56d428ae1c
* Support for handling misaligned accesses in S-mode. * Probing for misaligned access support is now properly cached and handled in parallel. * PTDUMP now reflects the SW reserved bits, as well as the PBMT and NAPOT extensions. * Performance improvements for TLB flushing. * Support for many new relocations in the module loader. * Various bug fixes and cleanups. -----BEGIN PGP SIGNATURE----- iQJHBAABCAAxFiEEKzw3R0RoQ7JKlDp6LhMZ81+7GIkFAmVOUCcTHHBhbG1lckBk YWJiZWx0LmNvbQAKCRAuExnzX7sYicJ2D/9S+9dnHYHVGTeJfr9Zf2T4r+qHBPyx LXbTAbgHN6139MgcRLMRlcUaQ04RVxuBCWhxewJ6mQiHiYNlullgKmJO8oYMS4uZ 2yQGHKhzKEVluXxe+qT6VW+zsP0cY6pDQ+e59AqZgyWzvATxMU4VtFfCDdjFG03I k/8Y3MUKSHAKzIHUsGHiMW5J2YRiM/iVehv2gZfanreulWlK6lyiV4AZ4KChu8Sa gix9QkFJw+9+7RHnouHvczt4xTqLPJQcdecLJsbisEI4VaaPtTVzkvXx/kwbMwX0 qkQnZ7I60fPHrCb9ccuedjDMa1Z0lrfwRldBGz9f9QaW37Eppirn6LA5JiZ1cA47 wKTwba6gZJCTRXELFTJLcv+Cwdy003E0y3iL5UK2rkbLqcxfvLdq1WAJU2t05Lmh aRQN10BtM2DZG+SNPlLoBpXPDw0Q3KOc20zGtuhmk010+X4yOK7WXlu8zNGLLE0+ yHamiZqAbpIUIEzwDdGbb95jywR1sUhNTbScuhj4Rc79ZqLtPxty1PUhnfqFat1R i3ngQtCbeUUYFS2YV9tKkXjLf/xkQNRbt7kQBowuvFuvfksl9UwMdRAWcE/h0M9P 7uz7cBFhuG0v/XblB7bUhYLkKITvP+ltSMyxaGlfpGqCLAH2KIztdZ2PLWLRdKeU +9dtZSQR6oBLqQ== =NhdR -----END PGP SIGNATURE----- Merge tag 'riscv-for-linus-6.7-mw2' of git://git.kernel.org/pub/scm/linux/kernel/git/riscv/linux Pull more RISC-V updates from Palmer Dabbelt: - Support for handling misaligned accesses in S-mode - Probing for misaligned access support is now properly cached and handled in parallel - PTDUMP now reflects the SW reserved bits, as well as the PBMT and NAPOT extensions - Performance improvements for TLB flushing - Support for many new relocations in the module loader - Various bug fixes and cleanups * tag 'riscv-for-linus-6.7-mw2' of git://git.kernel.org/pub/scm/linux/kernel/git/riscv/linux: (51 commits) riscv: Optimize bitops with Zbb extension riscv: Rearrange hwcap.h and cpufeature.h drivers: perf: Do not broadcast to other cpus when starting a counter drivers: perf: Check find_first_bit() return value of: property: Add fw_devlink support for msi-parent RISC-V: Don't fail in riscv_of_parent_hartid() for disabled HARTs riscv: Fix set_memory_XX() and set_direct_map_XX() by splitting huge linear mappings riscv: Don't use PGD entries for the linear mapping RISC-V: Probe misaligned access speed in parallel RISC-V: Remove __init on unaligned_emulation_finish() RISC-V: Show accurate per-hart isa in /proc/cpuinfo RISC-V: Don't rely on positional structure initialization riscv: Add tests for riscv module loading riscv: Add remaining module relocations riscv: Avoid unaligned access when relocating modules riscv: split cache ops out of dma-noncoherent.c riscv: Improve flush_tlb_kernel_range() riscv: Make __flush_tlb_range() loop over pte instead of flushing the whole tlb riscv: Improve flush_tlb_range() for hugetlb pages riscv: Improve tlb_flush() ...
804 lines
23 KiB
C
804 lines
23 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copied from arch/arm64/kernel/cpufeature.c
|
|
*
|
|
* Copyright (C) 2015 ARM Ltd.
|
|
* Copyright (C) 2017 SiFive
|
|
*/
|
|
|
|
#include <linux/acpi.h>
|
|
#include <linux/bitmap.h>
|
|
#include <linux/cpuhotplug.h>
|
|
#include <linux/ctype.h>
|
|
#include <linux/log2.h>
|
|
#include <linux/memory.h>
|
|
#include <linux/module.h>
|
|
#include <linux/of.h>
|
|
#include <asm/acpi.h>
|
|
#include <asm/alternative.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/cpufeature.h>
|
|
#include <asm/hwcap.h>
|
|
#include <asm/hwprobe.h>
|
|
#include <asm/patch.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/vector.h>
|
|
|
|
#include "copy-unaligned.h"
|
|
|
|
#define NUM_ALPHA_EXTS ('z' - 'a' + 1)
|
|
|
|
#define MISALIGNED_ACCESS_JIFFIES_LG2 1
|
|
#define MISALIGNED_BUFFER_SIZE 0x4000
|
|
#define MISALIGNED_BUFFER_ORDER get_order(MISALIGNED_BUFFER_SIZE)
|
|
#define MISALIGNED_COPY_SIZE ((MISALIGNED_BUFFER_SIZE / 2) - 0x80)
|
|
|
|
unsigned long elf_hwcap __read_mostly;
|
|
|
|
/* Host ISA bitmap */
|
|
static DECLARE_BITMAP(riscv_isa, RISCV_ISA_EXT_MAX) __read_mostly;
|
|
|
|
/* Per-cpu ISA extensions. */
|
|
struct riscv_isainfo hart_isa[NR_CPUS];
|
|
|
|
/* Performance information */
|
|
DEFINE_PER_CPU(long, misaligned_access_speed);
|
|
|
|
/**
|
|
* riscv_isa_extension_base() - Get base extension word
|
|
*
|
|
* @isa_bitmap: ISA bitmap to use
|
|
* Return: base extension word as unsigned long value
|
|
*
|
|
* NOTE: If isa_bitmap is NULL then Host ISA bitmap will be used.
|
|
*/
|
|
unsigned long riscv_isa_extension_base(const unsigned long *isa_bitmap)
|
|
{
|
|
if (!isa_bitmap)
|
|
return riscv_isa[0];
|
|
return isa_bitmap[0];
|
|
}
|
|
EXPORT_SYMBOL_GPL(riscv_isa_extension_base);
|
|
|
|
/**
|
|
* __riscv_isa_extension_available() - Check whether given extension
|
|
* is available or not
|
|
*
|
|
* @isa_bitmap: ISA bitmap to use
|
|
* @bit: bit position of the desired extension
|
|
* Return: true or false
|
|
*
|
|
* NOTE: If isa_bitmap is NULL then Host ISA bitmap will be used.
|
|
*/
|
|
bool __riscv_isa_extension_available(const unsigned long *isa_bitmap, int bit)
|
|
{
|
|
const unsigned long *bmap = (isa_bitmap) ? isa_bitmap : riscv_isa;
|
|
|
|
if (bit >= RISCV_ISA_EXT_MAX)
|
|
return false;
|
|
|
|
return test_bit(bit, bmap) ? true : false;
|
|
}
|
|
EXPORT_SYMBOL_GPL(__riscv_isa_extension_available);
|
|
|
|
static bool riscv_isa_extension_check(int id)
|
|
{
|
|
switch (id) {
|
|
case RISCV_ISA_EXT_ZICBOM:
|
|
if (!riscv_cbom_block_size) {
|
|
pr_err("Zicbom detected in ISA string, disabling as no cbom-block-size found\n");
|
|
return false;
|
|
} else if (!is_power_of_2(riscv_cbom_block_size)) {
|
|
pr_err("Zicbom disabled as cbom-block-size present, but is not a power-of-2\n");
|
|
return false;
|
|
}
|
|
return true;
|
|
case RISCV_ISA_EXT_ZICBOZ:
|
|
if (!riscv_cboz_block_size) {
|
|
pr_err("Zicboz detected in ISA string, disabling as no cboz-block-size found\n");
|
|
return false;
|
|
} else if (!is_power_of_2(riscv_cboz_block_size)) {
|
|
pr_err("Zicboz disabled as cboz-block-size present, but is not a power-of-2\n");
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
#define __RISCV_ISA_EXT_DATA(_name, _id) { \
|
|
.name = #_name, \
|
|
.property = #_name, \
|
|
.id = _id, \
|
|
}
|
|
|
|
/*
|
|
* The canonical order of ISA extension names in the ISA string is defined in
|
|
* chapter 27 of the unprivileged specification.
|
|
*
|
|
* Ordinarily, for in-kernel data structures, this order is unimportant but
|
|
* isa_ext_arr defines the order of the ISA string in /proc/cpuinfo.
|
|
*
|
|
* The specification uses vague wording, such as should, when it comes to
|
|
* ordering, so for our purposes the following rules apply:
|
|
*
|
|
* 1. All multi-letter extensions must be separated from other extensions by an
|
|
* underscore.
|
|
*
|
|
* 2. Additional standard extensions (starting with 'Z') must be sorted after
|
|
* single-letter extensions and before any higher-privileged extensions.
|
|
*
|
|
* 3. The first letter following the 'Z' conventionally indicates the most
|
|
* closely related alphabetical extension category, IMAFDQLCBKJTPVH.
|
|
* If multiple 'Z' extensions are named, they must be ordered first by
|
|
* category, then alphabetically within a category.
|
|
*
|
|
* 3. Standard supervisor-level extensions (starting with 'S') must be listed
|
|
* after standard unprivileged extensions. If multiple supervisor-level
|
|
* extensions are listed, they must be ordered alphabetically.
|
|
*
|
|
* 4. Standard machine-level extensions (starting with 'Zxm') must be listed
|
|
* after any lower-privileged, standard extensions. If multiple
|
|
* machine-level extensions are listed, they must be ordered
|
|
* alphabetically.
|
|
*
|
|
* 5. Non-standard extensions (starting with 'X') must be listed after all
|
|
* standard extensions. If multiple non-standard extensions are listed, they
|
|
* must be ordered alphabetically.
|
|
*
|
|
* An example string following the order is:
|
|
* rv64imadc_zifoo_zigoo_zafoo_sbar_scar_zxmbaz_xqux_xrux
|
|
*
|
|
* New entries to this struct should follow the ordering rules described above.
|
|
*/
|
|
const struct riscv_isa_ext_data riscv_isa_ext[] = {
|
|
__RISCV_ISA_EXT_DATA(i, RISCV_ISA_EXT_i),
|
|
__RISCV_ISA_EXT_DATA(m, RISCV_ISA_EXT_m),
|
|
__RISCV_ISA_EXT_DATA(a, RISCV_ISA_EXT_a),
|
|
__RISCV_ISA_EXT_DATA(f, RISCV_ISA_EXT_f),
|
|
__RISCV_ISA_EXT_DATA(d, RISCV_ISA_EXT_d),
|
|
__RISCV_ISA_EXT_DATA(q, RISCV_ISA_EXT_q),
|
|
__RISCV_ISA_EXT_DATA(c, RISCV_ISA_EXT_c),
|
|
__RISCV_ISA_EXT_DATA(b, RISCV_ISA_EXT_b),
|
|
__RISCV_ISA_EXT_DATA(k, RISCV_ISA_EXT_k),
|
|
__RISCV_ISA_EXT_DATA(j, RISCV_ISA_EXT_j),
|
|
__RISCV_ISA_EXT_DATA(p, RISCV_ISA_EXT_p),
|
|
__RISCV_ISA_EXT_DATA(v, RISCV_ISA_EXT_v),
|
|
__RISCV_ISA_EXT_DATA(h, RISCV_ISA_EXT_h),
|
|
__RISCV_ISA_EXT_DATA(zicbom, RISCV_ISA_EXT_ZICBOM),
|
|
__RISCV_ISA_EXT_DATA(zicboz, RISCV_ISA_EXT_ZICBOZ),
|
|
__RISCV_ISA_EXT_DATA(zicntr, RISCV_ISA_EXT_ZICNTR),
|
|
__RISCV_ISA_EXT_DATA(zicond, RISCV_ISA_EXT_ZICOND),
|
|
__RISCV_ISA_EXT_DATA(zicsr, RISCV_ISA_EXT_ZICSR),
|
|
__RISCV_ISA_EXT_DATA(zifencei, RISCV_ISA_EXT_ZIFENCEI),
|
|
__RISCV_ISA_EXT_DATA(zihintpause, RISCV_ISA_EXT_ZIHINTPAUSE),
|
|
__RISCV_ISA_EXT_DATA(zihpm, RISCV_ISA_EXT_ZIHPM),
|
|
__RISCV_ISA_EXT_DATA(zba, RISCV_ISA_EXT_ZBA),
|
|
__RISCV_ISA_EXT_DATA(zbb, RISCV_ISA_EXT_ZBB),
|
|
__RISCV_ISA_EXT_DATA(zbs, RISCV_ISA_EXT_ZBS),
|
|
__RISCV_ISA_EXT_DATA(smaia, RISCV_ISA_EXT_SMAIA),
|
|
__RISCV_ISA_EXT_DATA(smstateen, RISCV_ISA_EXT_SMSTATEEN),
|
|
__RISCV_ISA_EXT_DATA(ssaia, RISCV_ISA_EXT_SSAIA),
|
|
__RISCV_ISA_EXT_DATA(sscofpmf, RISCV_ISA_EXT_SSCOFPMF),
|
|
__RISCV_ISA_EXT_DATA(sstc, RISCV_ISA_EXT_SSTC),
|
|
__RISCV_ISA_EXT_DATA(svinval, RISCV_ISA_EXT_SVINVAL),
|
|
__RISCV_ISA_EXT_DATA(svnapot, RISCV_ISA_EXT_SVNAPOT),
|
|
__RISCV_ISA_EXT_DATA(svpbmt, RISCV_ISA_EXT_SVPBMT),
|
|
};
|
|
|
|
const size_t riscv_isa_ext_count = ARRAY_SIZE(riscv_isa_ext);
|
|
|
|
static void __init riscv_parse_isa_string(unsigned long *this_hwcap, struct riscv_isainfo *isainfo,
|
|
unsigned long *isa2hwcap, const char *isa)
|
|
{
|
|
/*
|
|
* For all possible cpus, we have already validated in
|
|
* the boot process that they at least contain "rv" and
|
|
* whichever of "32"/"64" this kernel supports, and so this
|
|
* section can be skipped.
|
|
*/
|
|
isa += 4;
|
|
|
|
while (*isa) {
|
|
const char *ext = isa++;
|
|
const char *ext_end = isa;
|
|
bool ext_long = false, ext_err = false;
|
|
|
|
switch (*ext) {
|
|
case 's':
|
|
/*
|
|
* Workaround for invalid single-letter 's' & 'u' (QEMU).
|
|
* No need to set the bit in riscv_isa as 's' & 'u' are
|
|
* not valid ISA extensions. It works unless the first
|
|
* multi-letter extension in the ISA string begins with
|
|
* "Su" and is not prefixed with an underscore.
|
|
*/
|
|
if (ext[-1] != '_' && ext[1] == 'u') {
|
|
++isa;
|
|
ext_err = true;
|
|
break;
|
|
}
|
|
fallthrough;
|
|
case 'S':
|
|
case 'x':
|
|
case 'X':
|
|
case 'z':
|
|
case 'Z':
|
|
/*
|
|
* Before attempting to parse the extension itself, we find its end.
|
|
* As multi-letter extensions must be split from other multi-letter
|
|
* extensions with an "_", the end of a multi-letter extension will
|
|
* either be the null character or the "_" at the start of the next
|
|
* multi-letter extension.
|
|
*
|
|
* Next, as the extensions version is currently ignored, we
|
|
* eliminate that portion. This is done by parsing backwards from
|
|
* the end of the extension, removing any numbers. This may be a
|
|
* major or minor number however, so the process is repeated if a
|
|
* minor number was found.
|
|
*
|
|
* ext_end is intended to represent the first character *after* the
|
|
* name portion of an extension, but will be decremented to the last
|
|
* character itself while eliminating the extensions version number.
|
|
* A simple re-increment solves this problem.
|
|
*/
|
|
ext_long = true;
|
|
for (; *isa && *isa != '_'; ++isa)
|
|
if (unlikely(!isalnum(*isa)))
|
|
ext_err = true;
|
|
|
|
ext_end = isa;
|
|
if (unlikely(ext_err))
|
|
break;
|
|
|
|
if (!isdigit(ext_end[-1]))
|
|
break;
|
|
|
|
while (isdigit(*--ext_end))
|
|
;
|
|
|
|
if (tolower(ext_end[0]) != 'p' || !isdigit(ext_end[-1])) {
|
|
++ext_end;
|
|
break;
|
|
}
|
|
|
|
while (isdigit(*--ext_end))
|
|
;
|
|
|
|
++ext_end;
|
|
break;
|
|
default:
|
|
/*
|
|
* Things are a little easier for single-letter extensions, as they
|
|
* are parsed forwards.
|
|
*
|
|
* After checking that our starting position is valid, we need to
|
|
* ensure that, when isa was incremented at the start of the loop,
|
|
* that it arrived at the start of the next extension.
|
|
*
|
|
* If we are already on a non-digit, there is nothing to do. Either
|
|
* we have a multi-letter extension's _, or the start of an
|
|
* extension.
|
|
*
|
|
* Otherwise we have found the current extension's major version
|
|
* number. Parse past it, and a subsequent p/minor version number
|
|
* if present. The `p` extension must not appear immediately after
|
|
* a number, so there is no fear of missing it.
|
|
*
|
|
*/
|
|
if (unlikely(!isalpha(*ext))) {
|
|
ext_err = true;
|
|
break;
|
|
}
|
|
|
|
if (!isdigit(*isa))
|
|
break;
|
|
|
|
while (isdigit(*++isa))
|
|
;
|
|
|
|
if (tolower(*isa) != 'p')
|
|
break;
|
|
|
|
if (!isdigit(*++isa)) {
|
|
--isa;
|
|
break;
|
|
}
|
|
|
|
while (isdigit(*++isa))
|
|
;
|
|
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* The parser expects that at the start of an iteration isa points to the
|
|
* first character of the next extension. As we stop parsing an extension
|
|
* on meeting a non-alphanumeric character, an extra increment is needed
|
|
* where the succeeding extension is a multi-letter prefixed with an "_".
|
|
*/
|
|
if (*isa == '_')
|
|
++isa;
|
|
|
|
#define SET_ISA_EXT_MAP(name, bit) \
|
|
do { \
|
|
if ((ext_end - ext == strlen(name)) && \
|
|
!strncasecmp(ext, name, strlen(name)) && \
|
|
riscv_isa_extension_check(bit)) \
|
|
set_bit(bit, isainfo->isa); \
|
|
} while (false) \
|
|
|
|
if (unlikely(ext_err))
|
|
continue;
|
|
if (!ext_long) {
|
|
int nr = tolower(*ext) - 'a';
|
|
|
|
if (riscv_isa_extension_check(nr)) {
|
|
*this_hwcap |= isa2hwcap[nr];
|
|
set_bit(nr, isainfo->isa);
|
|
}
|
|
} else {
|
|
for (int i = 0; i < riscv_isa_ext_count; i++)
|
|
SET_ISA_EXT_MAP(riscv_isa_ext[i].name,
|
|
riscv_isa_ext[i].id);
|
|
}
|
|
#undef SET_ISA_EXT_MAP
|
|
}
|
|
}
|
|
|
|
static void __init riscv_fill_hwcap_from_isa_string(unsigned long *isa2hwcap)
|
|
{
|
|
struct device_node *node;
|
|
const char *isa;
|
|
int rc;
|
|
struct acpi_table_header *rhct;
|
|
acpi_status status;
|
|
unsigned int cpu;
|
|
|
|
if (!acpi_disabled) {
|
|
status = acpi_get_table(ACPI_SIG_RHCT, 0, &rhct);
|
|
if (ACPI_FAILURE(status))
|
|
return;
|
|
}
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
struct riscv_isainfo *isainfo = &hart_isa[cpu];
|
|
unsigned long this_hwcap = 0;
|
|
|
|
if (acpi_disabled) {
|
|
node = of_cpu_device_node_get(cpu);
|
|
if (!node) {
|
|
pr_warn("Unable to find cpu node\n");
|
|
continue;
|
|
}
|
|
|
|
rc = of_property_read_string(node, "riscv,isa", &isa);
|
|
of_node_put(node);
|
|
if (rc) {
|
|
pr_warn("Unable to find \"riscv,isa\" devicetree entry\n");
|
|
continue;
|
|
}
|
|
} else {
|
|
rc = acpi_get_riscv_isa(rhct, cpu, &isa);
|
|
if (rc < 0) {
|
|
pr_warn("Unable to get ISA for the hart - %d\n", cpu);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
riscv_parse_isa_string(&this_hwcap, isainfo, isa2hwcap, isa);
|
|
|
|
/*
|
|
* These ones were as they were part of the base ISA when the
|
|
* port & dt-bindings were upstreamed, and so can be set
|
|
* unconditionally where `i` is in riscv,isa on DT systems.
|
|
*/
|
|
if (acpi_disabled) {
|
|
set_bit(RISCV_ISA_EXT_ZICSR, isainfo->isa);
|
|
set_bit(RISCV_ISA_EXT_ZIFENCEI, isainfo->isa);
|
|
set_bit(RISCV_ISA_EXT_ZICNTR, isainfo->isa);
|
|
set_bit(RISCV_ISA_EXT_ZIHPM, isainfo->isa);
|
|
}
|
|
|
|
/*
|
|
* All "okay" hart should have same isa. Set HWCAP based on
|
|
* common capabilities of every "okay" hart, in case they don't
|
|
* have.
|
|
*/
|
|
if (elf_hwcap)
|
|
elf_hwcap &= this_hwcap;
|
|
else
|
|
elf_hwcap = this_hwcap;
|
|
|
|
if (bitmap_empty(riscv_isa, RISCV_ISA_EXT_MAX))
|
|
bitmap_copy(riscv_isa, isainfo->isa, RISCV_ISA_EXT_MAX);
|
|
else
|
|
bitmap_and(riscv_isa, riscv_isa, isainfo->isa, RISCV_ISA_EXT_MAX);
|
|
}
|
|
|
|
if (!acpi_disabled && rhct)
|
|
acpi_put_table((struct acpi_table_header *)rhct);
|
|
}
|
|
|
|
static int __init riscv_fill_hwcap_from_ext_list(unsigned long *isa2hwcap)
|
|
{
|
|
unsigned int cpu;
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
unsigned long this_hwcap = 0;
|
|
struct device_node *cpu_node;
|
|
struct riscv_isainfo *isainfo = &hart_isa[cpu];
|
|
|
|
cpu_node = of_cpu_device_node_get(cpu);
|
|
if (!cpu_node) {
|
|
pr_warn("Unable to find cpu node\n");
|
|
continue;
|
|
}
|
|
|
|
if (!of_property_present(cpu_node, "riscv,isa-extensions")) {
|
|
of_node_put(cpu_node);
|
|
continue;
|
|
}
|
|
|
|
for (int i = 0; i < riscv_isa_ext_count; i++) {
|
|
if (of_property_match_string(cpu_node, "riscv,isa-extensions",
|
|
riscv_isa_ext[i].property) < 0)
|
|
continue;
|
|
|
|
if (!riscv_isa_extension_check(riscv_isa_ext[i].id))
|
|
continue;
|
|
|
|
/* Only single letter extensions get set in hwcap */
|
|
if (strnlen(riscv_isa_ext[i].name, 2) == 1)
|
|
this_hwcap |= isa2hwcap[riscv_isa_ext[i].id];
|
|
|
|
set_bit(riscv_isa_ext[i].id, isainfo->isa);
|
|
}
|
|
|
|
of_node_put(cpu_node);
|
|
|
|
/*
|
|
* All "okay" harts should have same isa. Set HWCAP based on
|
|
* common capabilities of every "okay" hart, in case they don't.
|
|
*/
|
|
if (elf_hwcap)
|
|
elf_hwcap &= this_hwcap;
|
|
else
|
|
elf_hwcap = this_hwcap;
|
|
|
|
if (bitmap_empty(riscv_isa, RISCV_ISA_EXT_MAX))
|
|
bitmap_copy(riscv_isa, isainfo->isa, RISCV_ISA_EXT_MAX);
|
|
else
|
|
bitmap_and(riscv_isa, riscv_isa, isainfo->isa, RISCV_ISA_EXT_MAX);
|
|
}
|
|
|
|
if (bitmap_empty(riscv_isa, RISCV_ISA_EXT_MAX))
|
|
return -ENOENT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_RISCV_ISA_FALLBACK
|
|
bool __initdata riscv_isa_fallback = true;
|
|
#else
|
|
bool __initdata riscv_isa_fallback;
|
|
static int __init riscv_isa_fallback_setup(char *__unused)
|
|
{
|
|
riscv_isa_fallback = true;
|
|
return 1;
|
|
}
|
|
early_param("riscv_isa_fallback", riscv_isa_fallback_setup);
|
|
#endif
|
|
|
|
void __init riscv_fill_hwcap(void)
|
|
{
|
|
char print_str[NUM_ALPHA_EXTS + 1];
|
|
unsigned long isa2hwcap[26] = {0};
|
|
int i, j;
|
|
|
|
isa2hwcap['i' - 'a'] = COMPAT_HWCAP_ISA_I;
|
|
isa2hwcap['m' - 'a'] = COMPAT_HWCAP_ISA_M;
|
|
isa2hwcap['a' - 'a'] = COMPAT_HWCAP_ISA_A;
|
|
isa2hwcap['f' - 'a'] = COMPAT_HWCAP_ISA_F;
|
|
isa2hwcap['d' - 'a'] = COMPAT_HWCAP_ISA_D;
|
|
isa2hwcap['c' - 'a'] = COMPAT_HWCAP_ISA_C;
|
|
isa2hwcap['v' - 'a'] = COMPAT_HWCAP_ISA_V;
|
|
|
|
if (!acpi_disabled) {
|
|
riscv_fill_hwcap_from_isa_string(isa2hwcap);
|
|
} else {
|
|
int ret = riscv_fill_hwcap_from_ext_list(isa2hwcap);
|
|
|
|
if (ret && riscv_isa_fallback) {
|
|
pr_info("Falling back to deprecated \"riscv,isa\"\n");
|
|
riscv_fill_hwcap_from_isa_string(isa2hwcap);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We don't support systems with F but without D, so mask those out
|
|
* here.
|
|
*/
|
|
if ((elf_hwcap & COMPAT_HWCAP_ISA_F) && !(elf_hwcap & COMPAT_HWCAP_ISA_D)) {
|
|
pr_info("This kernel does not support systems with F but not D\n");
|
|
elf_hwcap &= ~COMPAT_HWCAP_ISA_F;
|
|
}
|
|
|
|
if (elf_hwcap & COMPAT_HWCAP_ISA_V) {
|
|
riscv_v_setup_vsize();
|
|
/*
|
|
* ISA string in device tree might have 'v' flag, but
|
|
* CONFIG_RISCV_ISA_V is disabled in kernel.
|
|
* Clear V flag in elf_hwcap if CONFIG_RISCV_ISA_V is disabled.
|
|
*/
|
|
if (!IS_ENABLED(CONFIG_RISCV_ISA_V))
|
|
elf_hwcap &= ~COMPAT_HWCAP_ISA_V;
|
|
}
|
|
|
|
memset(print_str, 0, sizeof(print_str));
|
|
for (i = 0, j = 0; i < NUM_ALPHA_EXTS; i++)
|
|
if (riscv_isa[0] & BIT_MASK(i))
|
|
print_str[j++] = (char)('a' + i);
|
|
pr_info("riscv: base ISA extensions %s\n", print_str);
|
|
|
|
memset(print_str, 0, sizeof(print_str));
|
|
for (i = 0, j = 0; i < NUM_ALPHA_EXTS; i++)
|
|
if (elf_hwcap & BIT_MASK(i))
|
|
print_str[j++] = (char)('a' + i);
|
|
pr_info("riscv: ELF capabilities %s\n", print_str);
|
|
}
|
|
|
|
unsigned long riscv_get_elf_hwcap(void)
|
|
{
|
|
unsigned long hwcap;
|
|
|
|
hwcap = (elf_hwcap & ((1UL << RISCV_ISA_EXT_BASE) - 1));
|
|
|
|
if (!riscv_v_vstate_ctrl_user_allowed())
|
|
hwcap &= ~COMPAT_HWCAP_ISA_V;
|
|
|
|
return hwcap;
|
|
}
|
|
|
|
static int check_unaligned_access(void *param)
|
|
{
|
|
int cpu = smp_processor_id();
|
|
u64 start_cycles, end_cycles;
|
|
u64 word_cycles;
|
|
u64 byte_cycles;
|
|
int ratio;
|
|
unsigned long start_jiffies, now;
|
|
struct page *page = param;
|
|
void *dst;
|
|
void *src;
|
|
long speed = RISCV_HWPROBE_MISALIGNED_SLOW;
|
|
|
|
if (check_unaligned_access_emulated(cpu))
|
|
return 0;
|
|
|
|
/* Make an unaligned destination buffer. */
|
|
dst = (void *)((unsigned long)page_address(page) | 0x1);
|
|
/* Unalign src as well, but differently (off by 1 + 2 = 3). */
|
|
src = dst + (MISALIGNED_BUFFER_SIZE / 2);
|
|
src += 2;
|
|
word_cycles = -1ULL;
|
|
/* Do a warmup. */
|
|
__riscv_copy_words_unaligned(dst, src, MISALIGNED_COPY_SIZE);
|
|
preempt_disable();
|
|
start_jiffies = jiffies;
|
|
while ((now = jiffies) == start_jiffies)
|
|
cpu_relax();
|
|
|
|
/*
|
|
* For a fixed amount of time, repeatedly try the function, and take
|
|
* the best time in cycles as the measurement.
|
|
*/
|
|
while (time_before(jiffies, now + (1 << MISALIGNED_ACCESS_JIFFIES_LG2))) {
|
|
start_cycles = get_cycles64();
|
|
/* Ensure the CSR read can't reorder WRT to the copy. */
|
|
mb();
|
|
__riscv_copy_words_unaligned(dst, src, MISALIGNED_COPY_SIZE);
|
|
/* Ensure the copy ends before the end time is snapped. */
|
|
mb();
|
|
end_cycles = get_cycles64();
|
|
if ((end_cycles - start_cycles) < word_cycles)
|
|
word_cycles = end_cycles - start_cycles;
|
|
}
|
|
|
|
byte_cycles = -1ULL;
|
|
__riscv_copy_bytes_unaligned(dst, src, MISALIGNED_COPY_SIZE);
|
|
start_jiffies = jiffies;
|
|
while ((now = jiffies) == start_jiffies)
|
|
cpu_relax();
|
|
|
|
while (time_before(jiffies, now + (1 << MISALIGNED_ACCESS_JIFFIES_LG2))) {
|
|
start_cycles = get_cycles64();
|
|
mb();
|
|
__riscv_copy_bytes_unaligned(dst, src, MISALIGNED_COPY_SIZE);
|
|
mb();
|
|
end_cycles = get_cycles64();
|
|
if ((end_cycles - start_cycles) < byte_cycles)
|
|
byte_cycles = end_cycles - start_cycles;
|
|
}
|
|
|
|
preempt_enable();
|
|
|
|
/* Don't divide by zero. */
|
|
if (!word_cycles || !byte_cycles) {
|
|
pr_warn("cpu%d: rdtime lacks granularity needed to measure unaligned access speed\n",
|
|
cpu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
if (word_cycles < byte_cycles)
|
|
speed = RISCV_HWPROBE_MISALIGNED_FAST;
|
|
|
|
ratio = div_u64((byte_cycles * 100), word_cycles);
|
|
pr_info("cpu%d: Ratio of byte access time to unaligned word access is %d.%02d, unaligned accesses are %s\n",
|
|
cpu,
|
|
ratio / 100,
|
|
ratio % 100,
|
|
(speed == RISCV_HWPROBE_MISALIGNED_FAST) ? "fast" : "slow");
|
|
|
|
per_cpu(misaligned_access_speed, cpu) = speed;
|
|
return 0;
|
|
}
|
|
|
|
static void check_unaligned_access_nonboot_cpu(void *param)
|
|
{
|
|
unsigned int cpu = smp_processor_id();
|
|
struct page **pages = param;
|
|
|
|
if (smp_processor_id() != 0)
|
|
check_unaligned_access(pages[cpu]);
|
|
}
|
|
|
|
static int riscv_online_cpu(unsigned int cpu)
|
|
{
|
|
static struct page *buf;
|
|
|
|
/* We are already set since the last check */
|
|
if (per_cpu(misaligned_access_speed, cpu) != RISCV_HWPROBE_MISALIGNED_UNKNOWN)
|
|
return 0;
|
|
|
|
buf = alloc_pages(GFP_KERNEL, MISALIGNED_BUFFER_ORDER);
|
|
if (!buf) {
|
|
pr_warn("Allocation failure, not measuring misaligned performance\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
check_unaligned_access(buf);
|
|
__free_pages(buf, MISALIGNED_BUFFER_ORDER);
|
|
return 0;
|
|
}
|
|
|
|
/* Measure unaligned access on all CPUs present at boot in parallel. */
|
|
static int check_unaligned_access_all_cpus(void)
|
|
{
|
|
unsigned int cpu;
|
|
unsigned int cpu_count = num_possible_cpus();
|
|
struct page **bufs = kzalloc(cpu_count * sizeof(struct page *),
|
|
GFP_KERNEL);
|
|
|
|
if (!bufs) {
|
|
pr_warn("Allocation failure, not measuring misaligned performance\n");
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Allocate separate buffers for each CPU so there's no fighting over
|
|
* cache lines.
|
|
*/
|
|
for_each_cpu(cpu, cpu_online_mask) {
|
|
bufs[cpu] = alloc_pages(GFP_KERNEL, MISALIGNED_BUFFER_ORDER);
|
|
if (!bufs[cpu]) {
|
|
pr_warn("Allocation failure, not measuring misaligned performance\n");
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/* Check everybody except 0, who stays behind to tend jiffies. */
|
|
on_each_cpu(check_unaligned_access_nonboot_cpu, bufs, 1);
|
|
|
|
/* Check core 0. */
|
|
smp_call_on_cpu(0, check_unaligned_access, bufs[0], true);
|
|
|
|
/* Setup hotplug callback for any new CPUs that come online. */
|
|
cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "riscv:online",
|
|
riscv_online_cpu, NULL);
|
|
|
|
out:
|
|
unaligned_emulation_finish();
|
|
for_each_cpu(cpu, cpu_online_mask) {
|
|
if (bufs[cpu])
|
|
__free_pages(bufs[cpu], MISALIGNED_BUFFER_ORDER);
|
|
}
|
|
|
|
kfree(bufs);
|
|
return 0;
|
|
}
|
|
|
|
arch_initcall(check_unaligned_access_all_cpus);
|
|
|
|
void riscv_user_isa_enable(void)
|
|
{
|
|
if (riscv_cpu_has_extension_unlikely(smp_processor_id(), RISCV_ISA_EXT_ZICBOZ))
|
|
csr_set(CSR_SENVCFG, ENVCFG_CBZE);
|
|
}
|
|
|
|
#ifdef CONFIG_RISCV_ALTERNATIVE
|
|
/*
|
|
* Alternative patch sites consider 48 bits when determining when to patch
|
|
* the old instruction sequence with the new. These bits are broken into a
|
|
* 16-bit vendor ID and a 32-bit patch ID. A non-zero vendor ID means the
|
|
* patch site is for an erratum, identified by the 32-bit patch ID. When
|
|
* the vendor ID is zero, the patch site is for a cpufeature. cpufeatures
|
|
* further break down patch ID into two 16-bit numbers. The lower 16 bits
|
|
* are the cpufeature ID and the upper 16 bits are used for a value specific
|
|
* to the cpufeature and patch site. If the upper 16 bits are zero, then it
|
|
* implies no specific value is specified. cpufeatures that want to control
|
|
* patching on a per-site basis will provide non-zero values and implement
|
|
* checks here. The checks return true when patching should be done, and
|
|
* false otherwise.
|
|
*/
|
|
static bool riscv_cpufeature_patch_check(u16 id, u16 value)
|
|
{
|
|
if (!value)
|
|
return true;
|
|
|
|
switch (id) {
|
|
case RISCV_ISA_EXT_ZICBOZ:
|
|
/*
|
|
* Zicboz alternative applications provide the maximum
|
|
* supported block size order, or zero when it doesn't
|
|
* matter. If the current block size exceeds the maximum,
|
|
* then the alternative cannot be applied.
|
|
*/
|
|
return riscv_cboz_block_size <= (1U << value);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void __init_or_module riscv_cpufeature_patch_func(struct alt_entry *begin,
|
|
struct alt_entry *end,
|
|
unsigned int stage)
|
|
{
|
|
struct alt_entry *alt;
|
|
void *oldptr, *altptr;
|
|
u16 id, value;
|
|
|
|
if (stage == RISCV_ALTERNATIVES_EARLY_BOOT)
|
|
return;
|
|
|
|
for (alt = begin; alt < end; alt++) {
|
|
if (alt->vendor_id != 0)
|
|
continue;
|
|
|
|
id = PATCH_ID_CPUFEATURE_ID(alt->patch_id);
|
|
|
|
if (id >= RISCV_ISA_EXT_MAX) {
|
|
WARN(1, "This extension id:%d is not in ISA extension list", id);
|
|
continue;
|
|
}
|
|
|
|
if (!__riscv_isa_extension_available(NULL, id))
|
|
continue;
|
|
|
|
value = PATCH_ID_CPUFEATURE_VALUE(alt->patch_id);
|
|
if (!riscv_cpufeature_patch_check(id, value))
|
|
continue;
|
|
|
|
oldptr = ALT_OLD_PTR(alt);
|
|
altptr = ALT_ALT_PTR(alt);
|
|
|
|
mutex_lock(&text_mutex);
|
|
patch_text_nosync(oldptr, altptr, alt->alt_len);
|
|
riscv_alternative_fix_offsets(oldptr, alt->alt_len, oldptr - altptr);
|
|
mutex_unlock(&text_mutex);
|
|
}
|
|
}
|
|
#endif
|