linux/drivers/gpu/drm/i915/gt/uc/intel_huc.c
John Harrison a797099562 drm/i915/huc: Allow for very slow HuC loading
A failure to load the HuC is occasionally observed where the cause is
believed to be a low GT frequency leading to very long load times.

So a) increase the timeout so that the user still gets a working
system even in the case of slow load. And b) report the frequency
during the load to see if that is the cause of the slow down.

Also update the similar code on the GuC load to not use uncore->gt
when there is a local gt available. The two should match, but no need
for unnecessary de-referencing.

Signed-off-by: John Harrison <John.C.Harrison@Intel.com>
Reviewed-by: Daniele Ceraolo Spurio <daniele.ceraolospurio@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20240102222202.310495-1-John.C.Harrison@Intel.com
2024-01-05 16:18:21 -08:00

705 lines
20 KiB
C

// SPDX-License-Identifier: MIT
/*
* Copyright © 2016-2019 Intel Corporation
*/
#include <linux/types.h>
#include "gt/intel_gt.h"
#include "gt/intel_rps.h"
#include "intel_guc_reg.h"
#include "intel_huc.h"
#include "intel_huc_print.h"
#include "i915_drv.h"
#include "i915_reg.h"
#include "pxp/intel_pxp_cmd_interface_43.h"
#include <linux/device/bus.h>
#include <linux/mei_aux.h>
/**
* DOC: HuC
*
* The HuC is a dedicated microcontroller for usage in media HEVC (High
* Efficiency Video Coding) operations. Userspace can directly use the firmware
* capabilities by adding HuC specific commands to batch buffers.
*
* The kernel driver is only responsible for loading the HuC firmware and
* triggering its security authentication. This is done differently depending
* on the platform:
*
* - older platforms (from Gen9 to most Gen12s): the load is performed via DMA
* and the authentication via GuC
* - DG2: load and authentication are both performed via GSC.
* - MTL and newer platforms: the load is performed via DMA (same as with
* not-DG2 older platforms), while the authentication is done in 2-steps,
* a first auth for clear-media workloads via GuC and a second one for all
* workloads via GSC.
*
* On platforms where the GuC does the authentication, to correctly do so the
* HuC binary must be loaded before the GuC one.
* Loading the HuC is optional; however, not using the HuC might negatively
* impact power usage and/or performance of media workloads, depending on the
* use-cases.
* HuC must be reloaded on events that cause the WOPCM to lose its contents
* (S3/S4, FLR); on older platforms the HuC must also be reloaded on GuC/GT
* reset, while on newer ones it will survive that.
*
* See https://github.com/intel/media-driver for the latest details on HuC
* functionality.
*/
/**
* DOC: HuC Memory Management
*
* Similarly to the GuC, the HuC can't do any memory allocations on its own,
* with the difference being that the allocations for HuC usage are handled by
* the userspace driver instead of the kernel one. The HuC accesses the memory
* via the PPGTT belonging to the context loaded on the VCS executing the
* HuC-specific commands.
*/
/*
* MEI-GSC load is an async process. The probing of the exposed aux device
* (see intel_gsc.c) usually happens a few seconds after i915 probe, depending
* on when the kernel schedules it. Unless something goes terribly wrong, we're
* guaranteed for this to happen during boot, so the big timeout is a safety net
* that we never expect to need.
* MEI-PXP + HuC load usually takes ~300ms, but if the GSC needs to be resumed
* and/or reset, this can take longer. Note that the kernel might schedule
* other work between the i915 init/resume and the MEI one, which can add to
* the delay.
*/
#define GSC_INIT_TIMEOUT_MS 10000
#define PXP_INIT_TIMEOUT_MS 5000
static int sw_fence_dummy_notify(struct i915_sw_fence *sf,
enum i915_sw_fence_notify state)
{
return NOTIFY_DONE;
}
static void __delayed_huc_load_complete(struct intel_huc *huc)
{
if (!i915_sw_fence_done(&huc->delayed_load.fence))
i915_sw_fence_complete(&huc->delayed_load.fence);
}
static void delayed_huc_load_complete(struct intel_huc *huc)
{
hrtimer_cancel(&huc->delayed_load.timer);
__delayed_huc_load_complete(huc);
}
static void __gsc_init_error(struct intel_huc *huc)
{
huc->delayed_load.status = INTEL_HUC_DELAYED_LOAD_ERROR;
__delayed_huc_load_complete(huc);
}
static void gsc_init_error(struct intel_huc *huc)
{
hrtimer_cancel(&huc->delayed_load.timer);
__gsc_init_error(huc);
}
static void gsc_init_done(struct intel_huc *huc)
{
hrtimer_cancel(&huc->delayed_load.timer);
/* MEI-GSC init is done, now we wait for MEI-PXP to bind */
huc->delayed_load.status = INTEL_HUC_WAITING_ON_PXP;
if (!i915_sw_fence_done(&huc->delayed_load.fence))
hrtimer_start(&huc->delayed_load.timer,
ms_to_ktime(PXP_INIT_TIMEOUT_MS),
HRTIMER_MODE_REL);
}
static enum hrtimer_restart huc_delayed_load_timer_callback(struct hrtimer *hrtimer)
{
struct intel_huc *huc = container_of(hrtimer, struct intel_huc, delayed_load.timer);
if (!intel_huc_is_authenticated(huc, INTEL_HUC_AUTH_BY_GSC)) {
if (huc->delayed_load.status == INTEL_HUC_WAITING_ON_GSC)
huc_notice(huc, "timed out waiting for MEI GSC\n");
else if (huc->delayed_load.status == INTEL_HUC_WAITING_ON_PXP)
huc_notice(huc, "timed out waiting for MEI PXP\n");
else
MISSING_CASE(huc->delayed_load.status);
__gsc_init_error(huc);
}
return HRTIMER_NORESTART;
}
static void huc_delayed_load_start(struct intel_huc *huc)
{
ktime_t delay;
GEM_BUG_ON(intel_huc_is_authenticated(huc, INTEL_HUC_AUTH_BY_GSC));
/*
* On resume we don't have to wait for MEI-GSC to be re-probed, but we
* do need to wait for MEI-PXP to reset & re-bind
*/
switch (huc->delayed_load.status) {
case INTEL_HUC_WAITING_ON_GSC:
delay = ms_to_ktime(GSC_INIT_TIMEOUT_MS);
break;
case INTEL_HUC_WAITING_ON_PXP:
delay = ms_to_ktime(PXP_INIT_TIMEOUT_MS);
break;
default:
gsc_init_error(huc);
return;
}
/*
* This fence is always complete unless we're waiting for the
* GSC device to come up to load the HuC. We arm the fence here
* and complete it when we confirm that the HuC is loaded from
* the PXP bind callback.
*/
GEM_BUG_ON(!i915_sw_fence_done(&huc->delayed_load.fence));
i915_sw_fence_fini(&huc->delayed_load.fence);
i915_sw_fence_reinit(&huc->delayed_load.fence);
i915_sw_fence_await(&huc->delayed_load.fence);
i915_sw_fence_commit(&huc->delayed_load.fence);
hrtimer_start(&huc->delayed_load.timer, delay, HRTIMER_MODE_REL);
}
static int gsc_notifier(struct notifier_block *nb, unsigned long action, void *data)
{
struct device *dev = data;
struct intel_huc *huc = container_of(nb, struct intel_huc, delayed_load.nb);
struct intel_gsc_intf *intf = &huc_to_gt(huc)->gsc.intf[0];
if (!intf->adev || &intf->adev->aux_dev.dev != dev)
return 0;
switch (action) {
case BUS_NOTIFY_BOUND_DRIVER: /* mei driver bound to aux device */
gsc_init_done(huc);
break;
case BUS_NOTIFY_DRIVER_NOT_BOUND: /* mei driver fails to be bound */
case BUS_NOTIFY_UNBIND_DRIVER: /* mei driver about to be unbound */
huc_info(huc, "MEI driver not bound, disabling load\n");
gsc_init_error(huc);
break;
}
return 0;
}
void intel_huc_register_gsc_notifier(struct intel_huc *huc, const struct bus_type *bus)
{
int ret;
if (!intel_huc_is_loaded_by_gsc(huc))
return;
huc->delayed_load.nb.notifier_call = gsc_notifier;
ret = bus_register_notifier(bus, &huc->delayed_load.nb);
if (ret) {
huc_err(huc, "failed to register GSC notifier %pe\n", ERR_PTR(ret));
huc->delayed_load.nb.notifier_call = NULL;
gsc_init_error(huc);
}
}
void intel_huc_unregister_gsc_notifier(struct intel_huc *huc, const struct bus_type *bus)
{
if (!huc->delayed_load.nb.notifier_call)
return;
delayed_huc_load_complete(huc);
bus_unregister_notifier(bus, &huc->delayed_load.nb);
huc->delayed_load.nb.notifier_call = NULL;
}
static void delayed_huc_load_init(struct intel_huc *huc)
{
/*
* Initialize fence to be complete as this is expected to be complete
* unless there is a delayed HuC load in progress.
*/
i915_sw_fence_init(&huc->delayed_load.fence,
sw_fence_dummy_notify);
i915_sw_fence_commit(&huc->delayed_load.fence);
hrtimer_init(&huc->delayed_load.timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
huc->delayed_load.timer.function = huc_delayed_load_timer_callback;
}
static void delayed_huc_load_fini(struct intel_huc *huc)
{
/*
* the fence is initialized in init_early, so we need to clean it up
* even if HuC loading is off.
*/
delayed_huc_load_complete(huc);
i915_sw_fence_fini(&huc->delayed_load.fence);
}
int intel_huc_sanitize(struct intel_huc *huc)
{
delayed_huc_load_complete(huc);
intel_uc_fw_sanitize(&huc->fw);
return 0;
}
static bool vcs_supported(struct intel_gt *gt)
{
intel_engine_mask_t mask = gt->info.engine_mask;
/*
* We reach here from i915_driver_early_probe for the primary GT before
* its engine mask is set, so we use the device info engine mask for it;
* this means we're not taking VCS fusing into account, but if the
* primary GT supports VCS engines we expect at least one of them to
* remain unfused so we're fine.
* For other GTs we expect the GT-specific mask to be set before we
* call this function.
*/
GEM_BUG_ON(!gt_is_root(gt) && !gt->info.engine_mask);
if (gt_is_root(gt))
mask = INTEL_INFO(gt->i915)->platform_engine_mask;
else
mask = gt->info.engine_mask;
return __ENGINE_INSTANCES_MASK(mask, VCS0, I915_MAX_VCS);
}
void intel_huc_init_early(struct intel_huc *huc)
{
struct drm_i915_private *i915 = huc_to_gt(huc)->i915;
struct intel_gt *gt = huc_to_gt(huc);
intel_uc_fw_init_early(&huc->fw, INTEL_UC_FW_TYPE_HUC, true);
/*
* we always init the fence as already completed, even if HuC is not
* supported. This way we don't have to distinguish between HuC not
* supported/disabled or already loaded, and can focus on if the load
* is currently in progress (fence not complete) or not, which is what
* we care about for stalling userspace submissions.
*/
delayed_huc_load_init(huc);
if (!vcs_supported(gt)) {
intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_NOT_SUPPORTED);
return;
}
if (GRAPHICS_VER(i915) >= 11) {
huc->status[INTEL_HUC_AUTH_BY_GUC].reg = GEN11_HUC_KERNEL_LOAD_INFO;
huc->status[INTEL_HUC_AUTH_BY_GUC].mask = HUC_LOAD_SUCCESSFUL;
huc->status[INTEL_HUC_AUTH_BY_GUC].value = HUC_LOAD_SUCCESSFUL;
} else {
huc->status[INTEL_HUC_AUTH_BY_GUC].reg = HUC_STATUS2;
huc->status[INTEL_HUC_AUTH_BY_GUC].mask = HUC_FW_VERIFIED;
huc->status[INTEL_HUC_AUTH_BY_GUC].value = HUC_FW_VERIFIED;
}
if (IS_DG2(i915)) {
huc->status[INTEL_HUC_AUTH_BY_GSC].reg = GEN11_HUC_KERNEL_LOAD_INFO;
huc->status[INTEL_HUC_AUTH_BY_GSC].mask = HUC_LOAD_SUCCESSFUL;
huc->status[INTEL_HUC_AUTH_BY_GSC].value = HUC_LOAD_SUCCESSFUL;
} else {
huc->status[INTEL_HUC_AUTH_BY_GSC].reg = HECI_FWSTS(MTL_GSC_HECI1_BASE, 5);
huc->status[INTEL_HUC_AUTH_BY_GSC].mask = HECI1_FWSTS5_HUC_AUTH_DONE;
huc->status[INTEL_HUC_AUTH_BY_GSC].value = HECI1_FWSTS5_HUC_AUTH_DONE;
}
}
#define HUC_LOAD_MODE_STRING(x) (x ? "GSC" : "legacy")
static int check_huc_loading_mode(struct intel_huc *huc)
{
struct intel_gt *gt = huc_to_gt(huc);
bool gsc_enabled = huc->fw.has_gsc_headers;
/*
* The fuse for HuC load via GSC is only valid on platforms that have
* GuC deprivilege.
*/
if (HAS_GUC_DEPRIVILEGE(gt->i915))
huc->loaded_via_gsc = intel_uncore_read(gt->uncore, GUC_SHIM_CONTROL2) &
GSC_LOADS_HUC;
if (huc->loaded_via_gsc && !gsc_enabled) {
huc_err(huc, "HW requires a GSC-enabled blob, but we found a legacy one\n");
return -ENOEXEC;
}
/*
* On newer platforms we have GSC-enabled binaries but we load the HuC
* via DMA. To do so we need to find the location of the legacy-style
* binary inside the GSC-enabled one, which we do at fetch time. Make
* sure that we were able to do so if the fuse says we need to load via
* DMA and the binary is GSC-enabled.
*/
if (!huc->loaded_via_gsc && gsc_enabled && !huc->fw.dma_start_offset) {
huc_err(huc, "HW in DMA mode, but we have an incompatible GSC-enabled blob\n");
return -ENOEXEC;
}
/*
* If the HuC is loaded via GSC, we need to be able to access the GSC.
* On DG2 this is done via the mei components, while on newer platforms
* it is done via the GSCCS,
*/
if (huc->loaded_via_gsc) {
if (IS_DG2(gt->i915)) {
if (!IS_ENABLED(CONFIG_INTEL_MEI_PXP) ||
!IS_ENABLED(CONFIG_INTEL_MEI_GSC)) {
huc_info(huc, "can't load due to missing mei modules\n");
return -EIO;
}
} else {
if (!HAS_ENGINE(gt, GSC0)) {
huc_info(huc, "can't load due to missing GSCCS\n");
return -EIO;
}
}
}
huc_dbg(huc, "loaded by GSC = %s\n", str_yes_no(huc->loaded_via_gsc));
return 0;
}
int intel_huc_init(struct intel_huc *huc)
{
struct intel_gt *gt = huc_to_gt(huc);
int err;
err = check_huc_loading_mode(huc);
if (err)
goto out;
if (HAS_ENGINE(gt, GSC0)) {
struct i915_vma *vma;
vma = intel_guc_allocate_vma(&gt->uc.guc, PXP43_HUC_AUTH_INOUT_SIZE * 2);
if (IS_ERR(vma)) {
err = PTR_ERR(vma);
huc_info(huc, "Failed to allocate heci pkt\n");
goto out;
}
huc->heci_pkt = vma;
}
err = intel_uc_fw_init(&huc->fw);
if (err)
goto out_pkt;
intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_LOADABLE);
return 0;
out_pkt:
if (huc->heci_pkt)
i915_vma_unpin_and_release(&huc->heci_pkt, 0);
out:
intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_INIT_FAIL);
huc_info(huc, "initialization failed %pe\n", ERR_PTR(err));
return err;
}
void intel_huc_fini(struct intel_huc *huc)
{
/*
* the fence is initialized in init_early, so we need to clean it up
* even if HuC loading is off.
*/
delayed_huc_load_fini(huc);
if (huc->heci_pkt)
i915_vma_unpin_and_release(&huc->heci_pkt, 0);
if (intel_uc_fw_is_loadable(&huc->fw))
intel_uc_fw_fini(&huc->fw);
}
void intel_huc_suspend(struct intel_huc *huc)
{
if (!intel_uc_fw_is_loadable(&huc->fw))
return;
/*
* in the unlikely case that we're suspending before the GSC has
* completed its loading sequence, just stop waiting. We'll restart
* on resume.
*/
delayed_huc_load_complete(huc);
}
static const char *auth_mode_string(struct intel_huc *huc,
enum intel_huc_authentication_type type)
{
bool partial = huc->fw.has_gsc_headers && type == INTEL_HUC_AUTH_BY_GUC;
return partial ? "clear media" : "all workloads";
}
/*
* Use a longer timeout for debug builds so that problems can be detected
* and analysed. But a shorter timeout for releases so that user's don't
* wait forever to find out there is a problem. Note that the only reason
* an end user should hit the timeout is in case of extreme thermal throttling.
* And a system that is that hot during boot is probably dead anyway!
*/
#if defined(CONFIG_DRM_I915_DEBUG_GEM)
#define HUC_LOAD_RETRY_LIMIT 20
#else
#define HUC_LOAD_RETRY_LIMIT 3
#endif
int intel_huc_wait_for_auth_complete(struct intel_huc *huc,
enum intel_huc_authentication_type type)
{
struct intel_gt *gt = huc_to_gt(huc);
struct intel_uncore *uncore = gt->uncore;
ktime_t before, after, delta;
int ret, count;
u64 delta_ms;
u32 before_freq;
/*
* The KMD requests maximum frequency during driver load, however thermal
* throttling can force the frequency down to minimum (although the board
* really should never get that hot in real life!). IFWI issues have been
* seen to cause sporadic failures to grant the higher frequency. And at
* minimum frequency, the authentication time can be in the seconds range.
* Note that there is a limit on how long an individual wait_for() can wait.
* So wrap it in a loop.
*/
before_freq = intel_rps_read_actual_frequency(&gt->rps);
before = ktime_get();
for (count = 0; count < HUC_LOAD_RETRY_LIMIT; count++) {
ret = __intel_wait_for_register(gt->uncore,
huc->status[type].reg,
huc->status[type].mask,
huc->status[type].value,
2, 1000, NULL);
if (!ret)
break;
huc_dbg(huc, "auth still in progress, count = %d, freq = %dMHz, status = 0x%08X\n",
count, intel_rps_read_actual_frequency(&gt->rps),
huc->status[type].reg.reg);
}
after = ktime_get();
delta = ktime_sub(after, before);
delta_ms = ktime_to_ms(delta);
if (delta_ms > 50) {
huc_warn(huc, "excessive auth time: %lldms! [status = 0x%08X, count = %d, ret = %d]\n",
delta_ms, huc->status[type].reg.reg, count, ret);
huc_warn(huc, "excessive auth time: [freq = %dMHz, before = %dMHz, perf_limit_reasons = 0x%08X]\n",
intel_rps_read_actual_frequency(&gt->rps), before_freq,
intel_uncore_read(uncore, intel_gt_perf_limit_reasons_reg(gt)));
} else {
huc_dbg(huc, "auth took %lldms, freq = %dMHz, before = %dMHz, status = 0x%08X, count = %d, ret = %d\n",
delta_ms, intel_rps_read_actual_frequency(&gt->rps),
before_freq, huc->status[type].reg.reg, count, ret);
}
/* mark the load process as complete even if the wait failed */
delayed_huc_load_complete(huc);
if (ret) {
huc_err(huc, "firmware not verified for %s: %pe\n",
auth_mode_string(huc, type), ERR_PTR(ret));
intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_LOAD_FAIL);
return ret;
}
intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_RUNNING);
huc_info(huc, "authenticated for %s\n", auth_mode_string(huc, type));
return 0;
}
/**
* intel_huc_auth() - Authenticate HuC uCode
* @huc: intel_huc structure
* @type: authentication type (via GuC or via GSC)
*
* Called after HuC and GuC firmware loading during intel_uc_init_hw().
*
* This function invokes the GuC action to authenticate the HuC firmware,
* passing the offset of the RSA signature to intel_guc_auth_huc(). It then
* waits for up to 50ms for firmware verification ACK.
*/
int intel_huc_auth(struct intel_huc *huc, enum intel_huc_authentication_type type)
{
struct intel_gt *gt = huc_to_gt(huc);
struct intel_guc *guc = &gt->uc.guc;
int ret;
if (!intel_uc_fw_is_loaded(&huc->fw))
return -ENOEXEC;
/* GSC will do the auth with the load */
if (intel_huc_is_loaded_by_gsc(huc))
return -ENODEV;
if (intel_huc_is_authenticated(huc, type))
return -EEXIST;
ret = i915_inject_probe_error(gt->i915, -ENXIO);
if (ret)
goto fail;
switch (type) {
case INTEL_HUC_AUTH_BY_GUC:
ret = intel_guc_auth_huc(guc, intel_guc_ggtt_offset(guc, huc->fw.rsa_data));
break;
case INTEL_HUC_AUTH_BY_GSC:
ret = intel_huc_fw_auth_via_gsccs(huc);
break;
default:
MISSING_CASE(type);
ret = -EINVAL;
}
if (ret)
goto fail;
/* Check authentication status, it should be done by now */
ret = intel_huc_wait_for_auth_complete(huc, type);
if (ret)
goto fail;
return 0;
fail:
huc_probe_error(huc, "%s authentication failed %pe\n",
auth_mode_string(huc, type), ERR_PTR(ret));
return ret;
}
bool intel_huc_is_authenticated(struct intel_huc *huc,
enum intel_huc_authentication_type type)
{
struct intel_gt *gt = huc_to_gt(huc);
intel_wakeref_t wakeref;
u32 status = 0;
with_intel_runtime_pm(gt->uncore->rpm, wakeref)
status = intel_uncore_read(gt->uncore, huc->status[type].reg);
return (status & huc->status[type].mask) == huc->status[type].value;
}
static bool huc_is_fully_authenticated(struct intel_huc *huc)
{
struct intel_uc_fw *huc_fw = &huc->fw;
if (!huc_fw->has_gsc_headers)
return intel_huc_is_authenticated(huc, INTEL_HUC_AUTH_BY_GUC);
else if (intel_huc_is_loaded_by_gsc(huc) || HAS_ENGINE(huc_to_gt(huc), GSC0))
return intel_huc_is_authenticated(huc, INTEL_HUC_AUTH_BY_GSC);
else
return false;
}
/**
* intel_huc_check_status() - check HuC status
* @huc: intel_huc structure
*
* This function reads status register to verify if HuC
* firmware was successfully loaded.
*
* The return values match what is expected for the I915_PARAM_HUC_STATUS
* getparam.
*/
int intel_huc_check_status(struct intel_huc *huc)
{
struct intel_uc_fw *huc_fw = &huc->fw;
switch (__intel_uc_fw_status(huc_fw)) {
case INTEL_UC_FIRMWARE_NOT_SUPPORTED:
return -ENODEV;
case INTEL_UC_FIRMWARE_DISABLED:
return -EOPNOTSUPP;
case INTEL_UC_FIRMWARE_MISSING:
return -ENOPKG;
case INTEL_UC_FIRMWARE_ERROR:
return -ENOEXEC;
case INTEL_UC_FIRMWARE_INIT_FAIL:
return -ENOMEM;
case INTEL_UC_FIRMWARE_LOAD_FAIL:
return -EIO;
default:
break;
}
/*
* GSC-enabled binaries loaded via DMA are first partially
* authenticated by GuC and then fully authenticated by GSC
*/
if (huc_is_fully_authenticated(huc))
return 1; /* full auth */
else if (huc_fw->has_gsc_headers && !intel_huc_is_loaded_by_gsc(huc) &&
intel_huc_is_authenticated(huc, INTEL_HUC_AUTH_BY_GUC))
return 2; /* clear media only */
else
return 0;
}
static bool huc_has_delayed_load(struct intel_huc *huc)
{
return intel_huc_is_loaded_by_gsc(huc) &&
(huc->delayed_load.status != INTEL_HUC_DELAYED_LOAD_ERROR);
}
void intel_huc_update_auth_status(struct intel_huc *huc)
{
if (!intel_uc_fw_is_loadable(&huc->fw))
return;
if (!huc->fw.has_gsc_headers)
return;
if (huc_is_fully_authenticated(huc))
intel_uc_fw_change_status(&huc->fw,
INTEL_UC_FIRMWARE_RUNNING);
else if (huc_has_delayed_load(huc))
huc_delayed_load_start(huc);
}
/**
* intel_huc_load_status - dump information about HuC load status
* @huc: the HuC
* @p: the &drm_printer
*
* Pretty printer for HuC load status.
*/
void intel_huc_load_status(struct intel_huc *huc, struct drm_printer *p)
{
struct intel_gt *gt = huc_to_gt(huc);
intel_wakeref_t wakeref;
if (!intel_huc_is_supported(huc)) {
drm_printf(p, "HuC not supported\n");
return;
}
if (!intel_huc_is_wanted(huc)) {
drm_printf(p, "HuC disabled\n");
return;
}
intel_uc_fw_dump(&huc->fw, p);
with_intel_runtime_pm(gt->uncore->rpm, wakeref)
drm_printf(p, "HuC status: 0x%08x\n",
intel_uncore_read(gt->uncore, huc->status[INTEL_HUC_AUTH_BY_GUC].reg));
}