linux/drivers/iio/light/veml6030.c
Uwe Kleine-König 7cf15f4275 iio: Switch i2c drivers back to use .probe()
After commit b8a1a4cd5a98 ("i2c: Provide a temporary .probe_new()
call-back type"), all drivers being converted to .probe_new() and then
03c835f498b5 ("i2c: Switch .probe() to not take an id parameter") convert
back to (the new) .probe() to be able to eventually drop .probe_new() from
struct i2c_driver.

Signed-off-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Link: https://lore.kernel.org/r/20230515205048.19561-1-u.kleine-koenig@pengutronix.de
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2023-05-21 18:54:53 +01:00

903 lines
22 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* VEML6030 Ambient Light Sensor
*
* Copyright (c) 2019, Rishi Gupta <gupt21@gmail.com>
*
* Datasheet: https://www.vishay.com/docs/84366/veml6030.pdf
* Appnote-84367: https://www.vishay.com/docs/84367/designingveml6030.pdf
*/
#include <linux/module.h>
#include <linux/i2c.h>
#include <linux/err.h>
#include <linux/regmap.h>
#include <linux/interrupt.h>
#include <linux/pm_runtime.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/events.h>
/* Device registers */
#define VEML6030_REG_ALS_CONF 0x00
#define VEML6030_REG_ALS_WH 0x01
#define VEML6030_REG_ALS_WL 0x02
#define VEML6030_REG_ALS_PSM 0x03
#define VEML6030_REG_ALS_DATA 0x04
#define VEML6030_REG_WH_DATA 0x05
#define VEML6030_REG_ALS_INT 0x06
/* Bit masks for specific functionality */
#define VEML6030_ALS_IT GENMASK(9, 6)
#define VEML6030_PSM GENMASK(2, 1)
#define VEML6030_ALS_PERS GENMASK(5, 4)
#define VEML6030_ALS_GAIN GENMASK(12, 11)
#define VEML6030_PSM_EN BIT(0)
#define VEML6030_INT_TH_LOW BIT(15)
#define VEML6030_INT_TH_HIGH BIT(14)
#define VEML6030_ALS_INT_EN BIT(1)
#define VEML6030_ALS_SD BIT(0)
/*
* The resolution depends on both gain and integration time. The
* cur_resolution stores one of the resolution mentioned in the
* table during startup and gets updated whenever integration time
* or gain is changed.
*
* Table 'resolution and maximum detection range' in appnote 84367
* is visualized as a 2D array. The cur_gain stores index of gain
* in this table (0-3) while the cur_integration_time holds index
* of integration time (0-5).
*/
struct veml6030_data {
struct i2c_client *client;
struct regmap *regmap;
int cur_resolution;
int cur_gain;
int cur_integration_time;
};
/* Integration time available in seconds */
static IIO_CONST_ATTR(in_illuminance_integration_time_available,
"0.025 0.05 0.1 0.2 0.4 0.8");
/*
* Scale is 1/gain. Value 0.125 is ALS gain x (1/8), 0.25 is
* ALS gain x (1/4), 1.0 = ALS gain x 1 and 2.0 is ALS gain x 2.
*/
static IIO_CONST_ATTR(in_illuminance_scale_available,
"0.125 0.25 1.0 2.0");
static struct attribute *veml6030_attributes[] = {
&iio_const_attr_in_illuminance_integration_time_available.dev_attr.attr,
&iio_const_attr_in_illuminance_scale_available.dev_attr.attr,
NULL
};
static const struct attribute_group veml6030_attr_group = {
.attrs = veml6030_attributes,
};
/*
* Persistence = 1/2/4/8 x integration time
* Minimum time for which light readings must stay above configured
* threshold to assert the interrupt.
*/
static const char * const period_values[] = {
"0.1 0.2 0.4 0.8",
"0.2 0.4 0.8 1.6",
"0.4 0.8 1.6 3.2",
"0.8 1.6 3.2 6.4",
"0.05 0.1 0.2 0.4",
"0.025 0.050 0.1 0.2"
};
/*
* Return list of valid period values in seconds corresponding to
* the currently active integration time.
*/
static ssize_t in_illuminance_period_available_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int ret, reg, x;
struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
struct veml6030_data *data = iio_priv(indio_dev);
ret = regmap_read(data->regmap, VEML6030_REG_ALS_CONF, &reg);
if (ret) {
dev_err(&data->client->dev,
"can't read als conf register %d\n", ret);
return ret;
}
ret = ((reg >> 6) & 0xF);
switch (ret) {
case 0:
case 1:
case 2:
case 3:
x = ret;
break;
case 8:
x = 4;
break;
case 12:
x = 5;
break;
default:
return -EINVAL;
}
return sysfs_emit(buf, "%s\n", period_values[x]);
}
static IIO_DEVICE_ATTR_RO(in_illuminance_period_available, 0);
static struct attribute *veml6030_event_attributes[] = {
&iio_dev_attr_in_illuminance_period_available.dev_attr.attr,
NULL
};
static const struct attribute_group veml6030_event_attr_group = {
.attrs = veml6030_event_attributes,
};
static int veml6030_als_pwr_on(struct veml6030_data *data)
{
return regmap_update_bits(data->regmap, VEML6030_REG_ALS_CONF,
VEML6030_ALS_SD, 0);
}
static int veml6030_als_shut_down(struct veml6030_data *data)
{
return regmap_update_bits(data->regmap, VEML6030_REG_ALS_CONF,
VEML6030_ALS_SD, 1);
}
static void veml6030_als_shut_down_action(void *data)
{
veml6030_als_shut_down(data);
}
static const struct iio_event_spec veml6030_event_spec[] = {
{
.type = IIO_EV_TYPE_THRESH,
.dir = IIO_EV_DIR_RISING,
.mask_separate = BIT(IIO_EV_INFO_VALUE),
}, {
.type = IIO_EV_TYPE_THRESH,
.dir = IIO_EV_DIR_FALLING,
.mask_separate = BIT(IIO_EV_INFO_VALUE),
}, {
.type = IIO_EV_TYPE_THRESH,
.dir = IIO_EV_DIR_EITHER,
.mask_separate = BIT(IIO_EV_INFO_PERIOD) |
BIT(IIO_EV_INFO_ENABLE),
},
};
/* Channel number */
enum veml6030_chan {
CH_ALS,
CH_WHITE,
};
static const struct iio_chan_spec veml6030_channels[] = {
{
.type = IIO_LIGHT,
.channel = CH_ALS,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_PROCESSED) |
BIT(IIO_CHAN_INFO_INT_TIME) |
BIT(IIO_CHAN_INFO_SCALE),
.event_spec = veml6030_event_spec,
.num_event_specs = ARRAY_SIZE(veml6030_event_spec),
},
{
.type = IIO_INTENSITY,
.channel = CH_WHITE,
.modified = 1,
.channel2 = IIO_MOD_LIGHT_BOTH,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_PROCESSED),
},
};
static const struct regmap_config veml6030_regmap_config = {
.name = "veml6030_regmap",
.reg_bits = 8,
.val_bits = 16,
.max_register = VEML6030_REG_ALS_INT,
.val_format_endian = REGMAP_ENDIAN_LITTLE,
};
static int veml6030_get_intgrn_tm(struct iio_dev *indio_dev,
int *val, int *val2)
{
int ret, reg;
struct veml6030_data *data = iio_priv(indio_dev);
ret = regmap_read(data->regmap, VEML6030_REG_ALS_CONF, &reg);
if (ret) {
dev_err(&data->client->dev,
"can't read als conf register %d\n", ret);
return ret;
}
switch ((reg >> 6) & 0xF) {
case 0:
*val2 = 100000;
break;
case 1:
*val2 = 200000;
break;
case 2:
*val2 = 400000;
break;
case 3:
*val2 = 800000;
break;
case 8:
*val2 = 50000;
break;
case 12:
*val2 = 25000;
break;
default:
return -EINVAL;
}
*val = 0;
return IIO_VAL_INT_PLUS_MICRO;
}
static int veml6030_set_intgrn_tm(struct iio_dev *indio_dev,
int val, int val2)
{
int ret, new_int_time, int_idx;
struct veml6030_data *data = iio_priv(indio_dev);
if (val)
return -EINVAL;
switch (val2) {
case 25000:
new_int_time = 0x300;
int_idx = 5;
break;
case 50000:
new_int_time = 0x200;
int_idx = 4;
break;
case 100000:
new_int_time = 0x00;
int_idx = 3;
break;
case 200000:
new_int_time = 0x40;
int_idx = 2;
break;
case 400000:
new_int_time = 0x80;
int_idx = 1;
break;
case 800000:
new_int_time = 0xC0;
int_idx = 0;
break;
default:
return -EINVAL;
}
ret = regmap_update_bits(data->regmap, VEML6030_REG_ALS_CONF,
VEML6030_ALS_IT, new_int_time);
if (ret) {
dev_err(&data->client->dev,
"can't update als integration time %d\n", ret);
return ret;
}
/*
* Cache current integration time and update resolution. For every
* increase in integration time to next level, resolution is halved
* and vice-versa.
*/
if (data->cur_integration_time < int_idx)
data->cur_resolution <<= int_idx - data->cur_integration_time;
else if (data->cur_integration_time > int_idx)
data->cur_resolution >>= data->cur_integration_time - int_idx;
data->cur_integration_time = int_idx;
return ret;
}
static int veml6030_read_persistence(struct iio_dev *indio_dev,
int *val, int *val2)
{
int ret, reg, period, x, y;
struct veml6030_data *data = iio_priv(indio_dev);
ret = veml6030_get_intgrn_tm(indio_dev, &x, &y);
if (ret < 0)
return ret;
ret = regmap_read(data->regmap, VEML6030_REG_ALS_CONF, &reg);
if (ret) {
dev_err(&data->client->dev,
"can't read als conf register %d\n", ret);
}
/* integration time multiplied by 1/2/4/8 */
period = y * (1 << ((reg >> 4) & 0x03));
*val = period / 1000000;
*val2 = period % 1000000;
return IIO_VAL_INT_PLUS_MICRO;
}
static int veml6030_write_persistence(struct iio_dev *indio_dev,
int val, int val2)
{
int ret, period, x, y;
struct veml6030_data *data = iio_priv(indio_dev);
ret = veml6030_get_intgrn_tm(indio_dev, &x, &y);
if (ret < 0)
return ret;
if (!val) {
period = val2 / y;
} else {
if ((val == 1) && (val2 == 600000))
period = 1600000 / y;
else if ((val == 3) && (val2 == 200000))
period = 3200000 / y;
else if ((val == 6) && (val2 == 400000))
period = 6400000 / y;
else
period = -1;
}
if (period <= 0 || period > 8 || hweight8(period) != 1)
return -EINVAL;
ret = regmap_update_bits(data->regmap, VEML6030_REG_ALS_CONF,
VEML6030_ALS_PERS, (ffs(period) - 1) << 4);
if (ret)
dev_err(&data->client->dev,
"can't set persistence value %d\n", ret);
return ret;
}
static int veml6030_set_als_gain(struct iio_dev *indio_dev,
int val, int val2)
{
int ret, new_gain, gain_idx;
struct veml6030_data *data = iio_priv(indio_dev);
if (val == 0 && val2 == 125000) {
new_gain = 0x1000; /* 0x02 << 11 */
gain_idx = 3;
} else if (val == 0 && val2 == 250000) {
new_gain = 0x1800;
gain_idx = 2;
} else if (val == 1 && val2 == 0) {
new_gain = 0x00;
gain_idx = 1;
} else if (val == 2 && val2 == 0) {
new_gain = 0x800;
gain_idx = 0;
} else {
return -EINVAL;
}
ret = regmap_update_bits(data->regmap, VEML6030_REG_ALS_CONF,
VEML6030_ALS_GAIN, new_gain);
if (ret) {
dev_err(&data->client->dev,
"can't set als gain %d\n", ret);
return ret;
}
/*
* Cache currently set gain & update resolution. For every
* increase in the gain to next level, resolution is halved
* and vice-versa.
*/
if (data->cur_gain < gain_idx)
data->cur_resolution <<= gain_idx - data->cur_gain;
else if (data->cur_gain > gain_idx)
data->cur_resolution >>= data->cur_gain - gain_idx;
data->cur_gain = gain_idx;
return ret;
}
static int veml6030_get_als_gain(struct iio_dev *indio_dev,
int *val, int *val2)
{
int ret, reg;
struct veml6030_data *data = iio_priv(indio_dev);
ret = regmap_read(data->regmap, VEML6030_REG_ALS_CONF, &reg);
if (ret) {
dev_err(&data->client->dev,
"can't read als conf register %d\n", ret);
return ret;
}
switch ((reg >> 11) & 0x03) {
case 0:
*val = 1;
*val2 = 0;
break;
case 1:
*val = 2;
*val2 = 0;
break;
case 2:
*val = 0;
*val2 = 125000;
break;
case 3:
*val = 0;
*val2 = 250000;
break;
default:
return -EINVAL;
}
return IIO_VAL_INT_PLUS_MICRO;
}
static int veml6030_read_thresh(struct iio_dev *indio_dev,
int *val, int *val2, int dir)
{
int ret, reg;
struct veml6030_data *data = iio_priv(indio_dev);
if (dir == IIO_EV_DIR_RISING)
ret = regmap_read(data->regmap, VEML6030_REG_ALS_WH, &reg);
else
ret = regmap_read(data->regmap, VEML6030_REG_ALS_WL, &reg);
if (ret) {
dev_err(&data->client->dev,
"can't read als threshold value %d\n", ret);
return ret;
}
*val = reg & 0xffff;
return IIO_VAL_INT;
}
static int veml6030_write_thresh(struct iio_dev *indio_dev,
int val, int val2, int dir)
{
int ret;
struct veml6030_data *data = iio_priv(indio_dev);
if (val > 0xFFFF || val < 0 || val2)
return -EINVAL;
if (dir == IIO_EV_DIR_RISING) {
ret = regmap_write(data->regmap, VEML6030_REG_ALS_WH, val);
if (ret)
dev_err(&data->client->dev,
"can't set high threshold %d\n", ret);
} else {
ret = regmap_write(data->regmap, VEML6030_REG_ALS_WL, val);
if (ret)
dev_err(&data->client->dev,
"can't set low threshold %d\n", ret);
}
return ret;
}
/*
* Provide both raw as well as light reading in lux.
* light (in lux) = resolution * raw reading
*/
static int veml6030_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan, int *val,
int *val2, long mask)
{
int ret, reg;
struct veml6030_data *data = iio_priv(indio_dev);
struct regmap *regmap = data->regmap;
struct device *dev = &data->client->dev;
switch (mask) {
case IIO_CHAN_INFO_RAW:
case IIO_CHAN_INFO_PROCESSED:
switch (chan->type) {
case IIO_LIGHT:
ret = regmap_read(regmap, VEML6030_REG_ALS_DATA, &reg);
if (ret < 0) {
dev_err(dev, "can't read als data %d\n", ret);
return ret;
}
if (mask == IIO_CHAN_INFO_PROCESSED) {
*val = (reg * data->cur_resolution) / 10000;
*val2 = (reg * data->cur_resolution) % 10000;
return IIO_VAL_INT_PLUS_MICRO;
}
*val = reg;
return IIO_VAL_INT;
case IIO_INTENSITY:
ret = regmap_read(regmap, VEML6030_REG_WH_DATA, &reg);
if (ret < 0) {
dev_err(dev, "can't read white data %d\n", ret);
return ret;
}
if (mask == IIO_CHAN_INFO_PROCESSED) {
*val = (reg * data->cur_resolution) / 10000;
*val2 = (reg * data->cur_resolution) % 10000;
return IIO_VAL_INT_PLUS_MICRO;
}
*val = reg;
return IIO_VAL_INT;
default:
return -EINVAL;
}
case IIO_CHAN_INFO_INT_TIME:
if (chan->type == IIO_LIGHT)
return veml6030_get_intgrn_tm(indio_dev, val, val2);
return -EINVAL;
case IIO_CHAN_INFO_SCALE:
if (chan->type == IIO_LIGHT)
return veml6030_get_als_gain(indio_dev, val, val2);
return -EINVAL;
default:
return -EINVAL;
}
}
static int veml6030_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val, int val2, long mask)
{
switch (mask) {
case IIO_CHAN_INFO_INT_TIME:
switch (chan->type) {
case IIO_LIGHT:
return veml6030_set_intgrn_tm(indio_dev, val, val2);
default:
return -EINVAL;
}
case IIO_CHAN_INFO_SCALE:
switch (chan->type) {
case IIO_LIGHT:
return veml6030_set_als_gain(indio_dev, val, val2);
default:
return -EINVAL;
}
default:
return -EINVAL;
}
}
static int veml6030_read_event_val(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan, enum iio_event_type type,
enum iio_event_direction dir, enum iio_event_info info,
int *val, int *val2)
{
switch (info) {
case IIO_EV_INFO_VALUE:
switch (dir) {
case IIO_EV_DIR_RISING:
case IIO_EV_DIR_FALLING:
return veml6030_read_thresh(indio_dev, val, val2, dir);
default:
return -EINVAL;
}
break;
case IIO_EV_INFO_PERIOD:
return veml6030_read_persistence(indio_dev, val, val2);
default:
return -EINVAL;
}
}
static int veml6030_write_event_val(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan, enum iio_event_type type,
enum iio_event_direction dir, enum iio_event_info info,
int val, int val2)
{
switch (info) {
case IIO_EV_INFO_VALUE:
return veml6030_write_thresh(indio_dev, val, val2, dir);
case IIO_EV_INFO_PERIOD:
return veml6030_write_persistence(indio_dev, val, val2);
default:
return -EINVAL;
}
}
static int veml6030_read_interrupt_config(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan, enum iio_event_type type,
enum iio_event_direction dir)
{
int ret, reg;
struct veml6030_data *data = iio_priv(indio_dev);
ret = regmap_read(data->regmap, VEML6030_REG_ALS_CONF, &reg);
if (ret) {
dev_err(&data->client->dev,
"can't read als conf register %d\n", ret);
return ret;
}
if (reg & VEML6030_ALS_INT_EN)
return 1;
else
return 0;
}
/*
* Sensor should not be measuring light when interrupt is configured.
* Therefore correct sequence to configure interrupt functionality is:
* shut down -> enable/disable interrupt -> power on
*
* state = 1 enables interrupt, state = 0 disables interrupt
*/
static int veml6030_write_interrupt_config(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan, enum iio_event_type type,
enum iio_event_direction dir, int state)
{
int ret;
struct veml6030_data *data = iio_priv(indio_dev);
if (state < 0 || state > 1)
return -EINVAL;
ret = veml6030_als_shut_down(data);
if (ret < 0) {
dev_err(&data->client->dev,
"can't disable als to configure interrupt %d\n", ret);
return ret;
}
/* enable interrupt + power on */
ret = regmap_update_bits(data->regmap, VEML6030_REG_ALS_CONF,
VEML6030_ALS_INT_EN | VEML6030_ALS_SD, state << 1);
if (ret)
dev_err(&data->client->dev,
"can't enable interrupt & poweron als %d\n", ret);
return ret;
}
static const struct iio_info veml6030_info = {
.read_raw = veml6030_read_raw,
.write_raw = veml6030_write_raw,
.read_event_value = veml6030_read_event_val,
.write_event_value = veml6030_write_event_val,
.read_event_config = veml6030_read_interrupt_config,
.write_event_config = veml6030_write_interrupt_config,
.attrs = &veml6030_attr_group,
.event_attrs = &veml6030_event_attr_group,
};
static const struct iio_info veml6030_info_no_irq = {
.read_raw = veml6030_read_raw,
.write_raw = veml6030_write_raw,
.attrs = &veml6030_attr_group,
};
static irqreturn_t veml6030_event_handler(int irq, void *private)
{
int ret, reg, evtdir;
struct iio_dev *indio_dev = private;
struct veml6030_data *data = iio_priv(indio_dev);
ret = regmap_read(data->regmap, VEML6030_REG_ALS_INT, &reg);
if (ret) {
dev_err(&data->client->dev,
"can't read als interrupt register %d\n", ret);
return IRQ_HANDLED;
}
/* Spurious interrupt handling */
if (!(reg & (VEML6030_INT_TH_HIGH | VEML6030_INT_TH_LOW)))
return IRQ_NONE;
if (reg & VEML6030_INT_TH_HIGH)
evtdir = IIO_EV_DIR_RISING;
else
evtdir = IIO_EV_DIR_FALLING;
iio_push_event(indio_dev, IIO_UNMOD_EVENT_CODE(IIO_INTENSITY,
0, IIO_EV_TYPE_THRESH, evtdir),
iio_get_time_ns(indio_dev));
return IRQ_HANDLED;
}
/*
* Set ALS gain to 1/8, integration time to 100 ms, PSM to mode 2,
* persistence to 1 x integration time and the threshold
* interrupt disabled by default. First shutdown the sensor,
* update registers and then power on the sensor.
*/
static int veml6030_hw_init(struct iio_dev *indio_dev)
{
int ret, val;
struct veml6030_data *data = iio_priv(indio_dev);
struct i2c_client *client = data->client;
ret = veml6030_als_shut_down(data);
if (ret) {
dev_err(&client->dev, "can't shutdown als %d\n", ret);
return ret;
}
ret = regmap_write(data->regmap, VEML6030_REG_ALS_CONF, 0x1001);
if (ret) {
dev_err(&client->dev, "can't setup als configs %d\n", ret);
return ret;
}
ret = regmap_update_bits(data->regmap, VEML6030_REG_ALS_PSM,
VEML6030_PSM | VEML6030_PSM_EN, 0x03);
if (ret) {
dev_err(&client->dev, "can't setup default PSM %d\n", ret);
return ret;
}
ret = regmap_write(data->regmap, VEML6030_REG_ALS_WH, 0xFFFF);
if (ret) {
dev_err(&client->dev, "can't setup high threshold %d\n", ret);
return ret;
}
ret = regmap_write(data->regmap, VEML6030_REG_ALS_WL, 0x0000);
if (ret) {
dev_err(&client->dev, "can't setup low threshold %d\n", ret);
return ret;
}
ret = veml6030_als_pwr_on(data);
if (ret) {
dev_err(&client->dev, "can't poweron als %d\n", ret);
return ret;
}
/* Wait 4 ms to let processor & oscillator start correctly */
usleep_range(4000, 4002);
/* Clear stale interrupt status bits if any during start */
ret = regmap_read(data->regmap, VEML6030_REG_ALS_INT, &val);
if (ret < 0) {
dev_err(&client->dev,
"can't clear als interrupt status %d\n", ret);
return ret;
}
/* Cache currently active measurement parameters */
data->cur_gain = 3;
data->cur_resolution = 4608;
data->cur_integration_time = 3;
return ret;
}
static int veml6030_probe(struct i2c_client *client)
{
int ret;
struct veml6030_data *data;
struct iio_dev *indio_dev;
struct regmap *regmap;
if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
dev_err(&client->dev, "i2c adapter doesn't support plain i2c\n");
return -EOPNOTSUPP;
}
regmap = devm_regmap_init_i2c(client, &veml6030_regmap_config);
if (IS_ERR(regmap)) {
dev_err(&client->dev, "can't setup regmap\n");
return PTR_ERR(regmap);
}
indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
if (!indio_dev)
return -ENOMEM;
data = iio_priv(indio_dev);
i2c_set_clientdata(client, indio_dev);
data->client = client;
data->regmap = regmap;
indio_dev->name = "veml6030";
indio_dev->channels = veml6030_channels;
indio_dev->num_channels = ARRAY_SIZE(veml6030_channels);
indio_dev->modes = INDIO_DIRECT_MODE;
if (client->irq) {
ret = devm_request_threaded_irq(&client->dev, client->irq,
NULL, veml6030_event_handler,
IRQF_TRIGGER_LOW | IRQF_ONESHOT,
"veml6030", indio_dev);
if (ret < 0) {
dev_err(&client->dev,
"irq %d request failed\n", client->irq);
return ret;
}
indio_dev->info = &veml6030_info;
} else {
indio_dev->info = &veml6030_info_no_irq;
}
ret = veml6030_hw_init(indio_dev);
if (ret < 0)
return ret;
ret = devm_add_action_or_reset(&client->dev,
veml6030_als_shut_down_action, data);
if (ret < 0)
return ret;
return devm_iio_device_register(&client->dev, indio_dev);
}
static int veml6030_runtime_suspend(struct device *dev)
{
int ret;
struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
struct veml6030_data *data = iio_priv(indio_dev);
ret = veml6030_als_shut_down(data);
if (ret < 0)
dev_err(&data->client->dev, "can't suspend als %d\n", ret);
return ret;
}
static int veml6030_runtime_resume(struct device *dev)
{
int ret;
struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
struct veml6030_data *data = iio_priv(indio_dev);
ret = veml6030_als_pwr_on(data);
if (ret < 0)
dev_err(&data->client->dev, "can't resume als %d\n", ret);
return ret;
}
static DEFINE_RUNTIME_DEV_PM_OPS(veml6030_pm_ops, veml6030_runtime_suspend,
veml6030_runtime_resume, NULL);
static const struct of_device_id veml6030_of_match[] = {
{ .compatible = "vishay,veml6030" },
{ }
};
MODULE_DEVICE_TABLE(of, veml6030_of_match);
static const struct i2c_device_id veml6030_id[] = {
{ "veml6030", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, veml6030_id);
static struct i2c_driver veml6030_driver = {
.driver = {
.name = "veml6030",
.of_match_table = veml6030_of_match,
.pm = pm_ptr(&veml6030_pm_ops),
},
.probe = veml6030_probe,
.id_table = veml6030_id,
};
module_i2c_driver(veml6030_driver);
MODULE_AUTHOR("Rishi Gupta <gupt21@gmail.com>");
MODULE_DESCRIPTION("VEML6030 Ambient Light Sensor");
MODULE_LICENSE("GPL v2");