linux/drivers/power/supply/cpcap-battery.c
Arthur Demchenkov 1e64926c5d power: supply: cpcap-battery: Implement capacity reporting
Calculate percentage using charge_full value provided.

Cc: Arthur Demchenkov <spinal.by@gmail.com>
Cc: Carl Philipp Klemm <philipp@uvos.xyz>
Cc: Merlijn Wajer <merlijn@wizzup.org>
Cc: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Arthur Demchenkov <spinal.by@gmail.com>
[tony@atomide.com: updated to apply after dropping my earlier patch]
Signed-off-by: Tony Lindgren <tony@atomide.com>
Signed-off-by: Sebastian Reichel <sebastian.reichel@collabora.com>
2021-01-14 23:42:42 +01:00

1108 lines
29 KiB
C

/*
* Battery driver for CPCAP PMIC
*
* Copyright (C) 2017 Tony Lindgren <tony@atomide.com>
*
* Some parts of the code based on earlie Motorola mapphone Linux kernel
* drivers:
*
* Copyright (C) 2009-2010 Motorola, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
* This program is distributed "as is" WITHOUT ANY WARRANTY of any
* kind, whether express or implied; without even the implied warranty
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/power_supply.h>
#include <linux/reboot.h>
#include <linux/regmap.h>
#include <linux/moduleparam.h>
#include <linux/iio/consumer.h>
#include <linux/iio/types.h>
#include <linux/mfd/motorola-cpcap.h>
/*
* Register bit defines for CPCAP_REG_BPEOL. Some of these seem to
* map to MC13783UG.pdf "Table 5-19. Register 13, Power Control 0"
* to enable BATTDETEN, LOBAT and EOL features. We currently use
* LOBAT interrupts instead of EOL.
*/
#define CPCAP_REG_BPEOL_BIT_EOL9 BIT(9) /* Set for EOL irq */
#define CPCAP_REG_BPEOL_BIT_EOL8 BIT(8) /* Set for EOL irq */
#define CPCAP_REG_BPEOL_BIT_UNKNOWN7 BIT(7)
#define CPCAP_REG_BPEOL_BIT_UNKNOWN6 BIT(6)
#define CPCAP_REG_BPEOL_BIT_UNKNOWN5 BIT(5)
#define CPCAP_REG_BPEOL_BIT_EOL_MULTI BIT(4) /* Set for multiple EOL irqs */
#define CPCAP_REG_BPEOL_BIT_UNKNOWN3 BIT(3)
#define CPCAP_REG_BPEOL_BIT_UNKNOWN2 BIT(2)
#define CPCAP_REG_BPEOL_BIT_BATTDETEN BIT(1) /* Enable battery detect */
#define CPCAP_REG_BPEOL_BIT_EOLSEL BIT(0) /* BPDET = 0, EOL = 1 */
/*
* Register bit defines for CPCAP_REG_CCC1. These seem similar to the twl6030
* coulomb counter registers rather than the mc13892 registers. Both twl6030
* and mc13892 set bits 2 and 1 to reset and clear registers. But mc13892
* sets bit 0 to start the coulomb counter while twl6030 sets bit 0 to stop
* the coulomb counter like cpcap does. So for now, we use the twl6030 style
* naming for the registers.
*/
#define CPCAP_REG_CCC1_ACTIVE_MODE1 BIT(4) /* Update rate */
#define CPCAP_REG_CCC1_ACTIVE_MODE0 BIT(3) /* Update rate */
#define CPCAP_REG_CCC1_AUTOCLEAR BIT(2) /* Resets sample registers */
#define CPCAP_REG_CCC1_CAL_EN BIT(1) /* Clears after write in 1s */
#define CPCAP_REG_CCC1_PAUSE BIT(0) /* Stop counters, allow write */
#define CPCAP_REG_CCC1_RESET_MASK (CPCAP_REG_CCC1_AUTOCLEAR | \
CPCAP_REG_CCC1_CAL_EN)
#define CPCAP_REG_CCCC2_RATE1 BIT(5)
#define CPCAP_REG_CCCC2_RATE0 BIT(4)
#define CPCAP_REG_CCCC2_ENABLE BIT(3)
#define CPCAP_BATTERY_CC_SAMPLE_PERIOD_MS 250
enum {
CPCAP_BATTERY_IIO_BATTDET,
CPCAP_BATTERY_IIO_VOLTAGE,
CPCAP_BATTERY_IIO_CHRG_CURRENT,
CPCAP_BATTERY_IIO_BATT_CURRENT,
CPCAP_BATTERY_IIO_NR,
};
enum cpcap_battery_irq_action {
CPCAP_BATTERY_IRQ_ACTION_NONE,
CPCAP_BATTERY_IRQ_ACTION_CC_CAL_DONE,
CPCAP_BATTERY_IRQ_ACTION_BATTERY_LOW,
CPCAP_BATTERY_IRQ_ACTION_POWEROFF,
};
struct cpcap_interrupt_desc {
const char *name;
struct list_head node;
int irq;
enum cpcap_battery_irq_action action;
};
struct cpcap_battery_config {
int cd_factor;
struct power_supply_info info;
struct power_supply_battery_info bat;
};
struct cpcap_coulomb_counter_data {
s32 sample; /* 24 or 32 bits */
s32 accumulator;
s16 offset; /* 9 bits */
s16 integrator; /* 13 or 16 bits */
};
enum cpcap_battery_state {
CPCAP_BATTERY_STATE_PREVIOUS,
CPCAP_BATTERY_STATE_LATEST,
CPCAP_BATTERY_STATE_EMPTY,
CPCAP_BATTERY_STATE_FULL,
CPCAP_BATTERY_STATE_NR,
};
struct cpcap_battery_state_data {
int voltage;
int current_ua;
int counter_uah;
int temperature;
ktime_t time;
struct cpcap_coulomb_counter_data cc;
};
struct cpcap_battery_ddata {
struct device *dev;
struct regmap *reg;
struct list_head irq_list;
struct iio_channel *channels[CPCAP_BATTERY_IIO_NR];
struct power_supply *psy;
struct cpcap_battery_config config;
struct cpcap_battery_state_data state[CPCAP_BATTERY_STATE_NR];
u32 cc_lsb; /* μAms per LSB */
atomic_t active;
int charge_full;
int status;
u16 vendor;
unsigned int is_full:1;
};
#define CPCAP_NO_BATTERY -400
static bool ignore_temperature_probe;
module_param(ignore_temperature_probe, bool, 0660);
static struct cpcap_battery_state_data *
cpcap_battery_get_state(struct cpcap_battery_ddata *ddata,
enum cpcap_battery_state state)
{
if (state >= CPCAP_BATTERY_STATE_NR)
return NULL;
return &ddata->state[state];
}
static struct cpcap_battery_state_data *
cpcap_battery_latest(struct cpcap_battery_ddata *ddata)
{
return cpcap_battery_get_state(ddata, CPCAP_BATTERY_STATE_LATEST);
}
static struct cpcap_battery_state_data *
cpcap_battery_previous(struct cpcap_battery_ddata *ddata)
{
return cpcap_battery_get_state(ddata, CPCAP_BATTERY_STATE_PREVIOUS);
}
static struct cpcap_battery_state_data *
cpcap_battery_get_empty(struct cpcap_battery_ddata *ddata)
{
return cpcap_battery_get_state(ddata, CPCAP_BATTERY_STATE_EMPTY);
}
static struct cpcap_battery_state_data *
cpcap_battery_get_full(struct cpcap_battery_ddata *ddata)
{
return cpcap_battery_get_state(ddata, CPCAP_BATTERY_STATE_FULL);
}
static int cpcap_charger_battery_temperature(struct cpcap_battery_ddata *ddata,
int *value)
{
struct iio_channel *channel;
int error;
channel = ddata->channels[CPCAP_BATTERY_IIO_BATTDET];
error = iio_read_channel_processed(channel, value);
if (error < 0) {
if (!ignore_temperature_probe)
dev_warn(ddata->dev, "%s failed: %i\n", __func__, error);
*value = CPCAP_NO_BATTERY;
return error;
}
*value /= 100;
return 0;
}
static int cpcap_battery_get_voltage(struct cpcap_battery_ddata *ddata)
{
struct iio_channel *channel;
int error, value = 0;
channel = ddata->channels[CPCAP_BATTERY_IIO_VOLTAGE];
error = iio_read_channel_processed(channel, &value);
if (error < 0) {
dev_warn(ddata->dev, "%s failed: %i\n", __func__, error);
return 0;
}
return value * 1000;
}
static int cpcap_battery_get_current(struct cpcap_battery_ddata *ddata)
{
struct iio_channel *channel;
int error, value = 0;
channel = ddata->channels[CPCAP_BATTERY_IIO_BATT_CURRENT];
error = iio_read_channel_processed(channel, &value);
if (error < 0) {
dev_warn(ddata->dev, "%s failed: %i\n", __func__, error);
return 0;
}
return value * 1000;
}
/**
* cpcap_battery_cc_raw_div - calculate and divide coulomb counter μAms values
* @ddata: device driver data
* @sample: coulomb counter sample value
* @accumulator: coulomb counter integrator value
* @offset: coulomb counter offset value
* @divider: conversion divider
*
* Note that cc_lsb and cc_dur values are from Motorola Linux kernel
* function data_get_avg_curr_ua() and seem to be based on measured test
* results. It also has the following comment:
*
* Adjustment factors are applied here as a temp solution per the test
* results. Need to work out a formal solution for this adjustment.
*
* A coulomb counter for similar hardware seems to be documented in
* "TWL6030 Gas Gauging Basics (Rev. A)" swca095a.pdf in chapter
* "10 Calculating Accumulated Current". We however follow what the
* Motorola mapphone Linux kernel is doing as there may be either a
* TI or ST coulomb counter in the PMIC.
*/
static int cpcap_battery_cc_raw_div(struct cpcap_battery_ddata *ddata,
s32 sample, s32 accumulator,
s16 offset, u32 divider)
{
s64 acc;
if (!divider)
return 0;
acc = accumulator;
acc -= (s64)sample * offset;
acc *= ddata->cc_lsb;
acc *= -1;
acc = div_s64(acc, divider);
return acc;
}
/* 3600000μAms = 1μAh */
static int cpcap_battery_cc_to_uah(struct cpcap_battery_ddata *ddata,
s32 sample, s32 accumulator,
s16 offset)
{
return cpcap_battery_cc_raw_div(ddata, sample,
accumulator, offset,
3600000);
}
static int cpcap_battery_cc_to_ua(struct cpcap_battery_ddata *ddata,
s32 sample, s32 accumulator,
s16 offset)
{
return cpcap_battery_cc_raw_div(ddata, sample,
accumulator, offset,
sample *
CPCAP_BATTERY_CC_SAMPLE_PERIOD_MS);
}
/**
* cpcap_battery_read_accumulated - reads cpcap coulomb counter
* @ddata: device driver data
* @ccd: coulomb counter values
*
* Based on Motorola mapphone kernel function data_read_regs().
* Looking at the registers, the coulomb counter seems similar to
* the coulomb counter in TWL6030. See "TWL6030 Gas Gauging Basics
* (Rev. A) swca095a.pdf for "10 Calculating Accumulated Current".
*
* Note that swca095a.pdf instructs to stop the coulomb counter
* before reading to avoid values changing. Motorola mapphone
* Linux kernel does not do it, so let's assume they've verified
* the data produced is correct.
*/
static int
cpcap_battery_read_accumulated(struct cpcap_battery_ddata *ddata,
struct cpcap_coulomb_counter_data *ccd)
{
u16 buf[7]; /* CPCAP_REG_CCS1 to CCI */
int error;
ccd->sample = 0;
ccd->accumulator = 0;
ccd->offset = 0;
ccd->integrator = 0;
/* Read coulomb counter register range */
error = regmap_bulk_read(ddata->reg, CPCAP_REG_CCS1,
buf, ARRAY_SIZE(buf));
if (error)
return 0;
/* Sample value CPCAP_REG_CCS1 & 2 */
ccd->sample = (buf[1] & 0x0fff) << 16;
ccd->sample |= buf[0];
if (ddata->vendor == CPCAP_VENDOR_TI)
ccd->sample = sign_extend32(24, ccd->sample);
/* Accumulator value CPCAP_REG_CCA1 & 2 */
ccd->accumulator = ((s16)buf[3]) << 16;
ccd->accumulator |= buf[2];
/*
* Coulomb counter calibration offset is CPCAP_REG_CCM,
* REG_CCO seems unused
*/
ccd->offset = buf[4];
ccd->offset = sign_extend32(ccd->offset, 9);
/* Integrator register CPCAP_REG_CCI */
if (ddata->vendor == CPCAP_VENDOR_TI)
ccd->integrator = sign_extend32(buf[6], 13);
else
ccd->integrator = (s16)buf[6];
return cpcap_battery_cc_to_uah(ddata,
ccd->sample,
ccd->accumulator,
ccd->offset);
}
/**
* cpcap_battery_cc_get_avg_current - read cpcap coulumb counter
* @ddata: cpcap battery driver device data
*/
static int cpcap_battery_cc_get_avg_current(struct cpcap_battery_ddata *ddata)
{
int value, acc, error;
s32 sample;
s16 offset;
/* Coulomb counter integrator */
error = regmap_read(ddata->reg, CPCAP_REG_CCI, &value);
if (error)
return error;
if (ddata->vendor == CPCAP_VENDOR_TI) {
acc = sign_extend32(value, 13);
sample = 1;
} else {
acc = (s16)value;
sample = 4;
}
/* Coulomb counter calibration offset */
error = regmap_read(ddata->reg, CPCAP_REG_CCM, &value);
if (error)
return error;
offset = sign_extend32(value, 9);
return cpcap_battery_cc_to_ua(ddata, sample, acc, offset);
}
static int cpcap_battery_get_charger_status(struct cpcap_battery_ddata *ddata,
int *val)
{
union power_supply_propval prop;
struct power_supply *charger;
int error;
charger = power_supply_get_by_name("usb");
if (!charger)
return -ENODEV;
error = power_supply_get_property(charger, POWER_SUPPLY_PROP_STATUS,
&prop);
if (error)
*val = POWER_SUPPLY_STATUS_UNKNOWN;
else
*val = prop.intval;
power_supply_put(charger);
return error;
}
static bool cpcap_battery_full(struct cpcap_battery_ddata *ddata)
{
struct cpcap_battery_state_data *state = cpcap_battery_latest(ddata);
unsigned int vfull;
int error, val;
error = cpcap_battery_get_charger_status(ddata, &val);
if (!error) {
switch (val) {
case POWER_SUPPLY_STATUS_DISCHARGING:
dev_dbg(ddata->dev, "charger disconnected\n");
ddata->is_full = 0;
break;
case POWER_SUPPLY_STATUS_FULL:
dev_dbg(ddata->dev, "charger full status\n");
ddata->is_full = 1;
break;
default:
break;
}
}
/*
* The full battery voltage here can be inaccurate, it's used just to
* filter out any trickle charging events. We clear the is_full status
* on charger disconnect above anyways.
*/
vfull = ddata->config.bat.constant_charge_voltage_max_uv - 120000;
if (ddata->is_full && state->voltage < vfull)
ddata->is_full = 0;
return ddata->is_full;
}
static bool cpcap_battery_low(struct cpcap_battery_ddata *ddata)
{
struct cpcap_battery_state_data *state = cpcap_battery_latest(ddata);
static bool is_low;
if (state->current_ua > 0 && (state->voltage <= 3350000 || is_low))
is_low = true;
else
is_low = false;
return is_low;
}
static int cpcap_battery_update_status(struct cpcap_battery_ddata *ddata)
{
struct cpcap_battery_state_data state, *latest, *previous,
*empty, *full;
ktime_t now;
int error;
memset(&state, 0, sizeof(state));
now = ktime_get();
latest = cpcap_battery_latest(ddata);
if (latest) {
s64 delta_ms = ktime_to_ms(ktime_sub(now, latest->time));
if (delta_ms < CPCAP_BATTERY_CC_SAMPLE_PERIOD_MS)
return delta_ms;
}
state.time = now;
state.voltage = cpcap_battery_get_voltage(ddata);
state.current_ua = cpcap_battery_get_current(ddata);
state.counter_uah = cpcap_battery_read_accumulated(ddata, &state.cc);
error = cpcap_charger_battery_temperature(ddata,
&state.temperature);
if (error)
return error;
previous = cpcap_battery_previous(ddata);
memcpy(previous, latest, sizeof(*previous));
memcpy(latest, &state, sizeof(*latest));
if (cpcap_battery_full(ddata)) {
full = cpcap_battery_get_full(ddata);
memcpy(full, latest, sizeof(*full));
empty = cpcap_battery_get_empty(ddata);
if (empty->voltage && empty->voltage != -1) {
empty->voltage = -1;
ddata->charge_full =
empty->counter_uah - full->counter_uah;
} else if (ddata->charge_full) {
empty->voltage = -1;
empty->counter_uah =
full->counter_uah + ddata->charge_full;
}
} else if (cpcap_battery_low(ddata)) {
empty = cpcap_battery_get_empty(ddata);
memcpy(empty, latest, sizeof(*empty));
full = cpcap_battery_get_full(ddata);
if (full->voltage) {
full->voltage = 0;
ddata->charge_full =
empty->counter_uah - full->counter_uah;
}
}
return 0;
}
/*
* Update battery status when cpcap-charger calls power_supply_changed().
* This allows us to detect battery full condition before the charger
* disconnects.
*/
static void cpcap_battery_external_power_changed(struct power_supply *psy)
{
union power_supply_propval prop;
power_supply_get_property(psy, POWER_SUPPLY_PROP_STATUS, &prop);
}
static enum power_supply_property cpcap_battery_props[] = {
POWER_SUPPLY_PROP_STATUS,
POWER_SUPPLY_PROP_PRESENT,
POWER_SUPPLY_PROP_TECHNOLOGY,
POWER_SUPPLY_PROP_VOLTAGE_NOW,
POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN,
POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN,
POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE,
POWER_SUPPLY_PROP_CURRENT_AVG,
POWER_SUPPLY_PROP_CURRENT_NOW,
POWER_SUPPLY_PROP_CHARGE_FULL,
POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
POWER_SUPPLY_PROP_CHARGE_COUNTER,
POWER_SUPPLY_PROP_POWER_NOW,
POWER_SUPPLY_PROP_POWER_AVG,
POWER_SUPPLY_PROP_CAPACITY,
POWER_SUPPLY_PROP_CAPACITY_LEVEL,
POWER_SUPPLY_PROP_SCOPE,
POWER_SUPPLY_PROP_TEMP,
};
static int cpcap_battery_get_property(struct power_supply *psy,
enum power_supply_property psp,
union power_supply_propval *val)
{
struct cpcap_battery_ddata *ddata = power_supply_get_drvdata(psy);
struct cpcap_battery_state_data *latest, *previous, *empty;
u32 sample;
s32 accumulator;
int cached;
s64 tmp;
cached = cpcap_battery_update_status(ddata);
if (cached < 0)
return cached;
latest = cpcap_battery_latest(ddata);
previous = cpcap_battery_previous(ddata);
switch (psp) {
case POWER_SUPPLY_PROP_PRESENT:
if (latest->temperature > CPCAP_NO_BATTERY || ignore_temperature_probe)
val->intval = 1;
else
val->intval = 0;
break;
case POWER_SUPPLY_PROP_STATUS:
if (cpcap_battery_full(ddata)) {
val->intval = POWER_SUPPLY_STATUS_FULL;
break;
}
if (cpcap_battery_cc_get_avg_current(ddata) < 0)
val->intval = POWER_SUPPLY_STATUS_CHARGING;
else
val->intval = POWER_SUPPLY_STATUS_DISCHARGING;
break;
case POWER_SUPPLY_PROP_TECHNOLOGY:
val->intval = ddata->config.info.technology;
break;
case POWER_SUPPLY_PROP_VOLTAGE_NOW:
val->intval = cpcap_battery_get_voltage(ddata);
break;
case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
val->intval = ddata->config.info.voltage_max_design;
break;
case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
val->intval = ddata->config.info.voltage_min_design;
break;
case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE:
val->intval = ddata->config.bat.constant_charge_voltage_max_uv;
break;
case POWER_SUPPLY_PROP_CURRENT_AVG:
sample = latest->cc.sample - previous->cc.sample;
if (!sample) {
val->intval = cpcap_battery_cc_get_avg_current(ddata);
break;
}
accumulator = latest->cc.accumulator - previous->cc.accumulator;
val->intval = cpcap_battery_cc_to_ua(ddata, sample,
accumulator,
latest->cc.offset);
break;
case POWER_SUPPLY_PROP_CURRENT_NOW:
val->intval = latest->current_ua;
break;
case POWER_SUPPLY_PROP_CHARGE_COUNTER:
val->intval = latest->counter_uah;
break;
case POWER_SUPPLY_PROP_POWER_NOW:
tmp = (latest->voltage / 10000) * latest->current_ua;
val->intval = div64_s64(tmp, 100);
break;
case POWER_SUPPLY_PROP_POWER_AVG:
sample = latest->cc.sample - previous->cc.sample;
if (!sample) {
tmp = cpcap_battery_cc_get_avg_current(ddata);
tmp *= (latest->voltage / 10000);
val->intval = div64_s64(tmp, 100);
break;
}
accumulator = latest->cc.accumulator - previous->cc.accumulator;
tmp = cpcap_battery_cc_to_ua(ddata, sample, accumulator,
latest->cc.offset);
tmp *= ((latest->voltage + previous->voltage) / 20000);
val->intval = div64_s64(tmp, 100);
break;
case POWER_SUPPLY_PROP_CAPACITY:
empty = cpcap_battery_get_empty(ddata);
if (!empty->voltage || !ddata->charge_full)
return -ENODATA;
/* (ddata->charge_full / 200) is needed for rounding */
val->intval = empty->counter_uah - latest->counter_uah +
ddata->charge_full / 200;
val->intval = clamp(val->intval, 0, ddata->charge_full);
val->intval = val->intval * 100 / ddata->charge_full;
break;
case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
if (cpcap_battery_full(ddata))
val->intval = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
else if (latest->voltage >= 3750000)
val->intval = POWER_SUPPLY_CAPACITY_LEVEL_HIGH;
else if (latest->voltage >= 3300000)
val->intval = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
else if (latest->voltage > 3100000)
val->intval = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
else if (latest->voltage <= 3100000)
val->intval = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
else
val->intval = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
break;
case POWER_SUPPLY_PROP_CHARGE_FULL:
if (!ddata->charge_full)
return -ENODATA;
val->intval = ddata->charge_full;
break;
case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
val->intval = ddata->config.info.charge_full_design;
break;
case POWER_SUPPLY_PROP_SCOPE:
val->intval = POWER_SUPPLY_SCOPE_SYSTEM;
break;
case POWER_SUPPLY_PROP_TEMP:
if (ignore_temperature_probe)
return -ENODATA;
val->intval = latest->temperature;
break;
default:
return -EINVAL;
}
return 0;
}
static int cpcap_battery_update_charger(struct cpcap_battery_ddata *ddata,
int const_charge_voltage)
{
union power_supply_propval prop;
union power_supply_propval val;
struct power_supply *charger;
int error;
charger = power_supply_get_by_name("usb");
if (!charger)
return -ENODEV;
error = power_supply_get_property(charger,
POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE,
&prop);
if (error)
goto out_put;
/* Allow charger const voltage lower than battery const voltage */
if (const_charge_voltage > prop.intval)
goto out_put;
val.intval = const_charge_voltage;
error = power_supply_set_property(charger,
POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE,
&val);
out_put:
power_supply_put(charger);
return error;
}
static int cpcap_battery_set_property(struct power_supply *psy,
enum power_supply_property psp,
const union power_supply_propval *val)
{
struct cpcap_battery_ddata *ddata = power_supply_get_drvdata(psy);
switch (psp) {
case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE:
if (val->intval < ddata->config.info.voltage_min_design)
return -EINVAL;
if (val->intval > ddata->config.info.voltage_max_design)
return -EINVAL;
ddata->config.bat.constant_charge_voltage_max_uv = val->intval;
return cpcap_battery_update_charger(ddata, val->intval);
case POWER_SUPPLY_PROP_CHARGE_FULL:
if (val->intval < 0)
return -EINVAL;
if (val->intval > ddata->config.info.charge_full_design)
return -EINVAL;
ddata->charge_full = val->intval;
return 0;
default:
return -EINVAL;
}
return 0;
}
static int cpcap_battery_property_is_writeable(struct power_supply *psy,
enum power_supply_property psp)
{
switch (psp) {
case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE:
case POWER_SUPPLY_PROP_CHARGE_FULL:
return 1;
default:
return 0;
}
}
static irqreturn_t cpcap_battery_irq_thread(int irq, void *data)
{
struct cpcap_battery_ddata *ddata = data;
struct cpcap_battery_state_data *latest;
struct cpcap_interrupt_desc *d;
if (!atomic_read(&ddata->active))
return IRQ_NONE;
list_for_each_entry(d, &ddata->irq_list, node) {
if (irq == d->irq)
break;
}
if (!d)
return IRQ_NONE;
latest = cpcap_battery_latest(ddata);
switch (d->action) {
case CPCAP_BATTERY_IRQ_ACTION_CC_CAL_DONE:
dev_info(ddata->dev, "Coulomb counter calibration done\n");
break;
case CPCAP_BATTERY_IRQ_ACTION_BATTERY_LOW:
if (latest->current_ua >= 0)
dev_warn(ddata->dev, "Battery low at %imV!\n",
latest->voltage / 1000);
break;
case CPCAP_BATTERY_IRQ_ACTION_POWEROFF:
if (latest->current_ua >= 0 && latest->voltage <= 3200000) {
dev_emerg(ddata->dev,
"Battery empty at %imV, powering off\n",
latest->voltage / 1000);
orderly_poweroff(true);
}
break;
default:
break;
}
power_supply_changed(ddata->psy);
return IRQ_HANDLED;
}
static int cpcap_battery_init_irq(struct platform_device *pdev,
struct cpcap_battery_ddata *ddata,
const char *name)
{
struct cpcap_interrupt_desc *d;
int irq, error;
irq = platform_get_irq_byname(pdev, name);
if (irq < 0)
return irq;
error = devm_request_threaded_irq(ddata->dev, irq, NULL,
cpcap_battery_irq_thread,
IRQF_SHARED | IRQF_ONESHOT,
name, ddata);
if (error) {
dev_err(ddata->dev, "could not get irq %s: %i\n",
name, error);
return error;
}
d = devm_kzalloc(ddata->dev, sizeof(*d), GFP_KERNEL);
if (!d)
return -ENOMEM;
d->name = name;
d->irq = irq;
if (!strncmp(name, "cccal", 5))
d->action = CPCAP_BATTERY_IRQ_ACTION_CC_CAL_DONE;
else if (!strncmp(name, "lowbph", 6))
d->action = CPCAP_BATTERY_IRQ_ACTION_BATTERY_LOW;
else if (!strncmp(name, "lowbpl", 6))
d->action = CPCAP_BATTERY_IRQ_ACTION_POWEROFF;
list_add(&d->node, &ddata->irq_list);
return 0;
}
static int cpcap_battery_init_interrupts(struct platform_device *pdev,
struct cpcap_battery_ddata *ddata)
{
static const char * const cpcap_battery_irqs[] = {
"eol", "lowbph", "lowbpl",
"chrgcurr1", "battdetb"
};
int i, error;
for (i = 0; i < ARRAY_SIZE(cpcap_battery_irqs); i++) {
error = cpcap_battery_init_irq(pdev, ddata,
cpcap_battery_irqs[i]);
if (error)
return error;
}
/* Enable calibration interrupt if already available in dts */
cpcap_battery_init_irq(pdev, ddata, "cccal");
/* Enable low battery interrupts for 3.3V high and 3.1V low */
error = regmap_update_bits(ddata->reg, CPCAP_REG_BPEOL,
0xffff,
CPCAP_REG_BPEOL_BIT_BATTDETEN);
if (error)
return error;
return 0;
}
static int cpcap_battery_init_iio(struct cpcap_battery_ddata *ddata)
{
const char * const names[CPCAP_BATTERY_IIO_NR] = {
"battdetb", "battp", "chg_isense", "batti",
};
int error, i;
for (i = 0; i < CPCAP_BATTERY_IIO_NR; i++) {
ddata->channels[i] = devm_iio_channel_get(ddata->dev,
names[i]);
if (IS_ERR(ddata->channels[i])) {
error = PTR_ERR(ddata->channels[i]);
goto out_err;
}
if (!ddata->channels[i]->indio_dev) {
error = -ENXIO;
goto out_err;
}
}
return 0;
out_err:
return dev_err_probe(ddata->dev, error,
"could not initialize VBUS or ID IIO\n");
}
/* Calibrate coulomb counter */
static int cpcap_battery_calibrate(struct cpcap_battery_ddata *ddata)
{
int error, ccc1, value;
unsigned long timeout;
error = regmap_read(ddata->reg, CPCAP_REG_CCC1, &ccc1);
if (error)
return error;
timeout = jiffies + msecs_to_jiffies(6000);
/* Start calibration */
error = regmap_update_bits(ddata->reg, CPCAP_REG_CCC1,
0xffff,
CPCAP_REG_CCC1_CAL_EN);
if (error)
goto restore;
while (time_before(jiffies, timeout)) {
error = regmap_read(ddata->reg, CPCAP_REG_CCC1, &value);
if (error)
goto restore;
if (!(value & CPCAP_REG_CCC1_CAL_EN))
break;
error = regmap_read(ddata->reg, CPCAP_REG_CCM, &value);
if (error)
goto restore;
msleep(300);
}
/* Read calibration offset from CCM */
error = regmap_read(ddata->reg, CPCAP_REG_CCM, &value);
if (error)
goto restore;
dev_info(ddata->dev, "calibration done: 0x%04x\n", value);
restore:
if (error)
dev_err(ddata->dev, "%s: error %i\n", __func__, error);
error = regmap_update_bits(ddata->reg, CPCAP_REG_CCC1,
0xffff, ccc1);
if (error)
dev_err(ddata->dev, "%s: restore error %i\n",
__func__, error);
return error;
}
/*
* Based on the values from Motorola mapphone Linux kernel. In the
* the Motorola mapphone Linux kernel tree the value for pm_cd_factor
* is passed to the kernel via device tree. If it turns out to be
* something device specific we can consider that too later.
*
* And looking at the battery full and shutdown values for the stock
* kernel on droid 4, full is 4351000 and software initiates shutdown
* at 3078000. The device will die around 2743000.
*/
static const struct cpcap_battery_config cpcap_battery_default_data = {
.cd_factor = 0x3cc,
.info.technology = POWER_SUPPLY_TECHNOLOGY_LION,
.info.voltage_max_design = 4351000,
.info.voltage_min_design = 3100000,
.info.charge_full_design = 1740000,
.bat.constant_charge_voltage_max_uv = 4200000,
};
#ifdef CONFIG_OF
static const struct of_device_id cpcap_battery_id_table[] = {
{
.compatible = "motorola,cpcap-battery",
.data = &cpcap_battery_default_data,
},
{},
};
MODULE_DEVICE_TABLE(of, cpcap_battery_id_table);
#endif
static int cpcap_battery_probe(struct platform_device *pdev)
{
struct power_supply_desc *psy_desc;
struct cpcap_battery_ddata *ddata;
const struct of_device_id *match;
struct power_supply_config psy_cfg = {};
int error;
match = of_match_device(of_match_ptr(cpcap_battery_id_table),
&pdev->dev);
if (!match)
return -EINVAL;
if (!match->data) {
dev_err(&pdev->dev, "no configuration data found\n");
return -ENODEV;
}
ddata = devm_kzalloc(&pdev->dev, sizeof(*ddata), GFP_KERNEL);
if (!ddata)
return -ENOMEM;
INIT_LIST_HEAD(&ddata->irq_list);
ddata->dev = &pdev->dev;
memcpy(&ddata->config, match->data, sizeof(ddata->config));
ddata->reg = dev_get_regmap(ddata->dev->parent, NULL);
if (!ddata->reg)
return -ENODEV;
error = cpcap_get_vendor(ddata->dev, ddata->reg, &ddata->vendor);
if (error)
return error;
switch (ddata->vendor) {
case CPCAP_VENDOR_ST:
ddata->cc_lsb = 95374; /* μAms per LSB */
break;
case CPCAP_VENDOR_TI:
ddata->cc_lsb = 91501; /* μAms per LSB */
break;
default:
return -EINVAL;
}
ddata->cc_lsb = (ddata->cc_lsb * ddata->config.cd_factor) / 1000;
platform_set_drvdata(pdev, ddata);
error = cpcap_battery_init_interrupts(pdev, ddata);
if (error)
return error;
error = cpcap_battery_init_iio(ddata);
if (error)
return error;
psy_desc = devm_kzalloc(ddata->dev, sizeof(*psy_desc), GFP_KERNEL);
if (!psy_desc)
return -ENOMEM;
psy_desc->name = "battery";
psy_desc->type = POWER_SUPPLY_TYPE_BATTERY;
psy_desc->properties = cpcap_battery_props;
psy_desc->num_properties = ARRAY_SIZE(cpcap_battery_props);
psy_desc->get_property = cpcap_battery_get_property;
psy_desc->set_property = cpcap_battery_set_property;
psy_desc->property_is_writeable = cpcap_battery_property_is_writeable;
psy_desc->external_power_changed = cpcap_battery_external_power_changed;
psy_cfg.of_node = pdev->dev.of_node;
psy_cfg.drv_data = ddata;
ddata->psy = devm_power_supply_register(ddata->dev, psy_desc,
&psy_cfg);
error = PTR_ERR_OR_ZERO(ddata->psy);
if (error) {
dev_err(ddata->dev, "failed to register power supply\n");
return error;
}
atomic_set(&ddata->active, 1);
error = cpcap_battery_calibrate(ddata);
if (error)
return error;
return 0;
}
static int cpcap_battery_remove(struct platform_device *pdev)
{
struct cpcap_battery_ddata *ddata = platform_get_drvdata(pdev);
int error;
atomic_set(&ddata->active, 0);
error = regmap_update_bits(ddata->reg, CPCAP_REG_BPEOL,
0xffff, 0);
if (error)
dev_err(&pdev->dev, "could not disable: %i\n", error);
return 0;
}
static struct platform_driver cpcap_battery_driver = {
.driver = {
.name = "cpcap_battery",
.of_match_table = of_match_ptr(cpcap_battery_id_table),
},
.probe = cpcap_battery_probe,
.remove = cpcap_battery_remove,
};
module_platform_driver(cpcap_battery_driver);
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Tony Lindgren <tony@atomide.com>");
MODULE_DESCRIPTION("CPCAP PMIC Battery Driver");