
u32 last_mode;
unsigned long cur_speed_hz;
unsigned long cur_sclk_hz;
unsigned int cur_bits_per_word;
unsigned int tx_rem_bytes;
unsigned int rx_rem_bytes;
const struct spi_transfer *cur_xfer;
struct completion cs_done;
struct completion cancel_done;
struct completion abort_done;
struct completion tx_reset_done;
struct completion rx_reset_done;
unsigned int oversampling;
spinlock_t lock;
int irq;
bool cs_flag;
bool abort_failed;
struct dma_chan *tx;
struct dma_chan *rx;
int cur_xfer_mode;
dma_addr_t tx_se_dma;
dma_addr_t rx_se_dma;
};
static int get_spi_clk_cfg(unsigned int speed_hz,
struct spi_geni_master *mas,
unsigned int *clk_idx,
unsigned int *clk_div)
{
unsigned long sclk_freq;
unsigned int actual_hz;
int ret;
ret = geni_se_clk_freq_match(&mas->se,
speed_hz * mas->oversampling,
clk_idx, &sclk_freq, false);
if (ret) {
dev_err(mas->dev, "Failed(%d) to find src clk for %dHz\n",
ret, speed_hz);
return ret;
}
*clk_div = DIV_ROUND_UP(sclk_freq, mas->oversampling * speed_hz);
actual_hz = sclk_freq / (mas->oversampling * *clk_div);
dev_dbg(mas->dev, "req %u=>%u sclk %lu, idx %d, div %d\n", speed_hz,
actual_hz, sclk_freq, *clk_idx, *clk_div);
ret = dev_pm_opp_set_rate(mas->dev, sclk_freq);
if (ret)
dev_err(mas->dev, "dev_pm_opp_set_rate failed %d\n", ret);
else
mas->cur_sclk_hz = sclk_freq;
return ret;
}
static void handle_se_timeout(struct spi_master *spi,
struct spi_message *msg)
{
struct spi_geni_master *mas = spi_master_get_devdata(spi);
unsigned long time_left;
struct geni_se *se = &mas->se;
const struct spi_transfer *xfer;
spin_lock_irq(&mas->lock);
reinit_completion(&mas->cancel_done);
if (mas->cur_xfer_mode == GENI_SE_FIFO)
writel(0, se->base + SE_GENI_TX_WATERMARK_REG);
xfer = mas->cur_xfer;
mas->cur_xfer = NULL;
geni_se_cancel_m_cmd(se);
spin_unlock_irq(&mas->lock);
time_left = wait_for_completion_timeout(&mas->cancel_done, HZ);
if (time_left)
goto unmap_if_dma;
spin_lock_irq(&mas->lock);
reinit_completion(&mas->abort_done);
geni_se_abort_m_cmd(se);
spin_unlock_irq(&mas->lock);
time_left = wait_for_completion_timeout(&mas->abort_done, HZ);
if (!time_left) {
dev_err(mas->dev, "Failed to cancel/abort m_cmd\n");
/*
* No need for a lock since SPI core has a lock and we never
* access this from an interrupt.
*/
mas->abort_failed = true;
}
unmap_if_dma:
if (mas->cur_xfer_mode == GENI_SE_DMA) {
if (xfer) {
if (xfer->tx_buf && mas->tx_se_dma) {
spin_lock_irq(&mas->lock);
reinit_completion(&mas->tx_reset_done);
writel(1, se->base + SE_DMA_TX_FSM_RST);
spin_unlock_irq(&mas->lock);
time_left = wait_for_completion_timeout(&mas->tx_reset_done, HZ);
if (!time_left)
dev_err(mas->dev, "DMA TX RESET failed\n");
geni_se_tx_dma_unprep(se, mas->tx_se_dma, xfer->len);
}
if (xfer->rx_buf && mas->rx_se_dma) {
spin_lock_irq(&mas->lock);
reinit_completion(&mas->rx_reset_done);
writel(1, se->base + SE_DMA_RX_FSM_RST);
spin_unlock_irq(&mas->lock);
time_left = wait_for_completion_timeout(&mas->rx_reset_done, HZ);
if (!time_left)
dev_err(mas->dev, "DMA RX RESET failed\n");
geni_se_rx_dma_unprep(se, mas->rx_se_dma, xfer->len);
}
} else {
/*
* This can happen if a timeout happened and we had to wait
* for lock in this function because isr was holding the lock
* and handling transfer completion at that time.
*/
dev_warn(mas->dev, "Cancel/Abort on completed SPI transfer\n");
}
}
}
static void handle_gpi_timeout(struct spi_master *spi, struct spi_message *msg)
{
struct spi_geni_master *mas = spi_master_get_devdata(spi);
dmaengine_terminate_sync(mas->tx);
dmaengine_terminate_sync(mas->rx);
}
static void spi_geni_handle_err(struct spi_master *spi, struct spi_message *msg)
{
struct spi_geni_master *mas = spi_master_get_devdata(spi);
switch (mas->cur_xfer_mode) {
case GENI_SE_FIFO:
case GENI_SE_DMA:
handle_se_timeout(spi, msg);
break;
case GENI_GPI_DMA:
handle_gpi_timeout(spi, msg);
break;
default:
dev_err(mas->dev, "Abort on Mode:%d not supported", mas->cur_xfer_mode);
}
}
static bool spi_geni_is_abort_still_pending(struct spi_geni_master *mas)
{
struct geni_se *se = &mas->se;
u32 m_irq, m_irq_en;
if (!mas->abort_failed)
return false;
/*
* The only known case where a transfer times out and then a cancel
* times out then an abort times out is if something is blocking our
* interrupt handler from running. Avoid starting any new transfers
* until that sorts itself out.
*/
spin_lock_irq(&mas->lock);
m_irq = readl(se->base + SE_GENI_M_IRQ_STATUS);
m_irq_en = readl(se->base + SE_GENI_M_IRQ_EN);
spin_unlock_irq(&mas->lock);
if (m_irq & m_irq_en) {
dev_err(mas->dev, "Interrupts pending after abort: %#010x\n",
m_irq & m_irq_en);
return true;
}
/*
* If we're here the problem resolved itself so no need to check more
* on future transfers.
*/
mas->abort_failed = false;
return false;
}
static void spi_geni_set_cs(struct spi_device *slv, bool set_flag)
{
struct spi_geni_master *mas = spi_master_get_devdata(slv->master);
struct spi_master *spi = dev_get_drvdata(mas->dev);
struct geni_se *se = &mas->se;
unsigned long time_left;
if (!(slv->mode & SPI_CS_HIGH))
set_flag = !set_flag;
if (set_flag == mas->cs_flag)
return;
pm_runtime_get_sync(mas->dev);
if (spi_geni_is_abort_still_pending(mas)) {
dev_err(mas->dev, "Can't set chip select\n");
goto exit;
}
spin_lock_irq(&mas->lock);
if (mas->cur_xfer) {
dev_err(mas->dev, "Can't set CS when prev xfer running\n");
spin_unlock_irq(&mas->lock);
goto exit;
}
mas->cs_flag = set_flag;
/* set xfer_mode to FIFO to complete cs_done in isr */
mas->cur_xfer_mode = GENI_SE_FIFO;
reinit_completion(&mas->cs_done);
if (set_flag)
geni_se_setup_m_cmd(se, SPI_CS_ASSERT, 0);
else
geni_se_setup_m_cmd(se, SPI_CS_DEASSERT, 0);
spin_unlock_irq(&mas->lock);
time_left = wait_for_completion_timeout(&mas->cs_done, HZ);
if (!time_left) {
dev_warn(mas->dev, "Timeout setting chip select\n");
handle_se_timeout(spi, NULL);
}
exit:
pm_runtime_put(mas->dev);
}
static void spi_setup_word_len(struct spi_geni_master *mas, u16 mode,
unsigned int bits_per_word)
{
unsigned int pack_words;
bool msb_first = (mode & SPI_LSB_FIRST) ? false : true;
struct geni_se *se = &mas->se;
u32 word_len;
/*
* If bits_per_word isn't a byte aligned value, set the packing to be
* 1 SPI word per FIFO word.
*/
if (!(mas->fifo_width_bits % bits_per_word))
pack_words = mas->fifo_width_bits / bits_per_word;
else
pack_words = 1;
geni_se_config_packing(&mas->se, bits_per_word, pack_words, msb_first,
true, true);
word_len = (bits_per_word - MIN_WORD_LEN) & WORD_LEN_MSK;
writel(word_len, se->base + SE_SPI_WORD_LEN);
}
static int geni_spi_set_clock_and_bw(struct spi_geni_master *mas,
unsigned long clk_hz)
{
u32 clk_sel, m_clk_cfg, idx, div;
struct geni_se *se = &mas->se;
int ret;
if (clk_hz == mas->cur_speed_hz)
return 0;
ret = get_spi_clk_cfg(clk_hz, mas, &idx, &div);
if (ret) {
dev_err(mas->dev, "Err setting clk to %lu: %d\n", clk_hz, ret);
return ret;
}
/*
* SPI core clock gets configured with the requested frequency
* or the frequency closer to the requested frequency.
* For that reason requested frequency is stored in the
* cur_speed_hz and referred in the consecutive transfer instead
* of calling clk_get_rate() API.
*/
mas->cur_speed_hz = clk_hz;
clk_sel = idx & CLK_SEL_MSK;
m_clk_cfg = (div << CLK_DIV_SHFT) | SER_CLK_EN;
writel(clk_sel, se->base + SE_GENI_CLK_SEL);
writel(m_clk_cfg, se->base + GENI_SER_M_CLK_CFG);
/* Set BW quota for CPU as driver supports FIFO mode only. */
se->icc_paths[CPU_TO_GENI].avg_bw = Bps_to_icc(mas->cur_speed_hz);
ret = geni_icc_set_bw(se);
if (ret)
return ret;
return 0;
}
static int setup_fifo_params(struct spi_device *spi_slv,
struct spi_master *spi)
{
struct spi_geni_master *mas = spi_master_get_devdata(spi);
struct geni_se *se = &mas->se;
u32 loopback_cfg = 0, cpol = 0, cpha = 0, demux_output_inv = 0;
u32 demux_sel;
if (mas->last_mode != spi_slv->mode) {
if (spi_slv->mode & SPI_LOOP)
loopback_cfg = LOOPBACK_ENABLE;
if (spi_slv->mode & SPI_CPOL)
cpol = CPOL;
if (spi_slv->mode & SPI_CPHA)
cpha = CPHA;
if (spi_slv->mode & SPI_CS_HIGH)
demux_output_inv = BIT(spi_get_chipselect(spi_slv, 0));
demux_sel = spi_get_chipselect(spi_slv, 0);
mas->cur_bits_per_word = spi_slv->bits_per_word;
spi_setup_word_len(mas, spi_slv->mode, spi_slv->bits_per_word);
writel(loopback_cfg, se->base + SE_SPI_LOOPBACK);
writel(demux_sel, se->base + SE_SPI_DEMUX_SEL);
writel(cpha, se->base + SE_SPI_CPHA);
writel(cpol, se->base + SE_SPI_CPOL);
writel(demux_output_inv, se->base + SE_SPI_DEMUX_OUTPUT_INV);
mas->last_mode = spi_slv->mode;
}
return geni_spi_set_clock_and_bw(mas, spi_slv->max_speed_hz);
}
static void
spi_gsi_callback_result(void *cb, const struct dmaengine_result *result)
{
struct spi_master *spi = cb;
spi->cur_msg->status = -EIO;
if (result->result != DMA_TRANS_NOERROR) {
dev_err(&spi->dev, "DMA txn failed: %d\n", result->result);
spi_finalize_current_transfer(spi);
return;
}
if (!result->residue) {
spi->cur_msg->status = 0;
dev_dbg(&spi->dev, "DMA txn completed\n");
} else {
dev_err(&spi->dev, "DMA xfer has pending: %d\n", result->residue);
}
spi_finalize_current_transfer(spi);
}
static int setup_gsi_xfer(struct spi_transfer *xfer, struct spi_geni_master *mas,
struct spi_device *spi_slv, struct spi_master *spi)
{
unsigned long flags = DMA_PREP_INTERRUPT | DMA_CTRL_ACK;
struct dma_slave_config config = {};
struct gpi_spi_config peripheral = {};
struct dma_async_tx_descriptor *tx_desc, *rx_desc;
int ret;
config.peripheral_config = &peripheral;
config.peripheral_size = sizeof(peripheral);
peripheral.set_config = true;
if (xfer->bits_per_word != mas->cur_bits_per_word ||
xfer->speed_hz != mas->cur_speed_hz) {
mas->cur_bits_per_word = xfer->bits_per_word;
mas->cur_speed_hz = xfer->speed_hz;
}
if (xfer->tx_buf && xfer->rx_buf) {
peripheral.cmd = SPI_DUPLEX;
} else if (xfer->tx_buf) {
peripheral.cmd = SPI_TX;
peripheral.rx_len = 0;
} else if (xfer->rx_buf) {
peripheral.cmd = SPI_RX;
if (!(mas->cur_bits_per_word % MIN_WORD_LEN)) {
peripheral.rx_len = ((xfer->len << 3) / mas->cur_bits_per_word);
} else {
int bytes_per_word = (mas->cur_bits_per_word / BITS_PER_BYTE) + 1;
peripheral.rx_len = (xfer->len / bytes_per_word);
}
}
peripheral.loopback_en = !!(spi_slv->mode & SPI_LOOP);
peripheral.clock_pol_high = !!(spi_slv->mode & SPI_CPOL);
peripheral.data_pol_high = !!(spi_slv->mode & SPI_CPHA);
peripheral.cs = spi_get_chipselect(spi_slv, 0);
peripheral.pack_en = true;
peripheral.word_len = xfer->bits_per_word - MIN_WORD_LEN;
ret = get_spi_clk_cfg(mas->cur_speed_hz, mas,
&peripheral.clk_src, &peripheral.clk_div);
if (ret) {
dev_err(mas->dev, "Err in get_spi_clk_cfg() :%d\n", ret);
return ret;
}
if (!xfer->cs_change) {
if (!list_is_last(&xfer->transfer_list, &spi->cur_msg->transfers))
peripheral.fragmentation = FRAGMENTATION;
}
if (peripheral.cmd & SPI_RX) {
dmaengine_slave_config(mas->rx, &config);
rx_desc = dmaengine_prep_slave_sg(mas->rx, xfer->rx_sg.sgl, xfer->rx_sg.nents,
DMA_DEV_TO_MEM, flags);
if (!rx_desc) {
dev_err(mas->dev, "Err setting up rx desc\n");
return -EIO;
}
}
/*
* Prepare the TX always, even for RX or tx_buf being null, we would
* need TX to be prepared per GSI spec
*/
dmaengine_slave_config(mas->tx, &config);
tx_desc = dmaengine_prep_slave_sg(mas->tx, xfer->tx_sg.sgl, xfer->tx_sg.nents,
DMA_MEM_TO_DEV, flags);
if (!tx_desc) {
dev_err(mas->dev, "Err setting up tx desc\n");
return -EIO;
}
tx_desc->callback_result = spi_gsi_callback_result;
tx_desc->callback_param = spi;
if (peripheral.cmd & SPI_RX)
dmaengine_submit(rx_desc);
dmaengine_submit(tx_desc);
if (peripheral.cmd & SPI_RX)
dma_async_issue_pending(mas->rx);
dma_async_issue_pending(mas->tx);
return 1;
}
static bool geni_can_dma(struct spi_controller *ctlr,
struct spi_device *slv, struct spi_transfer *xfer)
{
struct spi_geni_master *mas = spi_master_get_devdata(slv->master);
/*
* Return true if transfer needs to be mapped prior to
* calling transfer_one which is the case only for GPI_DMA.
* For SE_DMA mode, map/unmap is done in geni_se_*x_dma_prep.
*/
return mas->cur_xfer_mode == GENI_GPI_DMA;
}
static int spi_geni_prepare_message(struct spi_master *spi,
struct spi_message *spi_msg)
{
struct spi_geni_master *mas = spi_master_get_devdata(spi);
int ret;
switch (mas->cur_xfer_mode) {
case GENI_SE_FIFO:
case GENI_SE_DMA:
if (spi_geni_is_abort_still_pending(mas))
return -EBUSY;
ret = setup_fifo_params(spi_msg->spi, spi);
if (ret)
dev_err(mas->dev, "Couldn't select mode %d\n", ret);
return ret;
case GENI_GPI_DMA:
/* nothing to do for GPI DMA */
return 0;
}
dev_err(mas->dev, "Mode not supported %d", mas->cur_xfer_mode);
return -EINVAL;
}
static int spi_geni_grab_gpi_chan(struct spi_geni_master *mas)
{
int ret;
mas->tx = dma_request_chan(mas->dev, "tx");
if (IS_ERR(mas->tx)) {
ret = dev_err_probe(mas->dev, PTR_ERR(mas->tx),
"Failed to get tx DMA ch\n");
goto err_tx;
}
mas->rx = dma_request_chan(mas->dev, "rx");
if (IS_ERR(mas->rx)) {
ret = dev_err_probe(mas->dev, PTR_ERR(mas->rx),
"Failed to get rx DMA ch\n");
goto err_rx;
}
return 0;
err_rx:
mas->rx = NULL;
dma_release_channel(mas->tx);
err_tx:
mas->tx = NULL;
return ret;
}
static void spi_geni_release_dma_chan(struct spi_geni_master *mas)
{
if (mas->rx) {
dma_release_channel(mas->rx);
mas->rx = NULL;
}
if (mas->tx) {
dma_release_channel(mas->tx);
mas->tx = NULL;
}
}
static int spi_geni_init(struct spi_geni_master *mas)
{
struct geni_se *se = &mas->se;
unsigned int proto, major, minor, ver;
u32 spi_tx_cfg, fifo_disable;
int ret = -ENXIO;
pm_runtime_get_sync(mas->dev);
proto = geni_se_read_proto(se);
if (proto != GENI_SE_SPI) {
dev_err(mas->dev, "Invalid proto %d\n", proto);
goto out_pm;
}
mas->tx_fifo_depth = geni_se_get_tx_fifo_depth(se);
/* Width of Tx and Rx FIFO is same */
mas->fifo_width_bits = geni_se_get_tx_fifo_width(se);
/*
* Hardware programming guide suggests to configure
* RX FIFO RFR level to fifo_depth-2.
*/
geni_se_init(se, mas->tx_fifo_depth - 3, mas->tx_fifo_depth - 2);
/* Transmit an entire FIFO worth of data per IRQ */
mas->tx_wm = 1;
ver = geni_se_get_qup_hw_version(se);
major = GENI_SE_VERSION_MAJOR(ver);
minor = GENI_SE_VERSION_MINOR(ver);
if (major == 1 && minor == 0)
mas->oversampling = 2;
else
mas->oversampling = 1;
fifo_disable = readl(se->base + GENI_IF_DISABLE_RO) & FIFO_IF_DISABLE;
switch (fifo_disable) {
case 1:
ret = spi_geni_grab_gpi_chan(mas);
if (!ret) { /* success case */
mas->cur_xfer_mode = GENI_GPI_DMA;
geni_se_select_mode(se, GENI_GPI_DMA);
dev_dbg(mas->dev, "Using GPI DMA mode for SPI\n");
break;
}
/*
* in case of failure to get gpi dma channel, we can still do the
* FIFO mode, so fallthrough
*/
dev_warn(mas->dev, "FIFO mode disabled, but couldn't get DMA, fall back to FIFO mode\n");
fallthrough;
case 0:
mas->cur_xfer_mode = GENI_SE_FIFO;
geni_se_select_mode(se, GENI_SE_FIFO);
ret = 0;
break;
}
/* We always control CS manually */
spi_tx_cfg = readl(se->base + SE_SPI_TRANS_CFG);
spi_tx_cfg &= ~CS_TOGGLE;
writel(spi_tx_cfg, se->base + SE_SPI_TRANS_CFG);
out_pm:
pm_runtime_put(mas->dev);
return ret;
}
static unsigned int geni_byte_per_fifo_word(struct spi_geni_master *mas)
{
/*
* Calculate how many bytes we'll put in each FIFO word. If the
* transfer words don't pack cleanly into a FIFO word we'll just put
* one transfer word in each FIFO word. If they do pack we'll pack 'em.
*/
if (mas->fifo_width_bits % mas->cur_bits_per_word)
return roundup_pow_of_two(DIV_ROUND_UP(mas->cur_bits_per_word,
BITS_PER_BYTE));
return mas->fifo_width_bits / BITS_PER_BYTE;
}
static bool geni_spi_handle_tx(struct spi_geni_master *mas)
{
struct geni_se *se = &mas->se;
unsigned int max_bytes;
const u8 *tx_buf;
unsigned int bytes_per_fifo_word = geni_byte_per_fifo_word(mas);
unsigned int i = 0;
/* Stop the watermark IRQ if nothing to send */
if (!mas->cur_xfer) {
writel(0, se->base + SE_GENI_TX_WATERMARK_REG);
return false;
}
max_bytes = (mas->tx_fifo_depth - mas->tx_wm) * bytes_per_fifo_word;
if (mas->tx_rem_bytes < max_bytes)
max_bytes = mas->tx_rem_bytes;
tx_buf = mas->cur_xfer->tx_buf + mas->cur_xfer->len - mas->tx_rem_bytes;
while (i < max_bytes) {
unsigned int j;
unsigned int bytes_to_write;
u32 fifo_word = 0;
u8 *fifo_byte = (u8 *)&fifo_word;
bytes_to_write = min(bytes_per_fifo_word, max_bytes - i);
for (j = 0; j < bytes_to_write; j++)
fifo_byte[j] = tx_buf[i++];
iowrite32_rep(se->base + SE_GENI_TX_FIFOn, &fifo_word, 1);
}
mas->tx_rem_bytes -= max_bytes;
if (!mas->tx_rem_bytes) {
writel(0, se->base + SE_GENI_TX_WATERMARK_REG);
return false;
}
return true;
}
static void geni_spi_handle_rx(struct spi_geni_master *mas)
{
struct geni_se *se = &mas->se;
u32 rx_fifo_status;
unsigned int rx_bytes;
unsigned int rx_last_byte_valid;
u8 *rx_buf;
unsigned int bytes_per_fifo_word = geni_byte_per_fifo_word(mas);
unsigned int i = 0;
rx_fifo_status = readl(se->base + SE_GENI_RX_FIFO_STATUS);
rx_bytes = (rx_fifo_status & RX_FIFO_WC_MSK) * bytes_per_fifo_word;
if (rx_fifo_status & RX_LAST) {
rx_last_byte_valid = rx_fifo_status & RX_LAST_BYTE_VALID_MSK;
rx_last_byte_valid >>= RX_LAST_BYTE_VALID_SHFT;
if (rx_last_byte_valid && rx_last_byte_valid < 4)
rx_bytes -= bytes_per_fifo_word - rx_last_byte_valid;
}
/* Clear out the FIFO and bail if nowhere to put it */
if (!mas->cur_xfer) {
for (i = 0; i < DIV_ROUND_UP(rx_bytes, bytes_per_fifo_word); i++)
readl(se->base + SE_GENI_RX_FIFOn);
return;
}
if (mas->rx_rem_bytes < rx_bytes)
rx_bytes = mas->rx_rem_bytes;
rx_buf = mas->cur_xfer->rx_buf + mas->cur_xfer->len - mas->rx_rem_bytes;
while (i < rx_bytes) {
u32 fifo_word = 0;
u8 *fifo_byte = (u8 *)&fifo_word;
unsigned int bytes_to_read;
unsigned int j;
bytes_to_read = min(bytes_per_fifo_word, rx_bytes - i);
ioread32_rep(se->base + SE_GENI_RX_FIFOn, &fifo_word, 1);
for (j = 0; j < bytes_to_read; j++)
rx_buf[i++] = fifo_byte[j];
}
mas->rx_rem_bytes -= rx_bytes;
}
static int setup_se_xfer(struct spi_transfer *xfer,
struct spi_geni_master *mas,
u16 mode, struct spi_master *spi)
{
u32 m_cmd = 0;
u32 len, fifo_size;
struct geni_se *se = &mas->se;
int ret;
/*
* Ensure that our interrupt handler isn't still running from some
* prior command before we start messing with the hardware behind
* its back. We don't need to _keep_ the lock here since we're only
* worried about racing with out interrupt handler. The SPI core
* already handles making sure that we're not trying to do two
* transfers at once or setting a chip select and doing a transfer
* concurrently.
*
* NOTE: we actually _can't_ hold the lock here because possibly we
* might call clk_set_rate() which needs to be able to sleep.
*/
spin_lock_irq(&mas->lock);
spin_unlock_irq(&mas->lock);
if (xfer->bits_per_word != mas->cur_bits_per_word) {
spi_setup_word_len(mas, mode, xfer->bits_per_word);
mas->cur_bits_per_word = xfer->bits_per_word;
}
/* Speed and bits per word can be overridden per transfer */
ret = geni_spi_set_clock_and_bw(mas, xfer->speed_hz);
if (ret)
return ret;
mas->tx_rem_bytes = 0;
mas->rx_rem_bytes = 0;
if (!(mas->cur_bits_per_word % MIN_WORD_LEN))
len = xfer->len * BITS_PER_BYTE / mas->cur_bits_per_word;
else
len = xfer->len / (mas->cur_bits_per_word / BITS_PER_BYTE + 1);
len &= TRANS_LEN_MSK;
mas->cur_xfer = xfer;
if (xfer->tx_buf) {
m_cmd |= SPI_TX_ONLY;
mas->tx_rem_bytes = xfer->len;
writel(len, se->base + SE_SPI_TX_TRANS_LEN);
}
if (xfer->rx_buf) {
m_cmd |= SPI_RX_ONLY;
writel(len, se->base + SE_SPI_RX_TRANS_LEN);
mas->rx_rem_bytes = xfer->len;
}
/* Select transfer mode based on transfer length */
fifo_size = mas->tx_fifo_depth * mas->fifo_width_bits / mas->cur_bits_per_word;
mas->cur_xfer_mode = (len <= fifo_size) ? GENI_SE_FIFO : GENI_SE_DMA;
geni_se_select_mode(se, mas->cur_xfer_mode);
/*
* Lock around right before we start the transfer since our
* interrupt could come in at any time now.
*/
spin_lock_irq(&mas->lock);
geni_se_setup_m_cmd(se, m_cmd, FRAGMENTATION);
if (mas->cur_xfer_mode == GENI_SE_DMA) {
if (m_cmd & SPI_RX_ONLY) {
ret = geni_se_rx_dma_prep(se, xfer->rx_buf,
xfer->len, &mas->rx_se_dma);
if (ret) {
dev_err(mas->dev, "Failed to setup Rx dma %d\n", ret);
mas->rx_se_dma = 0;
goto unlock_and_return;
}
}
if (m_cmd & SPI_TX_ONLY) {
ret = geni_se_tx_dma_prep(se, (void *)xfer->tx_buf,
xfer->len, &mas->tx_se_dma);
if (ret) {
dev_err(mas->dev, "Failed to setup Tx dma %d\n", ret);
mas->tx_se_dma = 0;
if (m_cmd & SPI_RX_ONLY) {
/* Unmap rx buffer if duplex transfer */
geni_se_rx_dma_unprep(se, mas->rx_se_dma, xfer->len);
mas->rx_se_dma = 0;
}
goto unlock_and_return;
}
}
} else if (m_cmd & SPI_TX_ONLY) {
if (geni_spi_handle_tx(mas))
writel(mas->tx_wm, se->base + SE_GENI_TX_WATERMARK_REG);
}
unlock_and_return:
spin_unlock_irq(&mas->lock);
return ret;
}
static int spi_geni_transfer_one(struct spi_master *spi,
struct spi_device *slv,
struct spi_transfer *xfer)
{
struct spi_geni_master *mas = spi_master_get_devdata(spi);
int ret;
if (spi_geni_is_abort_still_pending(mas))
return -EBUSY;
/* Terminate and return success for 0 byte length transfer */
if (!xfer->len)
return 0;
if (mas->cur_xfer_mode == GENI_SE_FIFO || mas->cur_xfer_mode == GENI_SE_DMA) {
ret = setup_se_xfer(xfer, mas, slv->mode, spi);
/* SPI framework expects +ve ret code to wait for transfer complete */
if (!ret)
ret = 1;
return ret;
}
return setup_gsi_xfer(xfer, mas, slv, spi);
}
static irqreturn_t geni_spi_isr(int irq, void *data)
{
struct spi_master *spi = data;
struct spi_geni_master *mas = spi_master_get_devdata(spi);
struct geni_se *se = &mas->se;
u32 m_irq;
m_irq = readl(se->base + SE_GENI_M_IRQ_STATUS);
if (!m_irq)
return IRQ_NONE;
if (m_irq & (M_CMD_OVERRUN_EN | M_ILLEGAL_CMD_EN | M_CMD_FAILURE_EN |
M_RX_FIFO_RD_ERR_EN | M_RX_FIFO_WR_ERR_EN |
M_TX_FIFO_RD_ERR_EN | M_TX_FIFO_WR_ERR_EN))
dev_warn(mas->dev, "Unexpected IRQ err status %#010x\n", m_irq);
spin_lock(&mas->lock);
if (mas->cur_xfer_mode == GENI_SE_FIFO) {
if ((m_irq & M_RX_FIFO_WATERMARK_EN) || (m_irq & M_RX_FIFO_LAST_EN))
geni_spi_handle_rx(mas);
if (m_irq & M_TX_FIFO_WATERMARK_EN)
geni_spi_handle_tx(mas);
if (m_irq & M_CMD_DONE_EN) {
if (mas->cur_xfer) {
spi_finalize_current_transfer(spi);
mas->cur_xfer = NULL;
/*
* If this happens, then a CMD_DONE came before all the
* Tx buffer bytes were sent out. This is unusual, log
* this condition and disable the WM interrupt to
* prevent the system from stalling due an interrupt
* storm.
*
* If this happens when all Rx bytes haven't been
* received, log the condition. The only known time
* this can happen is if bits_per_word != 8 and some
* registers that expect xfer lengths in num spi_words
* weren't written correctly.
*/
if (mas->tx_rem_bytes) {
writel(0, se->base + SE_GENI_TX_WATERMARK_REG);
dev_err(mas->dev, "Premature done. tx_rem = %d bpw%d\n",
mas->tx_rem_bytes, mas->cur_bits_per_word);
}
if (mas->rx_rem_bytes)
dev_err(mas->dev, "Premature done. rx_rem = %d bpw%d\n",
mas->rx_rem_bytes, mas->cur_bits_per_word);
} else {
complete(&mas->cs_done);
}
}
} else if (mas->cur_xfer_mode == GENI_SE_DMA) {
const struct spi_transfer *xfer = mas->cur_xfer;
u32 dma_tx_status = readl_relaxed(se->base + SE_DMA_TX_IRQ_STAT);
u32 dma_rx_status = readl_relaxed(se->base + SE_DMA_RX_IRQ_STAT);
if (dma_tx_status)
writel(dma_tx_status, se->base + SE_DMA_TX_IRQ_CLR);
if (dma_rx_status)
writel(dma_rx_status, se->base + SE_DMA_RX_IRQ_CLR);
if (dma_tx_status & TX_DMA_DONE)
mas->tx_rem_bytes = 0;
if (dma_rx_status & RX_DMA_DONE)
mas->rx_rem_bytes = 0;
if (dma_tx_status & TX_RESET_DONE)
complete(&mas->tx_reset_done);
if (dma_rx_status & RX_RESET_DONE)
complete(&mas->rx_reset_done);
if (!mas->tx_rem_bytes && !mas->rx_rem_bytes && xfer) {
if (xfer->tx_buf && mas->tx_se_dma) {
geni_se_tx_dma_unprep(se, mas->tx_se_dma, xfer->len);
mas->tx_se_dma = 0;
}
if (xfer->rx_buf && mas->rx_se_dma) {
geni_se_rx_dma_unprep(se, mas->rx_se_dma, xfer->len);
mas->rx_se_dma = 0;
}
spi_finalize_current_transfer(spi);
mas->cur_xfer = NULL;
}
}
if (m_irq & M_CMD_CANCEL_EN)
complete(&mas->cancel_done);
if (m_irq & M_CMD_ABORT_EN)
complete(&mas->abort_done);
/*
* It's safe or a good idea to Ack all of our interrupts at the end
* of the function. Specifically:
* - M_CMD_DONE_EN / M_RX_FIFO_LAST_EN: Edge triggered interrupts and
* clearing Acks. Clearing at the end relies on nobody else having
* started a new transfer yet or else we could be clearing _their_
* done bit, but everyone grabs the spinlock before starting a new
* transfer.
* - M_RX_FIFO_WATERMARK_EN / M_TX_FIFO_WATERMARK_EN: These appear
* to be "latched level" interrupts so it's important to clear them
* _after_ you've handled the condition and always safe to do so
* since they'll re-assert if they're still happening.
*/
writel(m_irq, se->base + SE_GENI_M_IRQ_CLEAR);
spin_unlock(&mas->lock);
return IRQ_HANDLED;
}
static int spi_geni_probe(struct platform_device *pdev)
{
int ret, irq;
struct spi_master *spi;
struct spi_geni_master *mas;
void __iomem *base;
struct clk *clk;
struct device *dev = &pdev->dev;
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
if (ret)
return dev_err_probe(dev, ret, "could not set DMA mask\n");
base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(base))
return PTR_ERR(base);
clk = devm_clk_get(dev, "se");
if (IS_ERR(clk))
return PTR_ERR(clk);
spi = devm_spi_alloc_master(dev, sizeof(*mas));
if (!spi)
return -ENOMEM;
platform_set_drvdata(pdev, spi);
mas = spi_master_get_devdata(spi);
mas->irq = irq;
mas->dev = dev;
mas->se.dev = dev;
mas->se.wrapper = dev_get_drvdata(dev->parent);
mas->se.base = base;
mas->se.clk = clk;
ret = devm_pm_opp_set_clkname(&pdev->dev, "se");
if (ret)
return ret;
/* OPP table is optional */
ret = devm_pm_opp_of_add_table(&pdev->dev);
if (ret && ret != -ENODEV) {
dev_err(&pdev->dev, "invalid OPP table in device tree\n");
return ret;
}
spi->bus_num = -1;
spi->dev.of_node = dev->of_node;
spi->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LOOP | SPI_CS_HIGH;
spi->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
spi->num_chipselect = 4;
spi->max_speed_hz = 50000000;
spi->prepare_message = spi_geni_prepare_message;
spi->transfer_one = spi_geni_transfer_one;
spi->can_dma = geni_can_dma;
spi->dma_map_dev = dev->parent;
spi->auto_runtime_pm = true;
spi->handle_err = spi_geni_handle_err;
spi->use_gpio_descriptors = true;
init_completion(&mas->cs_done);
init_completion(&mas->cancel_done);
init_completion(&mas->abort_done);
init_completion(&mas->tx_reset_done);
init_completion(&mas->rx_reset_done);
spin_lock_init(&mas->lock);
pm_runtime_use_autosuspend(&pdev->dev);
pm_runtime_set_autosuspend_delay(&pdev->dev, 250);
pm_runtime_enable(dev);
ret = geni_icc_get(&mas->se, NULL);
if (ret)
goto spi_geni_probe_runtime_disable;
/* Set the bus quota to a reasonable value for register access */
mas->se.icc_paths[GENI_TO_CORE].avg_bw = Bps_to_icc(CORE_2X_50_MHZ);
mas->se.icc_paths[CPU_TO_GENI].avg_bw = GENI_DEFAULT_BW;
ret = geni_icc_set_bw(&mas->se);
if (ret)
goto spi_geni_probe_runtime_disable;
ret = spi_geni_init(mas);
if (ret)
goto spi_geni_probe_runtime_disable;
/*
* check the mode supported and set_cs for fifo mode only
* for dma (gsi) mode, the gsi will set cs based on params passed in
* TRE
*/
if (mas->cur_xfer_mode == GENI_SE_FIFO)
spi->set_cs = spi_geni_set_cs;
ret = request_irq(mas->irq, geni_spi_isr, 0, dev_name(dev), spi);
if (ret)
goto spi_geni_release_dma;
ret = spi_register_master(spi);
if (ret)
goto spi_geni_probe_free_irq;
return 0;
spi_geni_probe_free_irq:
free_irq(mas->irq, spi);
spi_geni_release_dma:
spi_geni_release_dma_chan(mas);
spi_geni_probe_runtime_disable:
pm_runtime_disable(dev);
return ret;
}
static void spi_geni_remove(struct platform_device *pdev)
{
struct spi_master *spi = platform_get_drvdata(pdev);
struct spi_geni_master *mas = spi_master_get_devdata(spi);
/* Unregister _before_ disabling pm_runtime() so we stop transfers */
spi_unregister_master(spi);
spi_geni_release_dma_chan(mas);
free_irq(mas->irq, spi);
pm_runtime_disable(&pdev->dev);
}
static int __maybe_unused spi_geni_runtime_suspend(struct device *dev)
{
struct spi_master *spi = dev_get_drvdata(dev);
struct spi_geni_master *mas = spi_master_get_devdata(spi);
int ret;
/* Drop the performance state vote */
dev_pm_opp_set_rate(dev, 0);
ret = geni_se_resources_off(&mas->se);
if (ret)
return ret;
return geni_icc_disable(&mas->se);
}
static int __maybe_unused spi_geni_runtime_resume(struct device *dev)
{
struct spi_master *spi = dev_get_drvdata(dev);
struct spi_geni_master *mas = spi_master_get_devdata(spi);
int ret;
ret = geni_icc_enable(&mas->se);
if (ret)
return ret;
ret = geni_se_resources_on(&mas->se);
if (ret)
return ret;
return dev_pm_opp_set_rate(mas->dev, mas->cur_sclk_hz);
}
static int __maybe_unused spi_geni_suspend(struct device *dev)
{
struct spi_master *spi = dev_get_drvdata(dev);
int ret;
ret = spi_master_suspend(spi);
if (ret)
return ret;
ret = pm_runtime_force_suspend(dev);
if (ret)
spi_master_resume(spi);
return ret;
}
static int __maybe_unused spi_geni_resume(struct device *dev)
{
struct spi_master *spi = dev_get_drvdata(dev);
int ret;
ret = pm_runtime_force_resume(dev);
if (ret)
return ret;
ret = spi_master_resume(spi);
if (ret)
pm_runtime_force_suspend(dev);
return ret;
}
static const struct dev_pm_ops spi_geni_pm_ops = {
SET_RUNTIME_PM_OPS(spi_geni_runtime_suspend,
spi_geni_runtime_resume, NULL)
SET_SYSTEM_SLEEP_PM_OPS(spi_geni_suspend, spi_geni_resume)
};
static const struct of_device_id spi_geni_dt_match[] = {
{ .compatible = "qcom,geni-spi" },
{}
};
MODULE_DEVICE_TABLE(of, spi_geni_dt_match);
static struct platform_driver spi_geni_driver = {
.probe = spi_geni_probe,
.remove_new = spi_geni_remove,
.driver = {
.name = "geni_spi",
.pm = &spi_geni_pm_ops,
.of_match_table = spi_geni_dt_match,
},
};
module_platform_driver(spi_geni_driver);
MODULE_DESCRIPTION("SPI driver for GENI based QUP cores");
MODULE_LICENSE("GPL v2");