This crash is caused by NULL pointer deference, in page_to_pfn() marco, when page == NULL : Unable to handle kernel NULL pointer dereference at virtual address 00000000 Internal error: Oops: 94000006 [#1] SMP Modules linked in: CPU: 1 PID: 26 Comm: khugepaged Tainted: G W 4.3.0-rc6-next-20151022ajb-00001-g32f3386-dirty #3 PC is at khugepaged+0x378/0x1af8 LR is at khugepaged+0x418/0x1af8 Process khugepaged (pid: 26, stack limit = 0xffffffc079638020) Call trace: khugepaged+0x378/0x1af8 kthread+0xdc/0xf4 ret_from_fork+0xc/0x40 Code: 35001700 f0002c60 aa0703e3 f9009fa0 (f94000e0) ---[ end trace 637503d8e28ae69e ]--- Kernel panic - not syncing: Fatal exception CPU2: stopping CPU: 2 PID: 0 Comm: swapper/2 Tainted: G D W 4.3.0-rc6-next-20151022ajb-00001-g32f3386-dirty #3 Hardware name: linux,dummy-virt (DT) [akpm@linux-foundation.org: fix fat-fingered merge resolution] Signed-off-by: yalin wang <yalin.wang2010@gmail.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			3578 lines
		
	
	
		
			92 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3578 lines
		
	
	
		
			92 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  Copyright (C) 2009  Red Hat, Inc.
 | |
|  *
 | |
|  *  This work is licensed under the terms of the GNU GPL, version 2. See
 | |
|  *  the COPYING file in the top-level directory.
 | |
|  */
 | |
| 
 | |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 | |
| 
 | |
| #include <linux/mm.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/hugetlb.h>
 | |
| #include <linux/mmu_notifier.h>
 | |
| #include <linux/rmap.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/shrinker.h>
 | |
| #include <linux/mm_inline.h>
 | |
| #include <linux/swapops.h>
 | |
| #include <linux/dax.h>
 | |
| #include <linux/kthread.h>
 | |
| #include <linux/khugepaged.h>
 | |
| #include <linux/freezer.h>
 | |
| #include <linux/pfn_t.h>
 | |
| #include <linux/mman.h>
 | |
| #include <linux/memremap.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/debugfs.h>
 | |
| #include <linux/migrate.h>
 | |
| #include <linux/hashtable.h>
 | |
| #include <linux/userfaultfd_k.h>
 | |
| #include <linux/page_idle.h>
 | |
| 
 | |
| #include <asm/tlb.h>
 | |
| #include <asm/pgalloc.h>
 | |
| #include "internal.h"
 | |
| 
 | |
| enum scan_result {
 | |
| 	SCAN_FAIL,
 | |
| 	SCAN_SUCCEED,
 | |
| 	SCAN_PMD_NULL,
 | |
| 	SCAN_EXCEED_NONE_PTE,
 | |
| 	SCAN_PTE_NON_PRESENT,
 | |
| 	SCAN_PAGE_RO,
 | |
| 	SCAN_NO_REFERENCED_PAGE,
 | |
| 	SCAN_PAGE_NULL,
 | |
| 	SCAN_SCAN_ABORT,
 | |
| 	SCAN_PAGE_COUNT,
 | |
| 	SCAN_PAGE_LRU,
 | |
| 	SCAN_PAGE_LOCK,
 | |
| 	SCAN_PAGE_ANON,
 | |
| 	SCAN_PAGE_COMPOUND,
 | |
| 	SCAN_ANY_PROCESS,
 | |
| 	SCAN_VMA_NULL,
 | |
| 	SCAN_VMA_CHECK,
 | |
| 	SCAN_ADDRESS_RANGE,
 | |
| 	SCAN_SWAP_CACHE_PAGE,
 | |
| 	SCAN_DEL_PAGE_LRU,
 | |
| 	SCAN_ALLOC_HUGE_PAGE_FAIL,
 | |
| 	SCAN_CGROUP_CHARGE_FAIL
 | |
| };
 | |
| 
 | |
| #define CREATE_TRACE_POINTS
 | |
| #include <trace/events/huge_memory.h>
 | |
| 
 | |
| /*
 | |
|  * By default transparent hugepage support is disabled in order that avoid
 | |
|  * to risk increase the memory footprint of applications without a guaranteed
 | |
|  * benefit. When transparent hugepage support is enabled, is for all mappings,
 | |
|  * and khugepaged scans all mappings.
 | |
|  * Defrag is invoked by khugepaged hugepage allocations and by page faults
 | |
|  * for all hugepage allocations.
 | |
|  */
 | |
| unsigned long transparent_hugepage_flags __read_mostly =
 | |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
 | |
| 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
 | |
| #endif
 | |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
 | |
| 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
 | |
| #endif
 | |
| 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
 | |
| 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
 | |
| 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 | |
| 
 | |
| /* default scan 8*512 pte (or vmas) every 30 second */
 | |
| static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
 | |
| static unsigned int khugepaged_pages_collapsed;
 | |
| static unsigned int khugepaged_full_scans;
 | |
| static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
 | |
| /* during fragmentation poll the hugepage allocator once every minute */
 | |
| static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
 | |
| static struct task_struct *khugepaged_thread __read_mostly;
 | |
| static DEFINE_MUTEX(khugepaged_mutex);
 | |
| static DEFINE_SPINLOCK(khugepaged_mm_lock);
 | |
| static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
 | |
| /*
 | |
|  * default collapse hugepages if there is at least one pte mapped like
 | |
|  * it would have happened if the vma was large enough during page
 | |
|  * fault.
 | |
|  */
 | |
| static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
 | |
| 
 | |
| static int khugepaged(void *none);
 | |
| static int khugepaged_slab_init(void);
 | |
| static void khugepaged_slab_exit(void);
 | |
| 
 | |
| #define MM_SLOTS_HASH_BITS 10
 | |
| static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
 | |
| 
 | |
| static struct kmem_cache *mm_slot_cache __read_mostly;
 | |
| 
 | |
| /**
 | |
|  * struct mm_slot - hash lookup from mm to mm_slot
 | |
|  * @hash: hash collision list
 | |
|  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
 | |
|  * @mm: the mm that this information is valid for
 | |
|  */
 | |
| struct mm_slot {
 | |
| 	struct hlist_node hash;
 | |
| 	struct list_head mm_node;
 | |
| 	struct mm_struct *mm;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * struct khugepaged_scan - cursor for scanning
 | |
|  * @mm_head: the head of the mm list to scan
 | |
|  * @mm_slot: the current mm_slot we are scanning
 | |
|  * @address: the next address inside that to be scanned
 | |
|  *
 | |
|  * There is only the one khugepaged_scan instance of this cursor structure.
 | |
|  */
 | |
| struct khugepaged_scan {
 | |
| 	struct list_head mm_head;
 | |
| 	struct mm_slot *mm_slot;
 | |
| 	unsigned long address;
 | |
| };
 | |
| static struct khugepaged_scan khugepaged_scan = {
 | |
| 	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
 | |
| };
 | |
| 
 | |
| static DEFINE_SPINLOCK(split_queue_lock);
 | |
| static LIST_HEAD(split_queue);
 | |
| static unsigned long split_queue_len;
 | |
| static struct shrinker deferred_split_shrinker;
 | |
| 
 | |
| static void set_recommended_min_free_kbytes(void)
 | |
| {
 | |
| 	struct zone *zone;
 | |
| 	int nr_zones = 0;
 | |
| 	unsigned long recommended_min;
 | |
| 
 | |
| 	for_each_populated_zone(zone)
 | |
| 		nr_zones++;
 | |
| 
 | |
| 	/* Ensure 2 pageblocks are free to assist fragmentation avoidance */
 | |
| 	recommended_min = pageblock_nr_pages * nr_zones * 2;
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure that on average at least two pageblocks are almost free
 | |
| 	 * of another type, one for a migratetype to fall back to and a
 | |
| 	 * second to avoid subsequent fallbacks of other types There are 3
 | |
| 	 * MIGRATE_TYPES we care about.
 | |
| 	 */
 | |
| 	recommended_min += pageblock_nr_pages * nr_zones *
 | |
| 			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
 | |
| 
 | |
| 	/* don't ever allow to reserve more than 5% of the lowmem */
 | |
| 	recommended_min = min(recommended_min,
 | |
| 			      (unsigned long) nr_free_buffer_pages() / 20);
 | |
| 	recommended_min <<= (PAGE_SHIFT-10);
 | |
| 
 | |
| 	if (recommended_min > min_free_kbytes) {
 | |
| 		if (user_min_free_kbytes >= 0)
 | |
| 			pr_info("raising min_free_kbytes from %d to %lu "
 | |
| 				"to help transparent hugepage allocations\n",
 | |
| 				min_free_kbytes, recommended_min);
 | |
| 
 | |
| 		min_free_kbytes = recommended_min;
 | |
| 	}
 | |
| 	setup_per_zone_wmarks();
 | |
| }
 | |
| 
 | |
| static int start_stop_khugepaged(void)
 | |
| {
 | |
| 	int err = 0;
 | |
| 	if (khugepaged_enabled()) {
 | |
| 		if (!khugepaged_thread)
 | |
| 			khugepaged_thread = kthread_run(khugepaged, NULL,
 | |
| 							"khugepaged");
 | |
| 		if (IS_ERR(khugepaged_thread)) {
 | |
| 			pr_err("khugepaged: kthread_run(khugepaged) failed\n");
 | |
| 			err = PTR_ERR(khugepaged_thread);
 | |
| 			khugepaged_thread = NULL;
 | |
| 			goto fail;
 | |
| 		}
 | |
| 
 | |
| 		if (!list_empty(&khugepaged_scan.mm_head))
 | |
| 			wake_up_interruptible(&khugepaged_wait);
 | |
| 
 | |
| 		set_recommended_min_free_kbytes();
 | |
| 	} else if (khugepaged_thread) {
 | |
| 		kthread_stop(khugepaged_thread);
 | |
| 		khugepaged_thread = NULL;
 | |
| 	}
 | |
| fail:
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static atomic_t huge_zero_refcount;
 | |
| struct page *huge_zero_page __read_mostly;
 | |
| 
 | |
| struct page *get_huge_zero_page(void)
 | |
| {
 | |
| 	struct page *zero_page;
 | |
| retry:
 | |
| 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
 | |
| 		return READ_ONCE(huge_zero_page);
 | |
| 
 | |
| 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
 | |
| 			HPAGE_PMD_ORDER);
 | |
| 	if (!zero_page) {
 | |
| 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	count_vm_event(THP_ZERO_PAGE_ALLOC);
 | |
| 	preempt_disable();
 | |
| 	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
 | |
| 		preempt_enable();
 | |
| 		__free_pages(zero_page, compound_order(zero_page));
 | |
| 		goto retry;
 | |
| 	}
 | |
| 
 | |
| 	/* We take additional reference here. It will be put back by shrinker */
 | |
| 	atomic_set(&huge_zero_refcount, 2);
 | |
| 	preempt_enable();
 | |
| 	return READ_ONCE(huge_zero_page);
 | |
| }
 | |
| 
 | |
| static void put_huge_zero_page(void)
 | |
| {
 | |
| 	/*
 | |
| 	 * Counter should never go to zero here. Only shrinker can put
 | |
| 	 * last reference.
 | |
| 	 */
 | |
| 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
 | |
| }
 | |
| 
 | |
| static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
 | |
| 					struct shrink_control *sc)
 | |
| {
 | |
| 	/* we can free zero page only if last reference remains */
 | |
| 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
 | |
| }
 | |
| 
 | |
| static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
 | |
| 				       struct shrink_control *sc)
 | |
| {
 | |
| 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
 | |
| 		struct page *zero_page = xchg(&huge_zero_page, NULL);
 | |
| 		BUG_ON(zero_page == NULL);
 | |
| 		__free_pages(zero_page, compound_order(zero_page));
 | |
| 		return HPAGE_PMD_NR;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct shrinker huge_zero_page_shrinker = {
 | |
| 	.count_objects = shrink_huge_zero_page_count,
 | |
| 	.scan_objects = shrink_huge_zero_page_scan,
 | |
| 	.seeks = DEFAULT_SEEKS,
 | |
| };
 | |
| 
 | |
| #ifdef CONFIG_SYSFS
 | |
| 
 | |
| static ssize_t double_flag_show(struct kobject *kobj,
 | |
| 				struct kobj_attribute *attr, char *buf,
 | |
| 				enum transparent_hugepage_flag enabled,
 | |
| 				enum transparent_hugepage_flag req_madv)
 | |
| {
 | |
| 	if (test_bit(enabled, &transparent_hugepage_flags)) {
 | |
| 		VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
 | |
| 		return sprintf(buf, "[always] madvise never\n");
 | |
| 	} else if (test_bit(req_madv, &transparent_hugepage_flags))
 | |
| 		return sprintf(buf, "always [madvise] never\n");
 | |
| 	else
 | |
| 		return sprintf(buf, "always madvise [never]\n");
 | |
| }
 | |
| static ssize_t double_flag_store(struct kobject *kobj,
 | |
| 				 struct kobj_attribute *attr,
 | |
| 				 const char *buf, size_t count,
 | |
| 				 enum transparent_hugepage_flag enabled,
 | |
| 				 enum transparent_hugepage_flag req_madv)
 | |
| {
 | |
| 	if (!memcmp("always", buf,
 | |
| 		    min(sizeof("always")-1, count))) {
 | |
| 		set_bit(enabled, &transparent_hugepage_flags);
 | |
| 		clear_bit(req_madv, &transparent_hugepage_flags);
 | |
| 	} else if (!memcmp("madvise", buf,
 | |
| 			   min(sizeof("madvise")-1, count))) {
 | |
| 		clear_bit(enabled, &transparent_hugepage_flags);
 | |
| 		set_bit(req_madv, &transparent_hugepage_flags);
 | |
| 	} else if (!memcmp("never", buf,
 | |
| 			   min(sizeof("never")-1, count))) {
 | |
| 		clear_bit(enabled, &transparent_hugepage_flags);
 | |
| 		clear_bit(req_madv, &transparent_hugepage_flags);
 | |
| 	} else
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static ssize_t enabled_show(struct kobject *kobj,
 | |
| 			    struct kobj_attribute *attr, char *buf)
 | |
| {
 | |
| 	return double_flag_show(kobj, attr, buf,
 | |
| 				TRANSPARENT_HUGEPAGE_FLAG,
 | |
| 				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
 | |
| }
 | |
| static ssize_t enabled_store(struct kobject *kobj,
 | |
| 			     struct kobj_attribute *attr,
 | |
| 			     const char *buf, size_t count)
 | |
| {
 | |
| 	ssize_t ret;
 | |
| 
 | |
| 	ret = double_flag_store(kobj, attr, buf, count,
 | |
| 				TRANSPARENT_HUGEPAGE_FLAG,
 | |
| 				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
 | |
| 
 | |
| 	if (ret > 0) {
 | |
| 		int err;
 | |
| 
 | |
| 		mutex_lock(&khugepaged_mutex);
 | |
| 		err = start_stop_khugepaged();
 | |
| 		mutex_unlock(&khugepaged_mutex);
 | |
| 
 | |
| 		if (err)
 | |
| 			ret = err;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| static struct kobj_attribute enabled_attr =
 | |
| 	__ATTR(enabled, 0644, enabled_show, enabled_store);
 | |
| 
 | |
| static ssize_t single_flag_show(struct kobject *kobj,
 | |
| 				struct kobj_attribute *attr, char *buf,
 | |
| 				enum transparent_hugepage_flag flag)
 | |
| {
 | |
| 	return sprintf(buf, "%d\n",
 | |
| 		       !!test_bit(flag, &transparent_hugepage_flags));
 | |
| }
 | |
| 
 | |
| static ssize_t single_flag_store(struct kobject *kobj,
 | |
| 				 struct kobj_attribute *attr,
 | |
| 				 const char *buf, size_t count,
 | |
| 				 enum transparent_hugepage_flag flag)
 | |
| {
 | |
| 	unsigned long value;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = kstrtoul(buf, 10, &value);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 	if (value > 1)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (value)
 | |
| 		set_bit(flag, &transparent_hugepage_flags);
 | |
| 	else
 | |
| 		clear_bit(flag, &transparent_hugepage_flags);
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
 | |
|  * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
 | |
|  * memory just to allocate one more hugepage.
 | |
|  */
 | |
| static ssize_t defrag_show(struct kobject *kobj,
 | |
| 			   struct kobj_attribute *attr, char *buf)
 | |
| {
 | |
| 	return double_flag_show(kobj, attr, buf,
 | |
| 				TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
 | |
| 				TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
 | |
| }
 | |
| static ssize_t defrag_store(struct kobject *kobj,
 | |
| 			    struct kobj_attribute *attr,
 | |
| 			    const char *buf, size_t count)
 | |
| {
 | |
| 	return double_flag_store(kobj, attr, buf, count,
 | |
| 				 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
 | |
| 				 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
 | |
| }
 | |
| static struct kobj_attribute defrag_attr =
 | |
| 	__ATTR(defrag, 0644, defrag_show, defrag_store);
 | |
| 
 | |
| static ssize_t use_zero_page_show(struct kobject *kobj,
 | |
| 		struct kobj_attribute *attr, char *buf)
 | |
| {
 | |
| 	return single_flag_show(kobj, attr, buf,
 | |
| 				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 | |
| }
 | |
| static ssize_t use_zero_page_store(struct kobject *kobj,
 | |
| 		struct kobj_attribute *attr, const char *buf, size_t count)
 | |
| {
 | |
| 	return single_flag_store(kobj, attr, buf, count,
 | |
| 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 | |
| }
 | |
| static struct kobj_attribute use_zero_page_attr =
 | |
| 	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
 | |
| #ifdef CONFIG_DEBUG_VM
 | |
| static ssize_t debug_cow_show(struct kobject *kobj,
 | |
| 				struct kobj_attribute *attr, char *buf)
 | |
| {
 | |
| 	return single_flag_show(kobj, attr, buf,
 | |
| 				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 | |
| }
 | |
| static ssize_t debug_cow_store(struct kobject *kobj,
 | |
| 			       struct kobj_attribute *attr,
 | |
| 			       const char *buf, size_t count)
 | |
| {
 | |
| 	return single_flag_store(kobj, attr, buf, count,
 | |
| 				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 | |
| }
 | |
| static struct kobj_attribute debug_cow_attr =
 | |
| 	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
 | |
| #endif /* CONFIG_DEBUG_VM */
 | |
| 
 | |
| static struct attribute *hugepage_attr[] = {
 | |
| 	&enabled_attr.attr,
 | |
| 	&defrag_attr.attr,
 | |
| 	&use_zero_page_attr.attr,
 | |
| #ifdef CONFIG_DEBUG_VM
 | |
| 	&debug_cow_attr.attr,
 | |
| #endif
 | |
| 	NULL,
 | |
| };
 | |
| 
 | |
| static struct attribute_group hugepage_attr_group = {
 | |
| 	.attrs = hugepage_attr,
 | |
| };
 | |
| 
 | |
| static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
 | |
| 					 struct kobj_attribute *attr,
 | |
| 					 char *buf)
 | |
| {
 | |
| 	return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
 | |
| }
 | |
| 
 | |
| static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
 | |
| 					  struct kobj_attribute *attr,
 | |
| 					  const char *buf, size_t count)
 | |
| {
 | |
| 	unsigned long msecs;
 | |
| 	int err;
 | |
| 
 | |
| 	err = kstrtoul(buf, 10, &msecs);
 | |
| 	if (err || msecs > UINT_MAX)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	khugepaged_scan_sleep_millisecs = msecs;
 | |
| 	wake_up_interruptible(&khugepaged_wait);
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| static struct kobj_attribute scan_sleep_millisecs_attr =
 | |
| 	__ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
 | |
| 	       scan_sleep_millisecs_store);
 | |
| 
 | |
| static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
 | |
| 					  struct kobj_attribute *attr,
 | |
| 					  char *buf)
 | |
| {
 | |
| 	return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
 | |
| }
 | |
| 
 | |
| static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
 | |
| 					   struct kobj_attribute *attr,
 | |
| 					   const char *buf, size_t count)
 | |
| {
 | |
| 	unsigned long msecs;
 | |
| 	int err;
 | |
| 
 | |
| 	err = kstrtoul(buf, 10, &msecs);
 | |
| 	if (err || msecs > UINT_MAX)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	khugepaged_alloc_sleep_millisecs = msecs;
 | |
| 	wake_up_interruptible(&khugepaged_wait);
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| static struct kobj_attribute alloc_sleep_millisecs_attr =
 | |
| 	__ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
 | |
| 	       alloc_sleep_millisecs_store);
 | |
| 
 | |
| static ssize_t pages_to_scan_show(struct kobject *kobj,
 | |
| 				  struct kobj_attribute *attr,
 | |
| 				  char *buf)
 | |
| {
 | |
| 	return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
 | |
| }
 | |
| static ssize_t pages_to_scan_store(struct kobject *kobj,
 | |
| 				   struct kobj_attribute *attr,
 | |
| 				   const char *buf, size_t count)
 | |
| {
 | |
| 	int err;
 | |
| 	unsigned long pages;
 | |
| 
 | |
| 	err = kstrtoul(buf, 10, &pages);
 | |
| 	if (err || !pages || pages > UINT_MAX)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	khugepaged_pages_to_scan = pages;
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| static struct kobj_attribute pages_to_scan_attr =
 | |
| 	__ATTR(pages_to_scan, 0644, pages_to_scan_show,
 | |
| 	       pages_to_scan_store);
 | |
| 
 | |
| static ssize_t pages_collapsed_show(struct kobject *kobj,
 | |
| 				    struct kobj_attribute *attr,
 | |
| 				    char *buf)
 | |
| {
 | |
| 	return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
 | |
| }
 | |
| static struct kobj_attribute pages_collapsed_attr =
 | |
| 	__ATTR_RO(pages_collapsed);
 | |
| 
 | |
| static ssize_t full_scans_show(struct kobject *kobj,
 | |
| 			       struct kobj_attribute *attr,
 | |
| 			       char *buf)
 | |
| {
 | |
| 	return sprintf(buf, "%u\n", khugepaged_full_scans);
 | |
| }
 | |
| static struct kobj_attribute full_scans_attr =
 | |
| 	__ATTR_RO(full_scans);
 | |
| 
 | |
| static ssize_t khugepaged_defrag_show(struct kobject *kobj,
 | |
| 				      struct kobj_attribute *attr, char *buf)
 | |
| {
 | |
| 	return single_flag_show(kobj, attr, buf,
 | |
| 				TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
 | |
| }
 | |
| static ssize_t khugepaged_defrag_store(struct kobject *kobj,
 | |
| 				       struct kobj_attribute *attr,
 | |
| 				       const char *buf, size_t count)
 | |
| {
 | |
| 	return single_flag_store(kobj, attr, buf, count,
 | |
| 				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
 | |
| }
 | |
| static struct kobj_attribute khugepaged_defrag_attr =
 | |
| 	__ATTR(defrag, 0644, khugepaged_defrag_show,
 | |
| 	       khugepaged_defrag_store);
 | |
| 
 | |
| /*
 | |
|  * max_ptes_none controls if khugepaged should collapse hugepages over
 | |
|  * any unmapped ptes in turn potentially increasing the memory
 | |
|  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
 | |
|  * reduce the available free memory in the system as it
 | |
|  * runs. Increasing max_ptes_none will instead potentially reduce the
 | |
|  * free memory in the system during the khugepaged scan.
 | |
|  */
 | |
| static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
 | |
| 					     struct kobj_attribute *attr,
 | |
| 					     char *buf)
 | |
| {
 | |
| 	return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
 | |
| }
 | |
| static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
 | |
| 					      struct kobj_attribute *attr,
 | |
| 					      const char *buf, size_t count)
 | |
| {
 | |
| 	int err;
 | |
| 	unsigned long max_ptes_none;
 | |
| 
 | |
| 	err = kstrtoul(buf, 10, &max_ptes_none);
 | |
| 	if (err || max_ptes_none > HPAGE_PMD_NR-1)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	khugepaged_max_ptes_none = max_ptes_none;
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| static struct kobj_attribute khugepaged_max_ptes_none_attr =
 | |
| 	__ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
 | |
| 	       khugepaged_max_ptes_none_store);
 | |
| 
 | |
| static struct attribute *khugepaged_attr[] = {
 | |
| 	&khugepaged_defrag_attr.attr,
 | |
| 	&khugepaged_max_ptes_none_attr.attr,
 | |
| 	&pages_to_scan_attr.attr,
 | |
| 	&pages_collapsed_attr.attr,
 | |
| 	&full_scans_attr.attr,
 | |
| 	&scan_sleep_millisecs_attr.attr,
 | |
| 	&alloc_sleep_millisecs_attr.attr,
 | |
| 	NULL,
 | |
| };
 | |
| 
 | |
| static struct attribute_group khugepaged_attr_group = {
 | |
| 	.attrs = khugepaged_attr,
 | |
| 	.name = "khugepaged",
 | |
| };
 | |
| 
 | |
| static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
 | |
| 	if (unlikely(!*hugepage_kobj)) {
 | |
| 		pr_err("failed to create transparent hugepage kobject\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
 | |
| 	if (err) {
 | |
| 		pr_err("failed to register transparent hugepage group\n");
 | |
| 		goto delete_obj;
 | |
| 	}
 | |
| 
 | |
| 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
 | |
| 	if (err) {
 | |
| 		pr_err("failed to register transparent hugepage group\n");
 | |
| 		goto remove_hp_group;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| remove_hp_group:
 | |
| 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
 | |
| delete_obj:
 | |
| 	kobject_put(*hugepage_kobj);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 | |
| {
 | |
| 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
 | |
| 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
 | |
| 	kobject_put(hugepage_kobj);
 | |
| }
 | |
| #else
 | |
| static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 | |
| {
 | |
| }
 | |
| #endif /* CONFIG_SYSFS */
 | |
| 
 | |
| static int __init hugepage_init(void)
 | |
| {
 | |
| 	int err;
 | |
| 	struct kobject *hugepage_kobj;
 | |
| 
 | |
| 	if (!has_transparent_hugepage()) {
 | |
| 		transparent_hugepage_flags = 0;
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	err = hugepage_init_sysfs(&hugepage_kobj);
 | |
| 	if (err)
 | |
| 		goto err_sysfs;
 | |
| 
 | |
| 	err = khugepaged_slab_init();
 | |
| 	if (err)
 | |
| 		goto err_slab;
 | |
| 
 | |
| 	err = register_shrinker(&huge_zero_page_shrinker);
 | |
| 	if (err)
 | |
| 		goto err_hzp_shrinker;
 | |
| 	err = register_shrinker(&deferred_split_shrinker);
 | |
| 	if (err)
 | |
| 		goto err_split_shrinker;
 | |
| 
 | |
| 	/*
 | |
| 	 * By default disable transparent hugepages on smaller systems,
 | |
| 	 * where the extra memory used could hurt more than TLB overhead
 | |
| 	 * is likely to save.  The admin can still enable it through /sys.
 | |
| 	 */
 | |
| 	if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
 | |
| 		transparent_hugepage_flags = 0;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	err = start_stop_khugepaged();
 | |
| 	if (err)
 | |
| 		goto err_khugepaged;
 | |
| 
 | |
| 	return 0;
 | |
| err_khugepaged:
 | |
| 	unregister_shrinker(&deferred_split_shrinker);
 | |
| err_split_shrinker:
 | |
| 	unregister_shrinker(&huge_zero_page_shrinker);
 | |
| err_hzp_shrinker:
 | |
| 	khugepaged_slab_exit();
 | |
| err_slab:
 | |
| 	hugepage_exit_sysfs(hugepage_kobj);
 | |
| err_sysfs:
 | |
| 	return err;
 | |
| }
 | |
| subsys_initcall(hugepage_init);
 | |
| 
 | |
| static int __init setup_transparent_hugepage(char *str)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	if (!str)
 | |
| 		goto out;
 | |
| 	if (!strcmp(str, "always")) {
 | |
| 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
 | |
| 			&transparent_hugepage_flags);
 | |
| 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 | |
| 			  &transparent_hugepage_flags);
 | |
| 		ret = 1;
 | |
| 	} else if (!strcmp(str, "madvise")) {
 | |
| 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 | |
| 			  &transparent_hugepage_flags);
 | |
| 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 | |
| 			&transparent_hugepage_flags);
 | |
| 		ret = 1;
 | |
| 	} else if (!strcmp(str, "never")) {
 | |
| 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 | |
| 			  &transparent_hugepage_flags);
 | |
| 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 | |
| 			  &transparent_hugepage_flags);
 | |
| 		ret = 1;
 | |
| 	}
 | |
| out:
 | |
| 	if (!ret)
 | |
| 		pr_warn("transparent_hugepage= cannot parse, ignored\n");
 | |
| 	return ret;
 | |
| }
 | |
| __setup("transparent_hugepage=", setup_transparent_hugepage);
 | |
| 
 | |
| pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
 | |
| {
 | |
| 	if (likely(vma->vm_flags & VM_WRITE))
 | |
| 		pmd = pmd_mkwrite(pmd);
 | |
| 	return pmd;
 | |
| }
 | |
| 
 | |
| static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
 | |
| {
 | |
| 	pmd_t entry;
 | |
| 	entry = mk_pmd(page, prot);
 | |
| 	entry = pmd_mkhuge(entry);
 | |
| 	return entry;
 | |
| }
 | |
| 
 | |
| static inline struct list_head *page_deferred_list(struct page *page)
 | |
| {
 | |
| 	/*
 | |
| 	 * ->lru in the tail pages is occupied by compound_head.
 | |
| 	 * Let's use ->mapping + ->index in the second tail page as list_head.
 | |
| 	 */
 | |
| 	return (struct list_head *)&page[2].mapping;
 | |
| }
 | |
| 
 | |
| void prep_transhuge_page(struct page *page)
 | |
| {
 | |
| 	/*
 | |
| 	 * we use page->mapping and page->indexlru in second tail page
 | |
| 	 * as list_head: assuming THP order >= 2
 | |
| 	 */
 | |
| 	BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
 | |
| 
 | |
| 	INIT_LIST_HEAD(page_deferred_list(page));
 | |
| 	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
 | |
| }
 | |
| 
 | |
| static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
 | |
| 					struct vm_area_struct *vma,
 | |
| 					unsigned long address, pmd_t *pmd,
 | |
| 					struct page *page, gfp_t gfp,
 | |
| 					unsigned int flags)
 | |
| {
 | |
| 	struct mem_cgroup *memcg;
 | |
| 	pgtable_t pgtable;
 | |
| 	spinlock_t *ptl;
 | |
| 	unsigned long haddr = address & HPAGE_PMD_MASK;
 | |
| 
 | |
| 	VM_BUG_ON_PAGE(!PageCompound(page), page);
 | |
| 
 | |
| 	if (mem_cgroup_try_charge(page, mm, gfp, &memcg, true)) {
 | |
| 		put_page(page);
 | |
| 		count_vm_event(THP_FAULT_FALLBACK);
 | |
| 		return VM_FAULT_FALLBACK;
 | |
| 	}
 | |
| 
 | |
| 	pgtable = pte_alloc_one(mm, haddr);
 | |
| 	if (unlikely(!pgtable)) {
 | |
| 		mem_cgroup_cancel_charge(page, memcg, true);
 | |
| 		put_page(page);
 | |
| 		return VM_FAULT_OOM;
 | |
| 	}
 | |
| 
 | |
| 	clear_huge_page(page, haddr, HPAGE_PMD_NR);
 | |
| 	/*
 | |
| 	 * The memory barrier inside __SetPageUptodate makes sure that
 | |
| 	 * clear_huge_page writes become visible before the set_pmd_at()
 | |
| 	 * write.
 | |
| 	 */
 | |
| 	__SetPageUptodate(page);
 | |
| 
 | |
| 	ptl = pmd_lock(mm, pmd);
 | |
| 	if (unlikely(!pmd_none(*pmd))) {
 | |
| 		spin_unlock(ptl);
 | |
| 		mem_cgroup_cancel_charge(page, memcg, true);
 | |
| 		put_page(page);
 | |
| 		pte_free(mm, pgtable);
 | |
| 	} else {
 | |
| 		pmd_t entry;
 | |
| 
 | |
| 		/* Deliver the page fault to userland */
 | |
| 		if (userfaultfd_missing(vma)) {
 | |
| 			int ret;
 | |
| 
 | |
| 			spin_unlock(ptl);
 | |
| 			mem_cgroup_cancel_charge(page, memcg, true);
 | |
| 			put_page(page);
 | |
| 			pte_free(mm, pgtable);
 | |
| 			ret = handle_userfault(vma, address, flags,
 | |
| 					       VM_UFFD_MISSING);
 | |
| 			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
 | |
| 			return ret;
 | |
| 		}
 | |
| 
 | |
| 		entry = mk_huge_pmd(page, vma->vm_page_prot);
 | |
| 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 | |
| 		page_add_new_anon_rmap(page, vma, haddr, true);
 | |
| 		mem_cgroup_commit_charge(page, memcg, false, true);
 | |
| 		lru_cache_add_active_or_unevictable(page, vma);
 | |
| 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
 | |
| 		set_pmd_at(mm, haddr, pmd, entry);
 | |
| 		add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
 | |
| 		atomic_long_inc(&mm->nr_ptes);
 | |
| 		spin_unlock(ptl);
 | |
| 		count_vm_event(THP_FAULT_ALLOC);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
 | |
| {
 | |
| 	return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_RECLAIM)) | extra_gfp;
 | |
| }
 | |
| 
 | |
| /* Caller must hold page table lock. */
 | |
| static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
 | |
| 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
 | |
| 		struct page *zero_page)
 | |
| {
 | |
| 	pmd_t entry;
 | |
| 	if (!pmd_none(*pmd))
 | |
| 		return false;
 | |
| 	entry = mk_pmd(zero_page, vma->vm_page_prot);
 | |
| 	entry = pmd_mkhuge(entry);
 | |
| 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
 | |
| 	set_pmd_at(mm, haddr, pmd, entry);
 | |
| 	atomic_long_inc(&mm->nr_ptes);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
 | |
| 			       unsigned long address, pmd_t *pmd,
 | |
| 			       unsigned int flags)
 | |
| {
 | |
| 	gfp_t gfp;
 | |
| 	struct page *page;
 | |
| 	unsigned long haddr = address & HPAGE_PMD_MASK;
 | |
| 
 | |
| 	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
 | |
| 		return VM_FAULT_FALLBACK;
 | |
| 	if (unlikely(anon_vma_prepare(vma)))
 | |
| 		return VM_FAULT_OOM;
 | |
| 	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
 | |
| 		return VM_FAULT_OOM;
 | |
| 	if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm) &&
 | |
| 			transparent_hugepage_use_zero_page()) {
 | |
| 		spinlock_t *ptl;
 | |
| 		pgtable_t pgtable;
 | |
| 		struct page *zero_page;
 | |
| 		bool set;
 | |
| 		int ret;
 | |
| 		pgtable = pte_alloc_one(mm, haddr);
 | |
| 		if (unlikely(!pgtable))
 | |
| 			return VM_FAULT_OOM;
 | |
| 		zero_page = get_huge_zero_page();
 | |
| 		if (unlikely(!zero_page)) {
 | |
| 			pte_free(mm, pgtable);
 | |
| 			count_vm_event(THP_FAULT_FALLBACK);
 | |
| 			return VM_FAULT_FALLBACK;
 | |
| 		}
 | |
| 		ptl = pmd_lock(mm, pmd);
 | |
| 		ret = 0;
 | |
| 		set = false;
 | |
| 		if (pmd_none(*pmd)) {
 | |
| 			if (userfaultfd_missing(vma)) {
 | |
| 				spin_unlock(ptl);
 | |
| 				ret = handle_userfault(vma, address, flags,
 | |
| 						       VM_UFFD_MISSING);
 | |
| 				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
 | |
| 			} else {
 | |
| 				set_huge_zero_page(pgtable, mm, vma,
 | |
| 						   haddr, pmd,
 | |
| 						   zero_page);
 | |
| 				spin_unlock(ptl);
 | |
| 				set = true;
 | |
| 			}
 | |
| 		} else
 | |
| 			spin_unlock(ptl);
 | |
| 		if (!set) {
 | |
| 			pte_free(mm, pgtable);
 | |
| 			put_huge_zero_page();
 | |
| 		}
 | |
| 		return ret;
 | |
| 	}
 | |
| 	gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
 | |
| 	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
 | |
| 	if (unlikely(!page)) {
 | |
| 		count_vm_event(THP_FAULT_FALLBACK);
 | |
| 		return VM_FAULT_FALLBACK;
 | |
| 	}
 | |
| 	prep_transhuge_page(page);
 | |
| 	return __do_huge_pmd_anonymous_page(mm, vma, address, pmd, page, gfp,
 | |
| 					    flags);
 | |
| }
 | |
| 
 | |
| static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
 | |
| 		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
 | |
| {
 | |
| 	struct mm_struct *mm = vma->vm_mm;
 | |
| 	pmd_t entry;
 | |
| 	spinlock_t *ptl;
 | |
| 
 | |
| 	ptl = pmd_lock(mm, pmd);
 | |
| 	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
 | |
| 	if (pfn_t_devmap(pfn))
 | |
| 		entry = pmd_mkdevmap(entry);
 | |
| 	if (write) {
 | |
| 		entry = pmd_mkyoung(pmd_mkdirty(entry));
 | |
| 		entry = maybe_pmd_mkwrite(entry, vma);
 | |
| 	}
 | |
| 	set_pmd_at(mm, addr, pmd, entry);
 | |
| 	update_mmu_cache_pmd(vma, addr, pmd);
 | |
| 	spin_unlock(ptl);
 | |
| }
 | |
| 
 | |
| int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
 | |
| 			pmd_t *pmd, pfn_t pfn, bool write)
 | |
| {
 | |
| 	pgprot_t pgprot = vma->vm_page_prot;
 | |
| 	/*
 | |
| 	 * If we had pmd_special, we could avoid all these restrictions,
 | |
| 	 * but we need to be consistent with PTEs and architectures that
 | |
| 	 * can't support a 'special' bit.
 | |
| 	 */
 | |
| 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
 | |
| 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
 | |
| 						(VM_PFNMAP|VM_MIXEDMAP));
 | |
| 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
 | |
| 	BUG_ON(!pfn_t_devmap(pfn));
 | |
| 
 | |
| 	if (addr < vma->vm_start || addr >= vma->vm_end)
 | |
| 		return VM_FAULT_SIGBUS;
 | |
| 	if (track_pfn_insert(vma, &pgprot, pfn))
 | |
| 		return VM_FAULT_SIGBUS;
 | |
| 	insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
 | |
| 	return VM_FAULT_NOPAGE;
 | |
| }
 | |
| 
 | |
| static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
 | |
| 		pmd_t *pmd)
 | |
| {
 | |
| 	pmd_t _pmd;
 | |
| 
 | |
| 	/*
 | |
| 	 * We should set the dirty bit only for FOLL_WRITE but for now
 | |
| 	 * the dirty bit in the pmd is meaningless.  And if the dirty
 | |
| 	 * bit will become meaningful and we'll only set it with
 | |
| 	 * FOLL_WRITE, an atomic set_bit will be required on the pmd to
 | |
| 	 * set the young bit, instead of the current set_pmd_at.
 | |
| 	 */
 | |
| 	_pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
 | |
| 	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
 | |
| 				pmd, _pmd,  1))
 | |
| 		update_mmu_cache_pmd(vma, addr, pmd);
 | |
| }
 | |
| 
 | |
| struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
 | |
| 		pmd_t *pmd, int flags)
 | |
| {
 | |
| 	unsigned long pfn = pmd_pfn(*pmd);
 | |
| 	struct mm_struct *mm = vma->vm_mm;
 | |
| 	struct dev_pagemap *pgmap;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	assert_spin_locked(pmd_lockptr(mm, pmd));
 | |
| 
 | |
| 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (pmd_present(*pmd) && pmd_devmap(*pmd))
 | |
| 		/* pass */;
 | |
| 	else
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (flags & FOLL_TOUCH)
 | |
| 		touch_pmd(vma, addr, pmd);
 | |
| 
 | |
| 	/*
 | |
| 	 * device mapped pages can only be returned if the
 | |
| 	 * caller will manage the page reference count.
 | |
| 	 */
 | |
| 	if (!(flags & FOLL_GET))
 | |
| 		return ERR_PTR(-EEXIST);
 | |
| 
 | |
| 	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
 | |
| 	pgmap = get_dev_pagemap(pfn, NULL);
 | |
| 	if (!pgmap)
 | |
| 		return ERR_PTR(-EFAULT);
 | |
| 	page = pfn_to_page(pfn);
 | |
| 	get_page(page);
 | |
| 	put_dev_pagemap(pgmap);
 | |
| 
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 | |
| 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
 | |
| 		  struct vm_area_struct *vma)
 | |
| {
 | |
| 	spinlock_t *dst_ptl, *src_ptl;
 | |
| 	struct page *src_page;
 | |
| 	pmd_t pmd;
 | |
| 	pgtable_t pgtable;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = -ENOMEM;
 | |
| 	pgtable = pte_alloc_one(dst_mm, addr);
 | |
| 	if (unlikely(!pgtable))
 | |
| 		goto out;
 | |
| 
 | |
| 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
 | |
| 	src_ptl = pmd_lockptr(src_mm, src_pmd);
 | |
| 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
 | |
| 
 | |
| 	ret = -EAGAIN;
 | |
| 	pmd = *src_pmd;
 | |
| 	if (unlikely(!pmd_trans_huge(pmd) && !pmd_devmap(pmd))) {
 | |
| 		pte_free(dst_mm, pgtable);
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * When page table lock is held, the huge zero pmd should not be
 | |
| 	 * under splitting since we don't split the page itself, only pmd to
 | |
| 	 * a page table.
 | |
| 	 */
 | |
| 	if (is_huge_zero_pmd(pmd)) {
 | |
| 		struct page *zero_page;
 | |
| 		/*
 | |
| 		 * get_huge_zero_page() will never allocate a new page here,
 | |
| 		 * since we already have a zero page to copy. It just takes a
 | |
| 		 * reference.
 | |
| 		 */
 | |
| 		zero_page = get_huge_zero_page();
 | |
| 		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
 | |
| 				zero_page);
 | |
| 		ret = 0;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	if (pmd_trans_huge(pmd)) {
 | |
| 		/* thp accounting separate from pmd_devmap accounting */
 | |
| 		src_page = pmd_page(pmd);
 | |
| 		VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
 | |
| 		get_page(src_page);
 | |
| 		page_dup_rmap(src_page, true);
 | |
| 		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 | |
| 		atomic_long_inc(&dst_mm->nr_ptes);
 | |
| 		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
 | |
| 	}
 | |
| 
 | |
| 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
 | |
| 	pmd = pmd_mkold(pmd_wrprotect(pmd));
 | |
| 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
 | |
| 
 | |
| 	ret = 0;
 | |
| out_unlock:
 | |
| 	spin_unlock(src_ptl);
 | |
| 	spin_unlock(dst_ptl);
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void huge_pmd_set_accessed(struct mm_struct *mm,
 | |
| 			   struct vm_area_struct *vma,
 | |
| 			   unsigned long address,
 | |
| 			   pmd_t *pmd, pmd_t orig_pmd,
 | |
| 			   int dirty)
 | |
| {
 | |
| 	spinlock_t *ptl;
 | |
| 	pmd_t entry;
 | |
| 	unsigned long haddr;
 | |
| 
 | |
| 	ptl = pmd_lock(mm, pmd);
 | |
| 	if (unlikely(!pmd_same(*pmd, orig_pmd)))
 | |
| 		goto unlock;
 | |
| 
 | |
| 	entry = pmd_mkyoung(orig_pmd);
 | |
| 	haddr = address & HPAGE_PMD_MASK;
 | |
| 	if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
 | |
| 		update_mmu_cache_pmd(vma, address, pmd);
 | |
| 
 | |
| unlock:
 | |
| 	spin_unlock(ptl);
 | |
| }
 | |
| 
 | |
| static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
 | |
| 					struct vm_area_struct *vma,
 | |
| 					unsigned long address,
 | |
| 					pmd_t *pmd, pmd_t orig_pmd,
 | |
| 					struct page *page,
 | |
| 					unsigned long haddr)
 | |
| {
 | |
| 	struct mem_cgroup *memcg;
 | |
| 	spinlock_t *ptl;
 | |
| 	pgtable_t pgtable;
 | |
| 	pmd_t _pmd;
 | |
| 	int ret = 0, i;
 | |
| 	struct page **pages;
 | |
| 	unsigned long mmun_start;	/* For mmu_notifiers */
 | |
| 	unsigned long mmun_end;		/* For mmu_notifiers */
 | |
| 
 | |
| 	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
 | |
| 			GFP_KERNEL);
 | |
| 	if (unlikely(!pages)) {
 | |
| 		ret |= VM_FAULT_OOM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < HPAGE_PMD_NR; i++) {
 | |
| 		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
 | |
| 					       __GFP_OTHER_NODE,
 | |
| 					       vma, address, page_to_nid(page));
 | |
| 		if (unlikely(!pages[i] ||
 | |
| 			     mem_cgroup_try_charge(pages[i], mm, GFP_KERNEL,
 | |
| 						   &memcg, false))) {
 | |
| 			if (pages[i])
 | |
| 				put_page(pages[i]);
 | |
| 			while (--i >= 0) {
 | |
| 				memcg = (void *)page_private(pages[i]);
 | |
| 				set_page_private(pages[i], 0);
 | |
| 				mem_cgroup_cancel_charge(pages[i], memcg,
 | |
| 						false);
 | |
| 				put_page(pages[i]);
 | |
| 			}
 | |
| 			kfree(pages);
 | |
| 			ret |= VM_FAULT_OOM;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		set_page_private(pages[i], (unsigned long)memcg);
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < HPAGE_PMD_NR; i++) {
 | |
| 		copy_user_highpage(pages[i], page + i,
 | |
| 				   haddr + PAGE_SIZE * i, vma);
 | |
| 		__SetPageUptodate(pages[i]);
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 
 | |
| 	mmun_start = haddr;
 | |
| 	mmun_end   = haddr + HPAGE_PMD_SIZE;
 | |
| 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
 | |
| 
 | |
| 	ptl = pmd_lock(mm, pmd);
 | |
| 	if (unlikely(!pmd_same(*pmd, orig_pmd)))
 | |
| 		goto out_free_pages;
 | |
| 	VM_BUG_ON_PAGE(!PageHead(page), page);
 | |
| 
 | |
| 	pmdp_huge_clear_flush_notify(vma, haddr, pmd);
 | |
| 	/* leave pmd empty until pte is filled */
 | |
| 
 | |
| 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
 | |
| 	pmd_populate(mm, &_pmd, pgtable);
 | |
| 
 | |
| 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
 | |
| 		pte_t *pte, entry;
 | |
| 		entry = mk_pte(pages[i], vma->vm_page_prot);
 | |
| 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
 | |
| 		memcg = (void *)page_private(pages[i]);
 | |
| 		set_page_private(pages[i], 0);
 | |
| 		page_add_new_anon_rmap(pages[i], vma, haddr, false);
 | |
| 		mem_cgroup_commit_charge(pages[i], memcg, false, false);
 | |
| 		lru_cache_add_active_or_unevictable(pages[i], vma);
 | |
| 		pte = pte_offset_map(&_pmd, haddr);
 | |
| 		VM_BUG_ON(!pte_none(*pte));
 | |
| 		set_pte_at(mm, haddr, pte, entry);
 | |
| 		pte_unmap(pte);
 | |
| 	}
 | |
| 	kfree(pages);
 | |
| 
 | |
| 	smp_wmb(); /* make pte visible before pmd */
 | |
| 	pmd_populate(mm, pmd, pgtable);
 | |
| 	page_remove_rmap(page, true);
 | |
| 	spin_unlock(ptl);
 | |
| 
 | |
| 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
 | |
| 
 | |
| 	ret |= VM_FAULT_WRITE;
 | |
| 	put_page(page);
 | |
| 
 | |
| out:
 | |
| 	return ret;
 | |
| 
 | |
| out_free_pages:
 | |
| 	spin_unlock(ptl);
 | |
| 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
 | |
| 	for (i = 0; i < HPAGE_PMD_NR; i++) {
 | |
| 		memcg = (void *)page_private(pages[i]);
 | |
| 		set_page_private(pages[i], 0);
 | |
| 		mem_cgroup_cancel_charge(pages[i], memcg, false);
 | |
| 		put_page(pages[i]);
 | |
| 	}
 | |
| 	kfree(pages);
 | |
| 	goto out;
 | |
| }
 | |
| 
 | |
| int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
 | |
| 			unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
 | |
| {
 | |
| 	spinlock_t *ptl;
 | |
| 	int ret = 0;
 | |
| 	struct page *page = NULL, *new_page;
 | |
| 	struct mem_cgroup *memcg;
 | |
| 	unsigned long haddr;
 | |
| 	unsigned long mmun_start;	/* For mmu_notifiers */
 | |
| 	unsigned long mmun_end;		/* For mmu_notifiers */
 | |
| 	gfp_t huge_gfp;			/* for allocation and charge */
 | |
| 
 | |
| 	ptl = pmd_lockptr(mm, pmd);
 | |
| 	VM_BUG_ON_VMA(!vma->anon_vma, vma);
 | |
| 	haddr = address & HPAGE_PMD_MASK;
 | |
| 	if (is_huge_zero_pmd(orig_pmd))
 | |
| 		goto alloc;
 | |
| 	spin_lock(ptl);
 | |
| 	if (unlikely(!pmd_same(*pmd, orig_pmd)))
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	page = pmd_page(orig_pmd);
 | |
| 	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
 | |
| 	/*
 | |
| 	 * We can only reuse the page if nobody else maps the huge page or it's
 | |
| 	 * part. We can do it by checking page_mapcount() on each sub-page, but
 | |
| 	 * it's expensive.
 | |
| 	 * The cheaper way is to check page_count() to be equal 1: every
 | |
| 	 * mapcount takes page reference reference, so this way we can
 | |
| 	 * guarantee, that the PMD is the only mapping.
 | |
| 	 * This can give false negative if somebody pinned the page, but that's
 | |
| 	 * fine.
 | |
| 	 */
 | |
| 	if (page_mapcount(page) == 1 && page_count(page) == 1) {
 | |
| 		pmd_t entry;
 | |
| 		entry = pmd_mkyoung(orig_pmd);
 | |
| 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 | |
| 		if (pmdp_set_access_flags(vma, haddr, pmd, entry,  1))
 | |
| 			update_mmu_cache_pmd(vma, address, pmd);
 | |
| 		ret |= VM_FAULT_WRITE;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 	get_page(page);
 | |
| 	spin_unlock(ptl);
 | |
| alloc:
 | |
| 	if (transparent_hugepage_enabled(vma) &&
 | |
| 	    !transparent_hugepage_debug_cow()) {
 | |
| 		huge_gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
 | |
| 		new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
 | |
| 	} else
 | |
| 		new_page = NULL;
 | |
| 
 | |
| 	if (likely(new_page)) {
 | |
| 		prep_transhuge_page(new_page);
 | |
| 	} else {
 | |
| 		if (!page) {
 | |
| 			split_huge_pmd(vma, pmd, address);
 | |
| 			ret |= VM_FAULT_FALLBACK;
 | |
| 		} else {
 | |
| 			ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
 | |
| 					pmd, orig_pmd, page, haddr);
 | |
| 			if (ret & VM_FAULT_OOM) {
 | |
| 				split_huge_pmd(vma, pmd, address);
 | |
| 				ret |= VM_FAULT_FALLBACK;
 | |
| 			}
 | |
| 			put_page(page);
 | |
| 		}
 | |
| 		count_vm_event(THP_FAULT_FALLBACK);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(mem_cgroup_try_charge(new_page, mm, huge_gfp, &memcg,
 | |
| 					   true))) {
 | |
| 		put_page(new_page);
 | |
| 		if (page) {
 | |
| 			split_huge_pmd(vma, pmd, address);
 | |
| 			put_page(page);
 | |
| 		} else
 | |
| 			split_huge_pmd(vma, pmd, address);
 | |
| 		ret |= VM_FAULT_FALLBACK;
 | |
| 		count_vm_event(THP_FAULT_FALLBACK);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	count_vm_event(THP_FAULT_ALLOC);
 | |
| 
 | |
| 	if (!page)
 | |
| 		clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
 | |
| 	else
 | |
| 		copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
 | |
| 	__SetPageUptodate(new_page);
 | |
| 
 | |
| 	mmun_start = haddr;
 | |
| 	mmun_end   = haddr + HPAGE_PMD_SIZE;
 | |
| 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
 | |
| 
 | |
| 	spin_lock(ptl);
 | |
| 	if (page)
 | |
| 		put_page(page);
 | |
| 	if (unlikely(!pmd_same(*pmd, orig_pmd))) {
 | |
| 		spin_unlock(ptl);
 | |
| 		mem_cgroup_cancel_charge(new_page, memcg, true);
 | |
| 		put_page(new_page);
 | |
| 		goto out_mn;
 | |
| 	} else {
 | |
| 		pmd_t entry;
 | |
| 		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
 | |
| 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 | |
| 		pmdp_huge_clear_flush_notify(vma, haddr, pmd);
 | |
| 		page_add_new_anon_rmap(new_page, vma, haddr, true);
 | |
| 		mem_cgroup_commit_charge(new_page, memcg, false, true);
 | |
| 		lru_cache_add_active_or_unevictable(new_page, vma);
 | |
| 		set_pmd_at(mm, haddr, pmd, entry);
 | |
| 		update_mmu_cache_pmd(vma, address, pmd);
 | |
| 		if (!page) {
 | |
| 			add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
 | |
| 			put_huge_zero_page();
 | |
| 		} else {
 | |
| 			VM_BUG_ON_PAGE(!PageHead(page), page);
 | |
| 			page_remove_rmap(page, true);
 | |
| 			put_page(page);
 | |
| 		}
 | |
| 		ret |= VM_FAULT_WRITE;
 | |
| 	}
 | |
| 	spin_unlock(ptl);
 | |
| out_mn:
 | |
| 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
 | |
| out:
 | |
| 	return ret;
 | |
| out_unlock:
 | |
| 	spin_unlock(ptl);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
 | |
| 				   unsigned long addr,
 | |
| 				   pmd_t *pmd,
 | |
| 				   unsigned int flags)
 | |
| {
 | |
| 	struct mm_struct *mm = vma->vm_mm;
 | |
| 	struct page *page = NULL;
 | |
| 
 | |
| 	assert_spin_locked(pmd_lockptr(mm, pmd));
 | |
| 
 | |
| 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
 | |
| 		goto out;
 | |
| 
 | |
| 	/* Avoid dumping huge zero page */
 | |
| 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
 | |
| 		return ERR_PTR(-EFAULT);
 | |
| 
 | |
| 	/* Full NUMA hinting faults to serialise migration in fault paths */
 | |
| 	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
 | |
| 		goto out;
 | |
| 
 | |
| 	page = pmd_page(*pmd);
 | |
| 	VM_BUG_ON_PAGE(!PageHead(page), page);
 | |
| 	if (flags & FOLL_TOUCH)
 | |
| 		touch_pmd(vma, addr, pmd);
 | |
| 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
 | |
| 		/*
 | |
| 		 * We don't mlock() pte-mapped THPs. This way we can avoid
 | |
| 		 * leaking mlocked pages into non-VM_LOCKED VMAs.
 | |
| 		 *
 | |
| 		 * In most cases the pmd is the only mapping of the page as we
 | |
| 		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
 | |
| 		 * writable private mappings in populate_vma_page_range().
 | |
| 		 *
 | |
| 		 * The only scenario when we have the page shared here is if we
 | |
| 		 * mlocking read-only mapping shared over fork(). We skip
 | |
| 		 * mlocking such pages.
 | |
| 		 */
 | |
| 		if (compound_mapcount(page) == 1 && !PageDoubleMap(page) &&
 | |
| 				page->mapping && trylock_page(page)) {
 | |
| 			lru_add_drain();
 | |
| 			if (page->mapping)
 | |
| 				mlock_vma_page(page);
 | |
| 			unlock_page(page);
 | |
| 		}
 | |
| 	}
 | |
| 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
 | |
| 	VM_BUG_ON_PAGE(!PageCompound(page), page);
 | |
| 	if (flags & FOLL_GET)
 | |
| 		get_page(page);
 | |
| 
 | |
| out:
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| /* NUMA hinting page fault entry point for trans huge pmds */
 | |
| int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
 | |
| 				unsigned long addr, pmd_t pmd, pmd_t *pmdp)
 | |
| {
 | |
| 	spinlock_t *ptl;
 | |
| 	struct anon_vma *anon_vma = NULL;
 | |
| 	struct page *page;
 | |
| 	unsigned long haddr = addr & HPAGE_PMD_MASK;
 | |
| 	int page_nid = -1, this_nid = numa_node_id();
 | |
| 	int target_nid, last_cpupid = -1;
 | |
| 	bool page_locked;
 | |
| 	bool migrated = false;
 | |
| 	bool was_writable;
 | |
| 	int flags = 0;
 | |
| 
 | |
| 	/* A PROT_NONE fault should not end up here */
 | |
| 	BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
 | |
| 
 | |
| 	ptl = pmd_lock(mm, pmdp);
 | |
| 	if (unlikely(!pmd_same(pmd, *pmdp)))
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	/*
 | |
| 	 * If there are potential migrations, wait for completion and retry
 | |
| 	 * without disrupting NUMA hinting information. Do not relock and
 | |
| 	 * check_same as the page may no longer be mapped.
 | |
| 	 */
 | |
| 	if (unlikely(pmd_trans_migrating(*pmdp))) {
 | |
| 		page = pmd_page(*pmdp);
 | |
| 		spin_unlock(ptl);
 | |
| 		wait_on_page_locked(page);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	page = pmd_page(pmd);
 | |
| 	BUG_ON(is_huge_zero_page(page));
 | |
| 	page_nid = page_to_nid(page);
 | |
| 	last_cpupid = page_cpupid_last(page);
 | |
| 	count_vm_numa_event(NUMA_HINT_FAULTS);
 | |
| 	if (page_nid == this_nid) {
 | |
| 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
 | |
| 		flags |= TNF_FAULT_LOCAL;
 | |
| 	}
 | |
| 
 | |
| 	/* See similar comment in do_numa_page for explanation */
 | |
| 	if (!(vma->vm_flags & VM_WRITE))
 | |
| 		flags |= TNF_NO_GROUP;
 | |
| 
 | |
| 	/*
 | |
| 	 * Acquire the page lock to serialise THP migrations but avoid dropping
 | |
| 	 * page_table_lock if at all possible
 | |
| 	 */
 | |
| 	page_locked = trylock_page(page);
 | |
| 	target_nid = mpol_misplaced(page, vma, haddr);
 | |
| 	if (target_nid == -1) {
 | |
| 		/* If the page was locked, there are no parallel migrations */
 | |
| 		if (page_locked)
 | |
| 			goto clear_pmdnuma;
 | |
| 	}
 | |
| 
 | |
| 	/* Migration could have started since the pmd_trans_migrating check */
 | |
| 	if (!page_locked) {
 | |
| 		spin_unlock(ptl);
 | |
| 		wait_on_page_locked(page);
 | |
| 		page_nid = -1;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
 | |
| 	 * to serialises splits
 | |
| 	 */
 | |
| 	get_page(page);
 | |
| 	spin_unlock(ptl);
 | |
| 	anon_vma = page_lock_anon_vma_read(page);
 | |
| 
 | |
| 	/* Confirm the PMD did not change while page_table_lock was released */
 | |
| 	spin_lock(ptl);
 | |
| 	if (unlikely(!pmd_same(pmd, *pmdp))) {
 | |
| 		unlock_page(page);
 | |
| 		put_page(page);
 | |
| 		page_nid = -1;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	/* Bail if we fail to protect against THP splits for any reason */
 | |
| 	if (unlikely(!anon_vma)) {
 | |
| 		put_page(page);
 | |
| 		page_nid = -1;
 | |
| 		goto clear_pmdnuma;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Migrate the THP to the requested node, returns with page unlocked
 | |
| 	 * and access rights restored.
 | |
| 	 */
 | |
| 	spin_unlock(ptl);
 | |
| 	migrated = migrate_misplaced_transhuge_page(mm, vma,
 | |
| 				pmdp, pmd, addr, page, target_nid);
 | |
| 	if (migrated) {
 | |
| 		flags |= TNF_MIGRATED;
 | |
| 		page_nid = target_nid;
 | |
| 	} else
 | |
| 		flags |= TNF_MIGRATE_FAIL;
 | |
| 
 | |
| 	goto out;
 | |
| clear_pmdnuma:
 | |
| 	BUG_ON(!PageLocked(page));
 | |
| 	was_writable = pmd_write(pmd);
 | |
| 	pmd = pmd_modify(pmd, vma->vm_page_prot);
 | |
| 	pmd = pmd_mkyoung(pmd);
 | |
| 	if (was_writable)
 | |
| 		pmd = pmd_mkwrite(pmd);
 | |
| 	set_pmd_at(mm, haddr, pmdp, pmd);
 | |
| 	update_mmu_cache_pmd(vma, addr, pmdp);
 | |
| 	unlock_page(page);
 | |
| out_unlock:
 | |
| 	spin_unlock(ptl);
 | |
| 
 | |
| out:
 | |
| 	if (anon_vma)
 | |
| 		page_unlock_anon_vma_read(anon_vma);
 | |
| 
 | |
| 	if (page_nid != -1)
 | |
| 		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
 | |
| 		pmd_t *pmd, unsigned long addr, unsigned long next)
 | |
| 
 | |
| {
 | |
| 	spinlock_t *ptl;
 | |
| 	pmd_t orig_pmd;
 | |
| 	struct page *page;
 | |
| 	struct mm_struct *mm = tlb->mm;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	ptl = pmd_trans_huge_lock(pmd, vma);
 | |
| 	if (!ptl)
 | |
| 		goto out_unlocked;
 | |
| 
 | |
| 	orig_pmd = *pmd;
 | |
| 	if (is_huge_zero_pmd(orig_pmd)) {
 | |
| 		ret = 1;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	page = pmd_page(orig_pmd);
 | |
| 	/*
 | |
| 	 * If other processes are mapping this page, we couldn't discard
 | |
| 	 * the page unless they all do MADV_FREE so let's skip the page.
 | |
| 	 */
 | |
| 	if (page_mapcount(page) != 1)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (!trylock_page(page))
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * If user want to discard part-pages of THP, split it so MADV_FREE
 | |
| 	 * will deactivate only them.
 | |
| 	 */
 | |
| 	if (next - addr != HPAGE_PMD_SIZE) {
 | |
| 		get_page(page);
 | |
| 		spin_unlock(ptl);
 | |
| 		if (split_huge_page(page)) {
 | |
| 			put_page(page);
 | |
| 			unlock_page(page);
 | |
| 			goto out_unlocked;
 | |
| 		}
 | |
| 		put_page(page);
 | |
| 		unlock_page(page);
 | |
| 		ret = 1;
 | |
| 		goto out_unlocked;
 | |
| 	}
 | |
| 
 | |
| 	if (PageDirty(page))
 | |
| 		ClearPageDirty(page);
 | |
| 	unlock_page(page);
 | |
| 
 | |
| 	if (PageActive(page))
 | |
| 		deactivate_page(page);
 | |
| 
 | |
| 	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
 | |
| 		orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
 | |
| 			tlb->fullmm);
 | |
| 		orig_pmd = pmd_mkold(orig_pmd);
 | |
| 		orig_pmd = pmd_mkclean(orig_pmd);
 | |
| 
 | |
| 		set_pmd_at(mm, addr, pmd, orig_pmd);
 | |
| 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
 | |
| 	}
 | |
| 	ret = 1;
 | |
| out:
 | |
| 	spin_unlock(ptl);
 | |
| out_unlocked:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
 | |
| 		 pmd_t *pmd, unsigned long addr)
 | |
| {
 | |
| 	pmd_t orig_pmd;
 | |
| 	spinlock_t *ptl;
 | |
| 
 | |
| 	ptl = __pmd_trans_huge_lock(pmd, vma);
 | |
| 	if (!ptl)
 | |
| 		return 0;
 | |
| 	/*
 | |
| 	 * For architectures like ppc64 we look at deposited pgtable
 | |
| 	 * when calling pmdp_huge_get_and_clear. So do the
 | |
| 	 * pgtable_trans_huge_withdraw after finishing pmdp related
 | |
| 	 * operations.
 | |
| 	 */
 | |
| 	orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
 | |
| 			tlb->fullmm);
 | |
| 	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
 | |
| 	if (vma_is_dax(vma)) {
 | |
| 		spin_unlock(ptl);
 | |
| 		if (is_huge_zero_pmd(orig_pmd))
 | |
| 			put_huge_zero_page();
 | |
| 	} else if (is_huge_zero_pmd(orig_pmd)) {
 | |
| 		pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
 | |
| 		atomic_long_dec(&tlb->mm->nr_ptes);
 | |
| 		spin_unlock(ptl);
 | |
| 		put_huge_zero_page();
 | |
| 	} else {
 | |
| 		struct page *page = pmd_page(orig_pmd);
 | |
| 		page_remove_rmap(page, true);
 | |
| 		VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
 | |
| 		add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
 | |
| 		VM_BUG_ON_PAGE(!PageHead(page), page);
 | |
| 		pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
 | |
| 		atomic_long_dec(&tlb->mm->nr_ptes);
 | |
| 		spin_unlock(ptl);
 | |
| 		tlb_remove_page(tlb, page);
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| bool move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
 | |
| 		  unsigned long old_addr,
 | |
| 		  unsigned long new_addr, unsigned long old_end,
 | |
| 		  pmd_t *old_pmd, pmd_t *new_pmd)
 | |
| {
 | |
| 	spinlock_t *old_ptl, *new_ptl;
 | |
| 	pmd_t pmd;
 | |
| 
 | |
| 	struct mm_struct *mm = vma->vm_mm;
 | |
| 
 | |
| 	if ((old_addr & ~HPAGE_PMD_MASK) ||
 | |
| 	    (new_addr & ~HPAGE_PMD_MASK) ||
 | |
| 	    old_end - old_addr < HPAGE_PMD_SIZE ||
 | |
| 	    (new_vma->vm_flags & VM_NOHUGEPAGE))
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * The destination pmd shouldn't be established, free_pgtables()
 | |
| 	 * should have release it.
 | |
| 	 */
 | |
| 	if (WARN_ON(!pmd_none(*new_pmd))) {
 | |
| 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We don't have to worry about the ordering of src and dst
 | |
| 	 * ptlocks because exclusive mmap_sem prevents deadlock.
 | |
| 	 */
 | |
| 	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
 | |
| 	if (old_ptl) {
 | |
| 		new_ptl = pmd_lockptr(mm, new_pmd);
 | |
| 		if (new_ptl != old_ptl)
 | |
| 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
 | |
| 		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
 | |
| 		VM_BUG_ON(!pmd_none(*new_pmd));
 | |
| 
 | |
| 		if (pmd_move_must_withdraw(new_ptl, old_ptl)) {
 | |
| 			pgtable_t pgtable;
 | |
| 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
 | |
| 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
 | |
| 		}
 | |
| 		set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
 | |
| 		if (new_ptl != old_ptl)
 | |
| 			spin_unlock(new_ptl);
 | |
| 		spin_unlock(old_ptl);
 | |
| 		return true;
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns
 | |
|  *  - 0 if PMD could not be locked
 | |
|  *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
 | |
|  *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
 | |
|  */
 | |
| int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
 | |
| 		unsigned long addr, pgprot_t newprot, int prot_numa)
 | |
| {
 | |
| 	struct mm_struct *mm = vma->vm_mm;
 | |
| 	spinlock_t *ptl;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	ptl = __pmd_trans_huge_lock(pmd, vma);
 | |
| 	if (ptl) {
 | |
| 		pmd_t entry;
 | |
| 		bool preserve_write = prot_numa && pmd_write(*pmd);
 | |
| 		ret = 1;
 | |
| 
 | |
| 		/*
 | |
| 		 * Avoid trapping faults against the zero page. The read-only
 | |
| 		 * data is likely to be read-cached on the local CPU and
 | |
| 		 * local/remote hits to the zero page are not interesting.
 | |
| 		 */
 | |
| 		if (prot_numa && is_huge_zero_pmd(*pmd)) {
 | |
| 			spin_unlock(ptl);
 | |
| 			return ret;
 | |
| 		}
 | |
| 
 | |
| 		if (!prot_numa || !pmd_protnone(*pmd)) {
 | |
| 			entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
 | |
| 			entry = pmd_modify(entry, newprot);
 | |
| 			if (preserve_write)
 | |
| 				entry = pmd_mkwrite(entry);
 | |
| 			ret = HPAGE_PMD_NR;
 | |
| 			set_pmd_at(mm, addr, pmd, entry);
 | |
| 			BUG_ON(!preserve_write && pmd_write(entry));
 | |
| 		}
 | |
| 		spin_unlock(ptl);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns true if a given pmd maps a thp, false otherwise.
 | |
|  *
 | |
|  * Note that if it returns true, this routine returns without unlocking page
 | |
|  * table lock. So callers must unlock it.
 | |
|  */
 | |
| spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
 | |
| {
 | |
| 	spinlock_t *ptl;
 | |
| 	ptl = pmd_lock(vma->vm_mm, pmd);
 | |
| 	if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
 | |
| 		return ptl;
 | |
| 	spin_unlock(ptl);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| #define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
 | |
| 
 | |
| int hugepage_madvise(struct vm_area_struct *vma,
 | |
| 		     unsigned long *vm_flags, int advice)
 | |
| {
 | |
| 	switch (advice) {
 | |
| 	case MADV_HUGEPAGE:
 | |
| #ifdef CONFIG_S390
 | |
| 		/*
 | |
| 		 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
 | |
| 		 * can't handle this properly after s390_enable_sie, so we simply
 | |
| 		 * ignore the madvise to prevent qemu from causing a SIGSEGV.
 | |
| 		 */
 | |
| 		if (mm_has_pgste(vma->vm_mm))
 | |
| 			return 0;
 | |
| #endif
 | |
| 		/*
 | |
| 		 * Be somewhat over-protective like KSM for now!
 | |
| 		 */
 | |
| 		if (*vm_flags & VM_NO_THP)
 | |
| 			return -EINVAL;
 | |
| 		*vm_flags &= ~VM_NOHUGEPAGE;
 | |
| 		*vm_flags |= VM_HUGEPAGE;
 | |
| 		/*
 | |
| 		 * If the vma become good for khugepaged to scan,
 | |
| 		 * register it here without waiting a page fault that
 | |
| 		 * may not happen any time soon.
 | |
| 		 */
 | |
| 		if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
 | |
| 			return -ENOMEM;
 | |
| 		break;
 | |
| 	case MADV_NOHUGEPAGE:
 | |
| 		/*
 | |
| 		 * Be somewhat over-protective like KSM for now!
 | |
| 		 */
 | |
| 		if (*vm_flags & VM_NO_THP)
 | |
| 			return -EINVAL;
 | |
| 		*vm_flags &= ~VM_HUGEPAGE;
 | |
| 		*vm_flags |= VM_NOHUGEPAGE;
 | |
| 		/*
 | |
| 		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
 | |
| 		 * this vma even if we leave the mm registered in khugepaged if
 | |
| 		 * it got registered before VM_NOHUGEPAGE was set.
 | |
| 		 */
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int __init khugepaged_slab_init(void)
 | |
| {
 | |
| 	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
 | |
| 					  sizeof(struct mm_slot),
 | |
| 					  __alignof__(struct mm_slot), 0, NULL);
 | |
| 	if (!mm_slot_cache)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void __init khugepaged_slab_exit(void)
 | |
| {
 | |
| 	kmem_cache_destroy(mm_slot_cache);
 | |
| }
 | |
| 
 | |
| static inline struct mm_slot *alloc_mm_slot(void)
 | |
| {
 | |
| 	if (!mm_slot_cache)	/* initialization failed */
 | |
| 		return NULL;
 | |
| 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
 | |
| }
 | |
| 
 | |
| static inline void free_mm_slot(struct mm_slot *mm_slot)
 | |
| {
 | |
| 	kmem_cache_free(mm_slot_cache, mm_slot);
 | |
| }
 | |
| 
 | |
| static struct mm_slot *get_mm_slot(struct mm_struct *mm)
 | |
| {
 | |
| 	struct mm_slot *mm_slot;
 | |
| 
 | |
| 	hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
 | |
| 		if (mm == mm_slot->mm)
 | |
| 			return mm_slot;
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void insert_to_mm_slots_hash(struct mm_struct *mm,
 | |
| 				    struct mm_slot *mm_slot)
 | |
| {
 | |
| 	mm_slot->mm = mm;
 | |
| 	hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
 | |
| }
 | |
| 
 | |
| static inline int khugepaged_test_exit(struct mm_struct *mm)
 | |
| {
 | |
| 	return atomic_read(&mm->mm_users) == 0;
 | |
| }
 | |
| 
 | |
| int __khugepaged_enter(struct mm_struct *mm)
 | |
| {
 | |
| 	struct mm_slot *mm_slot;
 | |
| 	int wakeup;
 | |
| 
 | |
| 	mm_slot = alloc_mm_slot();
 | |
| 	if (!mm_slot)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/* __khugepaged_exit() must not run from under us */
 | |
| 	VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
 | |
| 	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
 | |
| 		free_mm_slot(mm_slot);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&khugepaged_mm_lock);
 | |
| 	insert_to_mm_slots_hash(mm, mm_slot);
 | |
| 	/*
 | |
| 	 * Insert just behind the scanning cursor, to let the area settle
 | |
| 	 * down a little.
 | |
| 	 */
 | |
| 	wakeup = list_empty(&khugepaged_scan.mm_head);
 | |
| 	list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
 | |
| 	spin_unlock(&khugepaged_mm_lock);
 | |
| 
 | |
| 	atomic_inc(&mm->mm_count);
 | |
| 	if (wakeup)
 | |
| 		wake_up_interruptible(&khugepaged_wait);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
 | |
| 			       unsigned long vm_flags)
 | |
| {
 | |
| 	unsigned long hstart, hend;
 | |
| 	if (!vma->anon_vma)
 | |
| 		/*
 | |
| 		 * Not yet faulted in so we will register later in the
 | |
| 		 * page fault if needed.
 | |
| 		 */
 | |
| 		return 0;
 | |
| 	if (vma->vm_ops)
 | |
| 		/* khugepaged not yet working on file or special mappings */
 | |
| 		return 0;
 | |
| 	VM_BUG_ON_VMA(vm_flags & VM_NO_THP, vma);
 | |
| 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
 | |
| 	hend = vma->vm_end & HPAGE_PMD_MASK;
 | |
| 	if (hstart < hend)
 | |
| 		return khugepaged_enter(vma, vm_flags);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void __khugepaged_exit(struct mm_struct *mm)
 | |
| {
 | |
| 	struct mm_slot *mm_slot;
 | |
| 	int free = 0;
 | |
| 
 | |
| 	spin_lock(&khugepaged_mm_lock);
 | |
| 	mm_slot = get_mm_slot(mm);
 | |
| 	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
 | |
| 		hash_del(&mm_slot->hash);
 | |
| 		list_del(&mm_slot->mm_node);
 | |
| 		free = 1;
 | |
| 	}
 | |
| 	spin_unlock(&khugepaged_mm_lock);
 | |
| 
 | |
| 	if (free) {
 | |
| 		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
 | |
| 		free_mm_slot(mm_slot);
 | |
| 		mmdrop(mm);
 | |
| 	} else if (mm_slot) {
 | |
| 		/*
 | |
| 		 * This is required to serialize against
 | |
| 		 * khugepaged_test_exit() (which is guaranteed to run
 | |
| 		 * under mmap sem read mode). Stop here (after we
 | |
| 		 * return all pagetables will be destroyed) until
 | |
| 		 * khugepaged has finished working on the pagetables
 | |
| 		 * under the mmap_sem.
 | |
| 		 */
 | |
| 		down_write(&mm->mmap_sem);
 | |
| 		up_write(&mm->mmap_sem);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void release_pte_page(struct page *page)
 | |
| {
 | |
| 	/* 0 stands for page_is_file_cache(page) == false */
 | |
| 	dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
 | |
| 	unlock_page(page);
 | |
| 	putback_lru_page(page);
 | |
| }
 | |
| 
 | |
| static void release_pte_pages(pte_t *pte, pte_t *_pte)
 | |
| {
 | |
| 	while (--_pte >= pte) {
 | |
| 		pte_t pteval = *_pte;
 | |
| 		if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
 | |
| 			release_pte_page(pte_page(pteval));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
 | |
| 					unsigned long address,
 | |
| 					pte_t *pte)
 | |
| {
 | |
| 	struct page *page = NULL;
 | |
| 	pte_t *_pte;
 | |
| 	int none_or_zero = 0, result = 0;
 | |
| 	bool referenced = false, writable = false;
 | |
| 
 | |
| 	for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
 | |
| 	     _pte++, address += PAGE_SIZE) {
 | |
| 		pte_t pteval = *_pte;
 | |
| 		if (pte_none(pteval) || (pte_present(pteval) &&
 | |
| 				is_zero_pfn(pte_pfn(pteval)))) {
 | |
| 			if (!userfaultfd_armed(vma) &&
 | |
| 			    ++none_or_zero <= khugepaged_max_ptes_none) {
 | |
| 				continue;
 | |
| 			} else {
 | |
| 				result = SCAN_EXCEED_NONE_PTE;
 | |
| 				goto out;
 | |
| 			}
 | |
| 		}
 | |
| 		if (!pte_present(pteval)) {
 | |
| 			result = SCAN_PTE_NON_PRESENT;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		page = vm_normal_page(vma, address, pteval);
 | |
| 		if (unlikely(!page)) {
 | |
| 			result = SCAN_PAGE_NULL;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		VM_BUG_ON_PAGE(PageCompound(page), page);
 | |
| 		VM_BUG_ON_PAGE(!PageAnon(page), page);
 | |
| 		VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
 | |
| 
 | |
| 		/*
 | |
| 		 * We can do it before isolate_lru_page because the
 | |
| 		 * page can't be freed from under us. NOTE: PG_lock
 | |
| 		 * is needed to serialize against split_huge_page
 | |
| 		 * when invoked from the VM.
 | |
| 		 */
 | |
| 		if (!trylock_page(page)) {
 | |
| 			result = SCAN_PAGE_LOCK;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * cannot use mapcount: can't collapse if there's a gup pin.
 | |
| 		 * The page must only be referenced by the scanned process
 | |
| 		 * and page swap cache.
 | |
| 		 */
 | |
| 		if (page_count(page) != 1 + !!PageSwapCache(page)) {
 | |
| 			unlock_page(page);
 | |
| 			result = SCAN_PAGE_COUNT;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		if (pte_write(pteval)) {
 | |
| 			writable = true;
 | |
| 		} else {
 | |
| 			if (PageSwapCache(page) && !reuse_swap_page(page)) {
 | |
| 				unlock_page(page);
 | |
| 				result = SCAN_SWAP_CACHE_PAGE;
 | |
| 				goto out;
 | |
| 			}
 | |
| 			/*
 | |
| 			 * Page is not in the swap cache. It can be collapsed
 | |
| 			 * into a THP.
 | |
| 			 */
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Isolate the page to avoid collapsing an hugepage
 | |
| 		 * currently in use by the VM.
 | |
| 		 */
 | |
| 		if (isolate_lru_page(page)) {
 | |
| 			unlock_page(page);
 | |
| 			result = SCAN_DEL_PAGE_LRU;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		/* 0 stands for page_is_file_cache(page) == false */
 | |
| 		inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
 | |
| 		VM_BUG_ON_PAGE(!PageLocked(page), page);
 | |
| 		VM_BUG_ON_PAGE(PageLRU(page), page);
 | |
| 
 | |
| 		/* If there is no mapped pte young don't collapse the page */
 | |
| 		if (pte_young(pteval) ||
 | |
| 		    page_is_young(page) || PageReferenced(page) ||
 | |
| 		    mmu_notifier_test_young(vma->vm_mm, address))
 | |
| 			referenced = true;
 | |
| 	}
 | |
| 	if (likely(writable)) {
 | |
| 		if (likely(referenced)) {
 | |
| 			result = SCAN_SUCCEED;
 | |
| 			trace_mm_collapse_huge_page_isolate(page, none_or_zero,
 | |
| 							    referenced, writable, result);
 | |
| 			return 1;
 | |
| 		}
 | |
| 	} else {
 | |
| 		result = SCAN_PAGE_RO;
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	release_pte_pages(pte, _pte);
 | |
| 	trace_mm_collapse_huge_page_isolate(page, none_or_zero,
 | |
| 					    referenced, writable, result);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
 | |
| 				      struct vm_area_struct *vma,
 | |
| 				      unsigned long address,
 | |
| 				      spinlock_t *ptl)
 | |
| {
 | |
| 	pte_t *_pte;
 | |
| 	for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
 | |
| 		pte_t pteval = *_pte;
 | |
| 		struct page *src_page;
 | |
| 
 | |
| 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
 | |
| 			clear_user_highpage(page, address);
 | |
| 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
 | |
| 			if (is_zero_pfn(pte_pfn(pteval))) {
 | |
| 				/*
 | |
| 				 * ptl mostly unnecessary.
 | |
| 				 */
 | |
| 				spin_lock(ptl);
 | |
| 				/*
 | |
| 				 * paravirt calls inside pte_clear here are
 | |
| 				 * superfluous.
 | |
| 				 */
 | |
| 				pte_clear(vma->vm_mm, address, _pte);
 | |
| 				spin_unlock(ptl);
 | |
| 			}
 | |
| 		} else {
 | |
| 			src_page = pte_page(pteval);
 | |
| 			copy_user_highpage(page, src_page, address, vma);
 | |
| 			VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
 | |
| 			release_pte_page(src_page);
 | |
| 			/*
 | |
| 			 * ptl mostly unnecessary, but preempt has to
 | |
| 			 * be disabled to update the per-cpu stats
 | |
| 			 * inside page_remove_rmap().
 | |
| 			 */
 | |
| 			spin_lock(ptl);
 | |
| 			/*
 | |
| 			 * paravirt calls inside pte_clear here are
 | |
| 			 * superfluous.
 | |
| 			 */
 | |
| 			pte_clear(vma->vm_mm, address, _pte);
 | |
| 			page_remove_rmap(src_page, false);
 | |
| 			spin_unlock(ptl);
 | |
| 			free_page_and_swap_cache(src_page);
 | |
| 		}
 | |
| 
 | |
| 		address += PAGE_SIZE;
 | |
| 		page++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void khugepaged_alloc_sleep(void)
 | |
| {
 | |
| 	DEFINE_WAIT(wait);
 | |
| 
 | |
| 	add_wait_queue(&khugepaged_wait, &wait);
 | |
| 	freezable_schedule_timeout_interruptible(
 | |
| 		msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
 | |
| 	remove_wait_queue(&khugepaged_wait, &wait);
 | |
| }
 | |
| 
 | |
| static int khugepaged_node_load[MAX_NUMNODES];
 | |
| 
 | |
| static bool khugepaged_scan_abort(int nid)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * If zone_reclaim_mode is disabled, then no extra effort is made to
 | |
| 	 * allocate memory locally.
 | |
| 	 */
 | |
| 	if (!zone_reclaim_mode)
 | |
| 		return false;
 | |
| 
 | |
| 	/* If there is a count for this node already, it must be acceptable */
 | |
| 	if (khugepaged_node_load[nid])
 | |
| 		return false;
 | |
| 
 | |
| 	for (i = 0; i < MAX_NUMNODES; i++) {
 | |
| 		if (!khugepaged_node_load[i])
 | |
| 			continue;
 | |
| 		if (node_distance(nid, i) > RECLAIM_DISTANCE)
 | |
| 			return true;
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NUMA
 | |
| static int khugepaged_find_target_node(void)
 | |
| {
 | |
| 	static int last_khugepaged_target_node = NUMA_NO_NODE;
 | |
| 	int nid, target_node = 0, max_value = 0;
 | |
| 
 | |
| 	/* find first node with max normal pages hit */
 | |
| 	for (nid = 0; nid < MAX_NUMNODES; nid++)
 | |
| 		if (khugepaged_node_load[nid] > max_value) {
 | |
| 			max_value = khugepaged_node_load[nid];
 | |
| 			target_node = nid;
 | |
| 		}
 | |
| 
 | |
| 	/* do some balance if several nodes have the same hit record */
 | |
| 	if (target_node <= last_khugepaged_target_node)
 | |
| 		for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
 | |
| 				nid++)
 | |
| 			if (max_value == khugepaged_node_load[nid]) {
 | |
| 				target_node = nid;
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 	last_khugepaged_target_node = target_node;
 | |
| 	return target_node;
 | |
| }
 | |
| 
 | |
| static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
 | |
| {
 | |
| 	if (IS_ERR(*hpage)) {
 | |
| 		if (!*wait)
 | |
| 			return false;
 | |
| 
 | |
| 		*wait = false;
 | |
| 		*hpage = NULL;
 | |
| 		khugepaged_alloc_sleep();
 | |
| 	} else if (*hpage) {
 | |
| 		put_page(*hpage);
 | |
| 		*hpage = NULL;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static struct page *
 | |
| khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
 | |
| 		       unsigned long address, int node)
 | |
| {
 | |
| 	VM_BUG_ON_PAGE(*hpage, *hpage);
 | |
| 
 | |
| 	/*
 | |
| 	 * Before allocating the hugepage, release the mmap_sem read lock.
 | |
| 	 * The allocation can take potentially a long time if it involves
 | |
| 	 * sync compaction, and we do not need to hold the mmap_sem during
 | |
| 	 * that. We will recheck the vma after taking it again in write mode.
 | |
| 	 */
 | |
| 	up_read(&mm->mmap_sem);
 | |
| 
 | |
| 	*hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
 | |
| 	if (unlikely(!*hpage)) {
 | |
| 		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
 | |
| 		*hpage = ERR_PTR(-ENOMEM);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	prep_transhuge_page(*hpage);
 | |
| 	count_vm_event(THP_COLLAPSE_ALLOC);
 | |
| 	return *hpage;
 | |
| }
 | |
| #else
 | |
| static int khugepaged_find_target_node(void)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline struct page *alloc_hugepage(int defrag)
 | |
| {
 | |
| 	struct page *page;
 | |
| 
 | |
| 	page = alloc_pages(alloc_hugepage_gfpmask(defrag, 0), HPAGE_PMD_ORDER);
 | |
| 	if (page)
 | |
| 		prep_transhuge_page(page);
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| static struct page *khugepaged_alloc_hugepage(bool *wait)
 | |
| {
 | |
| 	struct page *hpage;
 | |
| 
 | |
| 	do {
 | |
| 		hpage = alloc_hugepage(khugepaged_defrag());
 | |
| 		if (!hpage) {
 | |
| 			count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
 | |
| 			if (!*wait)
 | |
| 				return NULL;
 | |
| 
 | |
| 			*wait = false;
 | |
| 			khugepaged_alloc_sleep();
 | |
| 		} else
 | |
| 			count_vm_event(THP_COLLAPSE_ALLOC);
 | |
| 	} while (unlikely(!hpage) && likely(khugepaged_enabled()));
 | |
| 
 | |
| 	return hpage;
 | |
| }
 | |
| 
 | |
| static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
 | |
| {
 | |
| 	if (!*hpage)
 | |
| 		*hpage = khugepaged_alloc_hugepage(wait);
 | |
| 
 | |
| 	if (unlikely(!*hpage))
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static struct page *
 | |
| khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
 | |
| 		       unsigned long address, int node)
 | |
| {
 | |
| 	up_read(&mm->mmap_sem);
 | |
| 	VM_BUG_ON(!*hpage);
 | |
| 
 | |
| 	return  *hpage;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static bool hugepage_vma_check(struct vm_area_struct *vma)
 | |
| {
 | |
| 	if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
 | |
| 	    (vma->vm_flags & VM_NOHUGEPAGE))
 | |
| 		return false;
 | |
| 	if (!vma->anon_vma || vma->vm_ops)
 | |
| 		return false;
 | |
| 	if (is_vma_temporary_stack(vma))
 | |
| 		return false;
 | |
| 	VM_BUG_ON_VMA(vma->vm_flags & VM_NO_THP, vma);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static void collapse_huge_page(struct mm_struct *mm,
 | |
| 				   unsigned long address,
 | |
| 				   struct page **hpage,
 | |
| 				   struct vm_area_struct *vma,
 | |
| 				   int node)
 | |
| {
 | |
| 	pmd_t *pmd, _pmd;
 | |
| 	pte_t *pte;
 | |
| 	pgtable_t pgtable;
 | |
| 	struct page *new_page;
 | |
| 	spinlock_t *pmd_ptl, *pte_ptl;
 | |
| 	int isolated = 0, result = 0;
 | |
| 	unsigned long hstart, hend;
 | |
| 	struct mem_cgroup *memcg;
 | |
| 	unsigned long mmun_start;	/* For mmu_notifiers */
 | |
| 	unsigned long mmun_end;		/* For mmu_notifiers */
 | |
| 	gfp_t gfp;
 | |
| 
 | |
| 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
 | |
| 
 | |
| 	/* Only allocate from the target node */
 | |
| 	gfp = alloc_hugepage_gfpmask(khugepaged_defrag(), __GFP_OTHER_NODE) |
 | |
| 		__GFP_THISNODE;
 | |
| 
 | |
| 	/* release the mmap_sem read lock. */
 | |
| 	new_page = khugepaged_alloc_page(hpage, gfp, mm, address, node);
 | |
| 	if (!new_page) {
 | |
| 		result = SCAN_ALLOC_HUGE_PAGE_FAIL;
 | |
| 		goto out_nolock;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
 | |
| 		result = SCAN_CGROUP_CHARGE_FAIL;
 | |
| 		goto out_nolock;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Prevent all access to pagetables with the exception of
 | |
| 	 * gup_fast later hanlded by the ptep_clear_flush and the VM
 | |
| 	 * handled by the anon_vma lock + PG_lock.
 | |
| 	 */
 | |
| 	down_write(&mm->mmap_sem);
 | |
| 	if (unlikely(khugepaged_test_exit(mm))) {
 | |
| 		result = SCAN_ANY_PROCESS;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	vma = find_vma(mm, address);
 | |
| 	if (!vma) {
 | |
| 		result = SCAN_VMA_NULL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
 | |
| 	hend = vma->vm_end & HPAGE_PMD_MASK;
 | |
| 	if (address < hstart || address + HPAGE_PMD_SIZE > hend) {
 | |
| 		result = SCAN_ADDRESS_RANGE;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	if (!hugepage_vma_check(vma)) {
 | |
| 		result = SCAN_VMA_CHECK;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	pmd = mm_find_pmd(mm, address);
 | |
| 	if (!pmd) {
 | |
| 		result = SCAN_PMD_NULL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	anon_vma_lock_write(vma->anon_vma);
 | |
| 
 | |
| 	pte = pte_offset_map(pmd, address);
 | |
| 	pte_ptl = pte_lockptr(mm, pmd);
 | |
| 
 | |
| 	mmun_start = address;
 | |
| 	mmun_end   = address + HPAGE_PMD_SIZE;
 | |
| 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
 | |
| 	pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
 | |
| 	/*
 | |
| 	 * After this gup_fast can't run anymore. This also removes
 | |
| 	 * any huge TLB entry from the CPU so we won't allow
 | |
| 	 * huge and small TLB entries for the same virtual address
 | |
| 	 * to avoid the risk of CPU bugs in that area.
 | |
| 	 */
 | |
| 	_pmd = pmdp_collapse_flush(vma, address, pmd);
 | |
| 	spin_unlock(pmd_ptl);
 | |
| 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
 | |
| 
 | |
| 	spin_lock(pte_ptl);
 | |
| 	isolated = __collapse_huge_page_isolate(vma, address, pte);
 | |
| 	spin_unlock(pte_ptl);
 | |
| 
 | |
| 	if (unlikely(!isolated)) {
 | |
| 		pte_unmap(pte);
 | |
| 		spin_lock(pmd_ptl);
 | |
| 		BUG_ON(!pmd_none(*pmd));
 | |
| 		/*
 | |
| 		 * We can only use set_pmd_at when establishing
 | |
| 		 * hugepmds and never for establishing regular pmds that
 | |
| 		 * points to regular pagetables. Use pmd_populate for that
 | |
| 		 */
 | |
| 		pmd_populate(mm, pmd, pmd_pgtable(_pmd));
 | |
| 		spin_unlock(pmd_ptl);
 | |
| 		anon_vma_unlock_write(vma->anon_vma);
 | |
| 		result = SCAN_FAIL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * All pages are isolated and locked so anon_vma rmap
 | |
| 	 * can't run anymore.
 | |
| 	 */
 | |
| 	anon_vma_unlock_write(vma->anon_vma);
 | |
| 
 | |
| 	__collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
 | |
| 	pte_unmap(pte);
 | |
| 	__SetPageUptodate(new_page);
 | |
| 	pgtable = pmd_pgtable(_pmd);
 | |
| 
 | |
| 	_pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
 | |
| 	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
 | |
| 
 | |
| 	/*
 | |
| 	 * spin_lock() below is not the equivalent of smp_wmb(), so
 | |
| 	 * this is needed to avoid the copy_huge_page writes to become
 | |
| 	 * visible after the set_pmd_at() write.
 | |
| 	 */
 | |
| 	smp_wmb();
 | |
| 
 | |
| 	spin_lock(pmd_ptl);
 | |
| 	BUG_ON(!pmd_none(*pmd));
 | |
| 	page_add_new_anon_rmap(new_page, vma, address, true);
 | |
| 	mem_cgroup_commit_charge(new_page, memcg, false, true);
 | |
| 	lru_cache_add_active_or_unevictable(new_page, vma);
 | |
| 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
 | |
| 	set_pmd_at(mm, address, pmd, _pmd);
 | |
| 	update_mmu_cache_pmd(vma, address, pmd);
 | |
| 	spin_unlock(pmd_ptl);
 | |
| 
 | |
| 	*hpage = NULL;
 | |
| 
 | |
| 	khugepaged_pages_collapsed++;
 | |
| 	result = SCAN_SUCCEED;
 | |
| out_up_write:
 | |
| 	up_write(&mm->mmap_sem);
 | |
| 	trace_mm_collapse_huge_page(mm, isolated, result);
 | |
| 	return;
 | |
| 
 | |
| out_nolock:
 | |
| 	trace_mm_collapse_huge_page(mm, isolated, result);
 | |
| 	return;
 | |
| out:
 | |
| 	mem_cgroup_cancel_charge(new_page, memcg, true);
 | |
| 	goto out_up_write;
 | |
| }
 | |
| 
 | |
| static int khugepaged_scan_pmd(struct mm_struct *mm,
 | |
| 			       struct vm_area_struct *vma,
 | |
| 			       unsigned long address,
 | |
| 			       struct page **hpage)
 | |
| {
 | |
| 	pmd_t *pmd;
 | |
| 	pte_t *pte, *_pte;
 | |
| 	int ret = 0, none_or_zero = 0, result = 0;
 | |
| 	struct page *page = NULL;
 | |
| 	unsigned long _address;
 | |
| 	spinlock_t *ptl;
 | |
| 	int node = NUMA_NO_NODE;
 | |
| 	bool writable = false, referenced = false;
 | |
| 
 | |
| 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
 | |
| 
 | |
| 	pmd = mm_find_pmd(mm, address);
 | |
| 	if (!pmd) {
 | |
| 		result = SCAN_PMD_NULL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
 | |
| 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
 | |
| 	for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
 | |
| 	     _pte++, _address += PAGE_SIZE) {
 | |
| 		pte_t pteval = *_pte;
 | |
| 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
 | |
| 			if (!userfaultfd_armed(vma) &&
 | |
| 			    ++none_or_zero <= khugepaged_max_ptes_none) {
 | |
| 				continue;
 | |
| 			} else {
 | |
| 				result = SCAN_EXCEED_NONE_PTE;
 | |
| 				goto out_unmap;
 | |
| 			}
 | |
| 		}
 | |
| 		if (!pte_present(pteval)) {
 | |
| 			result = SCAN_PTE_NON_PRESENT;
 | |
| 			goto out_unmap;
 | |
| 		}
 | |
| 		if (pte_write(pteval))
 | |
| 			writable = true;
 | |
| 
 | |
| 		page = vm_normal_page(vma, _address, pteval);
 | |
| 		if (unlikely(!page)) {
 | |
| 			result = SCAN_PAGE_NULL;
 | |
| 			goto out_unmap;
 | |
| 		}
 | |
| 
 | |
| 		/* TODO: teach khugepaged to collapse THP mapped with pte */
 | |
| 		if (PageCompound(page)) {
 | |
| 			result = SCAN_PAGE_COMPOUND;
 | |
| 			goto out_unmap;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Record which node the original page is from and save this
 | |
| 		 * information to khugepaged_node_load[].
 | |
| 		 * Khupaged will allocate hugepage from the node has the max
 | |
| 		 * hit record.
 | |
| 		 */
 | |
| 		node = page_to_nid(page);
 | |
| 		if (khugepaged_scan_abort(node)) {
 | |
| 			result = SCAN_SCAN_ABORT;
 | |
| 			goto out_unmap;
 | |
| 		}
 | |
| 		khugepaged_node_load[node]++;
 | |
| 		if (!PageLRU(page)) {
 | |
| 			result = SCAN_SCAN_ABORT;
 | |
| 			goto out_unmap;
 | |
| 		}
 | |
| 		if (PageLocked(page)) {
 | |
| 			result = SCAN_PAGE_LOCK;
 | |
| 			goto out_unmap;
 | |
| 		}
 | |
| 		if (!PageAnon(page)) {
 | |
| 			result = SCAN_PAGE_ANON;
 | |
| 			goto out_unmap;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * cannot use mapcount: can't collapse if there's a gup pin.
 | |
| 		 * The page must only be referenced by the scanned process
 | |
| 		 * and page swap cache.
 | |
| 		 */
 | |
| 		if (page_count(page) != 1 + !!PageSwapCache(page)) {
 | |
| 			result = SCAN_PAGE_COUNT;
 | |
| 			goto out_unmap;
 | |
| 		}
 | |
| 		if (pte_young(pteval) ||
 | |
| 		    page_is_young(page) || PageReferenced(page) ||
 | |
| 		    mmu_notifier_test_young(vma->vm_mm, address))
 | |
| 			referenced = true;
 | |
| 	}
 | |
| 	if (writable) {
 | |
| 		if (referenced) {
 | |
| 			result = SCAN_SUCCEED;
 | |
| 			ret = 1;
 | |
| 		} else {
 | |
| 			result = SCAN_NO_REFERENCED_PAGE;
 | |
| 		}
 | |
| 	} else {
 | |
| 		result = SCAN_PAGE_RO;
 | |
| 	}
 | |
| out_unmap:
 | |
| 	pte_unmap_unlock(pte, ptl);
 | |
| 	if (ret) {
 | |
| 		node = khugepaged_find_target_node();
 | |
| 		/* collapse_huge_page will return with the mmap_sem released */
 | |
| 		collapse_huge_page(mm, address, hpage, vma, node);
 | |
| 	}
 | |
| out:
 | |
| 	trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
 | |
| 				     none_or_zero, result);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void collect_mm_slot(struct mm_slot *mm_slot)
 | |
| {
 | |
| 	struct mm_struct *mm = mm_slot->mm;
 | |
| 
 | |
| 	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
 | |
| 
 | |
| 	if (khugepaged_test_exit(mm)) {
 | |
| 		/* free mm_slot */
 | |
| 		hash_del(&mm_slot->hash);
 | |
| 		list_del(&mm_slot->mm_node);
 | |
| 
 | |
| 		/*
 | |
| 		 * Not strictly needed because the mm exited already.
 | |
| 		 *
 | |
| 		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
 | |
| 		 */
 | |
| 
 | |
| 		/* khugepaged_mm_lock actually not necessary for the below */
 | |
| 		free_mm_slot(mm_slot);
 | |
| 		mmdrop(mm);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
 | |
| 					    struct page **hpage)
 | |
| 	__releases(&khugepaged_mm_lock)
 | |
| 	__acquires(&khugepaged_mm_lock)
 | |
| {
 | |
| 	struct mm_slot *mm_slot;
 | |
| 	struct mm_struct *mm;
 | |
| 	struct vm_area_struct *vma;
 | |
| 	int progress = 0;
 | |
| 
 | |
| 	VM_BUG_ON(!pages);
 | |
| 	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
 | |
| 
 | |
| 	if (khugepaged_scan.mm_slot)
 | |
| 		mm_slot = khugepaged_scan.mm_slot;
 | |
| 	else {
 | |
| 		mm_slot = list_entry(khugepaged_scan.mm_head.next,
 | |
| 				     struct mm_slot, mm_node);
 | |
| 		khugepaged_scan.address = 0;
 | |
| 		khugepaged_scan.mm_slot = mm_slot;
 | |
| 	}
 | |
| 	spin_unlock(&khugepaged_mm_lock);
 | |
| 
 | |
| 	mm = mm_slot->mm;
 | |
| 	down_read(&mm->mmap_sem);
 | |
| 	if (unlikely(khugepaged_test_exit(mm)))
 | |
| 		vma = NULL;
 | |
| 	else
 | |
| 		vma = find_vma(mm, khugepaged_scan.address);
 | |
| 
 | |
| 	progress++;
 | |
| 	for (; vma; vma = vma->vm_next) {
 | |
| 		unsigned long hstart, hend;
 | |
| 
 | |
| 		cond_resched();
 | |
| 		if (unlikely(khugepaged_test_exit(mm))) {
 | |
| 			progress++;
 | |
| 			break;
 | |
| 		}
 | |
| 		if (!hugepage_vma_check(vma)) {
 | |
| skip:
 | |
| 			progress++;
 | |
| 			continue;
 | |
| 		}
 | |
| 		hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
 | |
| 		hend = vma->vm_end & HPAGE_PMD_MASK;
 | |
| 		if (hstart >= hend)
 | |
| 			goto skip;
 | |
| 		if (khugepaged_scan.address > hend)
 | |
| 			goto skip;
 | |
| 		if (khugepaged_scan.address < hstart)
 | |
| 			khugepaged_scan.address = hstart;
 | |
| 		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
 | |
| 
 | |
| 		while (khugepaged_scan.address < hend) {
 | |
| 			int ret;
 | |
| 			cond_resched();
 | |
| 			if (unlikely(khugepaged_test_exit(mm)))
 | |
| 				goto breakouterloop;
 | |
| 
 | |
| 			VM_BUG_ON(khugepaged_scan.address < hstart ||
 | |
| 				  khugepaged_scan.address + HPAGE_PMD_SIZE >
 | |
| 				  hend);
 | |
| 			ret = khugepaged_scan_pmd(mm, vma,
 | |
| 						  khugepaged_scan.address,
 | |
| 						  hpage);
 | |
| 			/* move to next address */
 | |
| 			khugepaged_scan.address += HPAGE_PMD_SIZE;
 | |
| 			progress += HPAGE_PMD_NR;
 | |
| 			if (ret)
 | |
| 				/* we released mmap_sem so break loop */
 | |
| 				goto breakouterloop_mmap_sem;
 | |
| 			if (progress >= pages)
 | |
| 				goto breakouterloop;
 | |
| 		}
 | |
| 	}
 | |
| breakouterloop:
 | |
| 	up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
 | |
| breakouterloop_mmap_sem:
 | |
| 
 | |
| 	spin_lock(&khugepaged_mm_lock);
 | |
| 	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
 | |
| 	/*
 | |
| 	 * Release the current mm_slot if this mm is about to die, or
 | |
| 	 * if we scanned all vmas of this mm.
 | |
| 	 */
 | |
| 	if (khugepaged_test_exit(mm) || !vma) {
 | |
| 		/*
 | |
| 		 * Make sure that if mm_users is reaching zero while
 | |
| 		 * khugepaged runs here, khugepaged_exit will find
 | |
| 		 * mm_slot not pointing to the exiting mm.
 | |
| 		 */
 | |
| 		if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
 | |
| 			khugepaged_scan.mm_slot = list_entry(
 | |
| 				mm_slot->mm_node.next,
 | |
| 				struct mm_slot, mm_node);
 | |
| 			khugepaged_scan.address = 0;
 | |
| 		} else {
 | |
| 			khugepaged_scan.mm_slot = NULL;
 | |
| 			khugepaged_full_scans++;
 | |
| 		}
 | |
| 
 | |
| 		collect_mm_slot(mm_slot);
 | |
| 	}
 | |
| 
 | |
| 	return progress;
 | |
| }
 | |
| 
 | |
| static int khugepaged_has_work(void)
 | |
| {
 | |
| 	return !list_empty(&khugepaged_scan.mm_head) &&
 | |
| 		khugepaged_enabled();
 | |
| }
 | |
| 
 | |
| static int khugepaged_wait_event(void)
 | |
| {
 | |
| 	return !list_empty(&khugepaged_scan.mm_head) ||
 | |
| 		kthread_should_stop();
 | |
| }
 | |
| 
 | |
| static void khugepaged_do_scan(void)
 | |
| {
 | |
| 	struct page *hpage = NULL;
 | |
| 	unsigned int progress = 0, pass_through_head = 0;
 | |
| 	unsigned int pages = khugepaged_pages_to_scan;
 | |
| 	bool wait = true;
 | |
| 
 | |
| 	barrier(); /* write khugepaged_pages_to_scan to local stack */
 | |
| 
 | |
| 	while (progress < pages) {
 | |
| 		if (!khugepaged_prealloc_page(&hpage, &wait))
 | |
| 			break;
 | |
| 
 | |
| 		cond_resched();
 | |
| 
 | |
| 		if (unlikely(kthread_should_stop() || try_to_freeze()))
 | |
| 			break;
 | |
| 
 | |
| 		spin_lock(&khugepaged_mm_lock);
 | |
| 		if (!khugepaged_scan.mm_slot)
 | |
| 			pass_through_head++;
 | |
| 		if (khugepaged_has_work() &&
 | |
| 		    pass_through_head < 2)
 | |
| 			progress += khugepaged_scan_mm_slot(pages - progress,
 | |
| 							    &hpage);
 | |
| 		else
 | |
| 			progress = pages;
 | |
| 		spin_unlock(&khugepaged_mm_lock);
 | |
| 	}
 | |
| 
 | |
| 	if (!IS_ERR_OR_NULL(hpage))
 | |
| 		put_page(hpage);
 | |
| }
 | |
| 
 | |
| static void khugepaged_wait_work(void)
 | |
| {
 | |
| 	if (khugepaged_has_work()) {
 | |
| 		if (!khugepaged_scan_sleep_millisecs)
 | |
| 			return;
 | |
| 
 | |
| 		wait_event_freezable_timeout(khugepaged_wait,
 | |
| 					     kthread_should_stop(),
 | |
| 			msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (khugepaged_enabled())
 | |
| 		wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
 | |
| }
 | |
| 
 | |
| static int khugepaged(void *none)
 | |
| {
 | |
| 	struct mm_slot *mm_slot;
 | |
| 
 | |
| 	set_freezable();
 | |
| 	set_user_nice(current, MAX_NICE);
 | |
| 
 | |
| 	while (!kthread_should_stop()) {
 | |
| 		khugepaged_do_scan();
 | |
| 		khugepaged_wait_work();
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&khugepaged_mm_lock);
 | |
| 	mm_slot = khugepaged_scan.mm_slot;
 | |
| 	khugepaged_scan.mm_slot = NULL;
 | |
| 	if (mm_slot)
 | |
| 		collect_mm_slot(mm_slot);
 | |
| 	spin_unlock(&khugepaged_mm_lock);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
 | |
| 		unsigned long haddr, pmd_t *pmd)
 | |
| {
 | |
| 	struct mm_struct *mm = vma->vm_mm;
 | |
| 	pgtable_t pgtable;
 | |
| 	pmd_t _pmd;
 | |
| 	int i;
 | |
| 
 | |
| 	/* leave pmd empty until pte is filled */
 | |
| 	pmdp_huge_clear_flush_notify(vma, haddr, pmd);
 | |
| 
 | |
| 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
 | |
| 	pmd_populate(mm, &_pmd, pgtable);
 | |
| 
 | |
| 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
 | |
| 		pte_t *pte, entry;
 | |
| 		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
 | |
| 		entry = pte_mkspecial(entry);
 | |
| 		pte = pte_offset_map(&_pmd, haddr);
 | |
| 		VM_BUG_ON(!pte_none(*pte));
 | |
| 		set_pte_at(mm, haddr, pte, entry);
 | |
| 		pte_unmap(pte);
 | |
| 	}
 | |
| 	smp_wmb(); /* make pte visible before pmd */
 | |
| 	pmd_populate(mm, pmd, pgtable);
 | |
| 	put_huge_zero_page();
 | |
| }
 | |
| 
 | |
| static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
 | |
| 		unsigned long haddr, bool freeze)
 | |
| {
 | |
| 	struct mm_struct *mm = vma->vm_mm;
 | |
| 	struct page *page;
 | |
| 	pgtable_t pgtable;
 | |
| 	pmd_t _pmd;
 | |
| 	bool young, write, dirty;
 | |
| 	int i;
 | |
| 
 | |
| 	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
 | |
| 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
 | |
| 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
 | |
| 	VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
 | |
| 
 | |
| 	count_vm_event(THP_SPLIT_PMD);
 | |
| 
 | |
| 	if (vma_is_dax(vma)) {
 | |
| 		pmd_t _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
 | |
| 		if (is_huge_zero_pmd(_pmd))
 | |
| 			put_huge_zero_page();
 | |
| 		return;
 | |
| 	} else if (is_huge_zero_pmd(*pmd)) {
 | |
| 		return __split_huge_zero_page_pmd(vma, haddr, pmd);
 | |
| 	}
 | |
| 
 | |
| 	page = pmd_page(*pmd);
 | |
| 	VM_BUG_ON_PAGE(!page_count(page), page);
 | |
| 	atomic_add(HPAGE_PMD_NR - 1, &page->_count);
 | |
| 	write = pmd_write(*pmd);
 | |
| 	young = pmd_young(*pmd);
 | |
| 	dirty = pmd_dirty(*pmd);
 | |
| 
 | |
| 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
 | |
| 	pmd_populate(mm, &_pmd, pgtable);
 | |
| 
 | |
| 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
 | |
| 		pte_t entry, *pte;
 | |
| 		/*
 | |
| 		 * Note that NUMA hinting access restrictions are not
 | |
| 		 * transferred to avoid any possibility of altering
 | |
| 		 * permissions across VMAs.
 | |
| 		 */
 | |
| 		if (freeze) {
 | |
| 			swp_entry_t swp_entry;
 | |
| 			swp_entry = make_migration_entry(page + i, write);
 | |
| 			entry = swp_entry_to_pte(swp_entry);
 | |
| 		} else {
 | |
| 			entry = mk_pte(page + i, vma->vm_page_prot);
 | |
| 			entry = maybe_mkwrite(entry, vma);
 | |
| 			if (!write)
 | |
| 				entry = pte_wrprotect(entry);
 | |
| 			if (!young)
 | |
| 				entry = pte_mkold(entry);
 | |
| 		}
 | |
| 		if (dirty)
 | |
| 			SetPageDirty(page + i);
 | |
| 		pte = pte_offset_map(&_pmd, haddr);
 | |
| 		BUG_ON(!pte_none(*pte));
 | |
| 		set_pte_at(mm, haddr, pte, entry);
 | |
| 		atomic_inc(&page[i]._mapcount);
 | |
| 		pte_unmap(pte);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Set PG_double_map before dropping compound_mapcount to avoid
 | |
| 	 * false-negative page_mapped().
 | |
| 	 */
 | |
| 	if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
 | |
| 		for (i = 0; i < HPAGE_PMD_NR; i++)
 | |
| 			atomic_inc(&page[i]._mapcount);
 | |
| 	}
 | |
| 
 | |
| 	if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
 | |
| 		/* Last compound_mapcount is gone. */
 | |
| 		__dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
 | |
| 		if (TestClearPageDoubleMap(page)) {
 | |
| 			/* No need in mapcount reference anymore */
 | |
| 			for (i = 0; i < HPAGE_PMD_NR; i++)
 | |
| 				atomic_dec(&page[i]._mapcount);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	smp_wmb(); /* make pte visible before pmd */
 | |
| 	/*
 | |
| 	 * Up to this point the pmd is present and huge and userland has the
 | |
| 	 * whole access to the hugepage during the split (which happens in
 | |
| 	 * place). If we overwrite the pmd with the not-huge version pointing
 | |
| 	 * to the pte here (which of course we could if all CPUs were bug
 | |
| 	 * free), userland could trigger a small page size TLB miss on the
 | |
| 	 * small sized TLB while the hugepage TLB entry is still established in
 | |
| 	 * the huge TLB. Some CPU doesn't like that.
 | |
| 	 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
 | |
| 	 * 383 on page 93. Intel should be safe but is also warns that it's
 | |
| 	 * only safe if the permission and cache attributes of the two entries
 | |
| 	 * loaded in the two TLB is identical (which should be the case here).
 | |
| 	 * But it is generally safer to never allow small and huge TLB entries
 | |
| 	 * for the same virtual address to be loaded simultaneously. So instead
 | |
| 	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
 | |
| 	 * current pmd notpresent (atomically because here the pmd_trans_huge
 | |
| 	 * and pmd_trans_splitting must remain set at all times on the pmd
 | |
| 	 * until the split is complete for this pmd), then we flush the SMP TLB
 | |
| 	 * and finally we write the non-huge version of the pmd entry with
 | |
| 	 * pmd_populate.
 | |
| 	 */
 | |
| 	pmdp_invalidate(vma, haddr, pmd);
 | |
| 	pmd_populate(mm, pmd, pgtable);
 | |
| 
 | |
| 	if (freeze) {
 | |
| 		for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
 | |
| 			page_remove_rmap(page + i, false);
 | |
| 			put_page(page + i);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
 | |
| 		unsigned long address)
 | |
| {
 | |
| 	spinlock_t *ptl;
 | |
| 	struct mm_struct *mm = vma->vm_mm;
 | |
| 	struct page *page = NULL;
 | |
| 	unsigned long haddr = address & HPAGE_PMD_MASK;
 | |
| 
 | |
| 	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
 | |
| 	ptl = pmd_lock(mm, pmd);
 | |
| 	if (pmd_trans_huge(*pmd)) {
 | |
| 		page = pmd_page(*pmd);
 | |
| 		if (PageMlocked(page))
 | |
| 			get_page(page);
 | |
| 		else
 | |
| 			page = NULL;
 | |
| 	} else if (!pmd_devmap(*pmd))
 | |
| 		goto out;
 | |
| 	__split_huge_pmd_locked(vma, pmd, haddr, false);
 | |
| out:
 | |
| 	spin_unlock(ptl);
 | |
| 	mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
 | |
| 	if (page) {
 | |
| 		lock_page(page);
 | |
| 		munlock_vma_page(page);
 | |
| 		unlock_page(page);
 | |
| 		put_page(page);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void split_huge_pmd_address(struct vm_area_struct *vma,
 | |
| 				    unsigned long address)
 | |
| {
 | |
| 	pgd_t *pgd;
 | |
| 	pud_t *pud;
 | |
| 	pmd_t *pmd;
 | |
| 
 | |
| 	VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
 | |
| 
 | |
| 	pgd = pgd_offset(vma->vm_mm, address);
 | |
| 	if (!pgd_present(*pgd))
 | |
| 		return;
 | |
| 
 | |
| 	pud = pud_offset(pgd, address);
 | |
| 	if (!pud_present(*pud))
 | |
| 		return;
 | |
| 
 | |
| 	pmd = pmd_offset(pud, address);
 | |
| 	if (!pmd_present(*pmd) || (!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd)))
 | |
| 		return;
 | |
| 	/*
 | |
| 	 * Caller holds the mmap_sem write mode, so a huge pmd cannot
 | |
| 	 * materialize from under us.
 | |
| 	 */
 | |
| 	split_huge_pmd(vma, pmd, address);
 | |
| }
 | |
| 
 | |
| void vma_adjust_trans_huge(struct vm_area_struct *vma,
 | |
| 			     unsigned long start,
 | |
| 			     unsigned long end,
 | |
| 			     long adjust_next)
 | |
| {
 | |
| 	/*
 | |
| 	 * If the new start address isn't hpage aligned and it could
 | |
| 	 * previously contain an hugepage: check if we need to split
 | |
| 	 * an huge pmd.
 | |
| 	 */
 | |
| 	if (start & ~HPAGE_PMD_MASK &&
 | |
| 	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
 | |
| 	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
 | |
| 		split_huge_pmd_address(vma, start);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the new end address isn't hpage aligned and it could
 | |
| 	 * previously contain an hugepage: check if we need to split
 | |
| 	 * an huge pmd.
 | |
| 	 */
 | |
| 	if (end & ~HPAGE_PMD_MASK &&
 | |
| 	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
 | |
| 	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
 | |
| 		split_huge_pmd_address(vma, end);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we're also updating the vma->vm_next->vm_start, if the new
 | |
| 	 * vm_next->vm_start isn't page aligned and it could previously
 | |
| 	 * contain an hugepage: check if we need to split an huge pmd.
 | |
| 	 */
 | |
| 	if (adjust_next > 0) {
 | |
| 		struct vm_area_struct *next = vma->vm_next;
 | |
| 		unsigned long nstart = next->vm_start;
 | |
| 		nstart += adjust_next << PAGE_SHIFT;
 | |
| 		if (nstart & ~HPAGE_PMD_MASK &&
 | |
| 		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
 | |
| 		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
 | |
| 			split_huge_pmd_address(next, nstart);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void freeze_page_vma(struct vm_area_struct *vma, struct page *page,
 | |
| 		unsigned long address)
 | |
| {
 | |
| 	unsigned long haddr = address & HPAGE_PMD_MASK;
 | |
| 	spinlock_t *ptl;
 | |
| 	pgd_t *pgd;
 | |
| 	pud_t *pud;
 | |
| 	pmd_t *pmd;
 | |
| 	pte_t *pte;
 | |
| 	int i, nr = HPAGE_PMD_NR;
 | |
| 
 | |
| 	/* Skip pages which doesn't belong to the VMA */
 | |
| 	if (address < vma->vm_start) {
 | |
| 		int off = (vma->vm_start - address) >> PAGE_SHIFT;
 | |
| 		page += off;
 | |
| 		nr -= off;
 | |
| 		address = vma->vm_start;
 | |
| 	}
 | |
| 
 | |
| 	pgd = pgd_offset(vma->vm_mm, address);
 | |
| 	if (!pgd_present(*pgd))
 | |
| 		return;
 | |
| 	pud = pud_offset(pgd, address);
 | |
| 	if (!pud_present(*pud))
 | |
| 		return;
 | |
| 	pmd = pmd_offset(pud, address);
 | |
| 	ptl = pmd_lock(vma->vm_mm, pmd);
 | |
| 	if (!pmd_present(*pmd)) {
 | |
| 		spin_unlock(ptl);
 | |
| 		return;
 | |
| 	}
 | |
| 	if (pmd_trans_huge(*pmd)) {
 | |
| 		if (page == pmd_page(*pmd))
 | |
| 			__split_huge_pmd_locked(vma, pmd, haddr, true);
 | |
| 		spin_unlock(ptl);
 | |
| 		return;
 | |
| 	}
 | |
| 	spin_unlock(ptl);
 | |
| 
 | |
| 	pte = pte_offset_map_lock(vma->vm_mm, pmd, address, &ptl);
 | |
| 	for (i = 0; i < nr; i++, address += PAGE_SIZE, page++, pte++) {
 | |
| 		pte_t entry, swp_pte;
 | |
| 		swp_entry_t swp_entry;
 | |
| 
 | |
| 		/*
 | |
| 		 * We've just crossed page table boundary: need to map next one.
 | |
| 		 * It can happen if THP was mremaped to non PMD-aligned address.
 | |
| 		 */
 | |
| 		if (unlikely(address == haddr + HPAGE_PMD_SIZE)) {
 | |
| 			pte_unmap_unlock(pte - 1, ptl);
 | |
| 			pmd = mm_find_pmd(vma->vm_mm, address);
 | |
| 			if (!pmd)
 | |
| 				return;
 | |
| 			pte = pte_offset_map_lock(vma->vm_mm, pmd,
 | |
| 					address, &ptl);
 | |
| 		}
 | |
| 
 | |
| 		if (!pte_present(*pte))
 | |
| 			continue;
 | |
| 		if (page_to_pfn(page) != pte_pfn(*pte))
 | |
| 			continue;
 | |
| 		flush_cache_page(vma, address, page_to_pfn(page));
 | |
| 		entry = ptep_clear_flush(vma, address, pte);
 | |
| 		if (pte_dirty(entry))
 | |
| 			SetPageDirty(page);
 | |
| 		swp_entry = make_migration_entry(page, pte_write(entry));
 | |
| 		swp_pte = swp_entry_to_pte(swp_entry);
 | |
| 		if (pte_soft_dirty(entry))
 | |
| 			swp_pte = pte_swp_mksoft_dirty(swp_pte);
 | |
| 		set_pte_at(vma->vm_mm, address, pte, swp_pte);
 | |
| 		page_remove_rmap(page, false);
 | |
| 		put_page(page);
 | |
| 	}
 | |
| 	pte_unmap_unlock(pte - 1, ptl);
 | |
| }
 | |
| 
 | |
| static void freeze_page(struct anon_vma *anon_vma, struct page *page)
 | |
| {
 | |
| 	struct anon_vma_chain *avc;
 | |
| 	pgoff_t pgoff = page_to_pgoff(page);
 | |
| 
 | |
| 	VM_BUG_ON_PAGE(!PageHead(page), page);
 | |
| 
 | |
| 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff,
 | |
| 			pgoff + HPAGE_PMD_NR - 1) {
 | |
| 		unsigned long address = __vma_address(page, avc->vma);
 | |
| 
 | |
| 		mmu_notifier_invalidate_range_start(avc->vma->vm_mm,
 | |
| 				address, address + HPAGE_PMD_SIZE);
 | |
| 		freeze_page_vma(avc->vma, page, address);
 | |
| 		mmu_notifier_invalidate_range_end(avc->vma->vm_mm,
 | |
| 				address, address + HPAGE_PMD_SIZE);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void unfreeze_page_vma(struct vm_area_struct *vma, struct page *page,
 | |
| 		unsigned long address)
 | |
| {
 | |
| 	spinlock_t *ptl;
 | |
| 	pmd_t *pmd;
 | |
| 	pte_t *pte, entry;
 | |
| 	swp_entry_t swp_entry;
 | |
| 	unsigned long haddr = address & HPAGE_PMD_MASK;
 | |
| 	int i, nr = HPAGE_PMD_NR;
 | |
| 
 | |
| 	/* Skip pages which doesn't belong to the VMA */
 | |
| 	if (address < vma->vm_start) {
 | |
| 		int off = (vma->vm_start - address) >> PAGE_SHIFT;
 | |
| 		page += off;
 | |
| 		nr -= off;
 | |
| 		address = vma->vm_start;
 | |
| 	}
 | |
| 
 | |
| 	pmd = mm_find_pmd(vma->vm_mm, address);
 | |
| 	if (!pmd)
 | |
| 		return;
 | |
| 
 | |
| 	pte = pte_offset_map_lock(vma->vm_mm, pmd, address, &ptl);
 | |
| 	for (i = 0; i < nr; i++, address += PAGE_SIZE, page++, pte++) {
 | |
| 		/*
 | |
| 		 * We've just crossed page table boundary: need to map next one.
 | |
| 		 * It can happen if THP was mremaped to non-PMD aligned address.
 | |
| 		 */
 | |
| 		if (unlikely(address == haddr + HPAGE_PMD_SIZE)) {
 | |
| 			pte_unmap_unlock(pte - 1, ptl);
 | |
| 			pmd = mm_find_pmd(vma->vm_mm, address);
 | |
| 			if (!pmd)
 | |
| 				return;
 | |
| 			pte = pte_offset_map_lock(vma->vm_mm, pmd,
 | |
| 					address, &ptl);
 | |
| 		}
 | |
| 
 | |
| 		if (!is_swap_pte(*pte))
 | |
| 			continue;
 | |
| 
 | |
| 		swp_entry = pte_to_swp_entry(*pte);
 | |
| 		if (!is_migration_entry(swp_entry))
 | |
| 			continue;
 | |
| 		if (migration_entry_to_page(swp_entry) != page)
 | |
| 			continue;
 | |
| 
 | |
| 		get_page(page);
 | |
| 		page_add_anon_rmap(page, vma, address, false);
 | |
| 
 | |
| 		entry = pte_mkold(mk_pte(page, vma->vm_page_prot));
 | |
| 		if (PageDirty(page))
 | |
| 			entry = pte_mkdirty(entry);
 | |
| 		if (is_write_migration_entry(swp_entry))
 | |
| 			entry = maybe_mkwrite(entry, vma);
 | |
| 
 | |
| 		flush_dcache_page(page);
 | |
| 		set_pte_at(vma->vm_mm, address, pte, entry);
 | |
| 
 | |
| 		/* No need to invalidate - it was non-present before */
 | |
| 		update_mmu_cache(vma, address, pte);
 | |
| 	}
 | |
| 	pte_unmap_unlock(pte - 1, ptl);
 | |
| }
 | |
| 
 | |
| static void unfreeze_page(struct anon_vma *anon_vma, struct page *page)
 | |
| {
 | |
| 	struct anon_vma_chain *avc;
 | |
| 	pgoff_t pgoff = page_to_pgoff(page);
 | |
| 
 | |
| 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
 | |
| 			pgoff, pgoff + HPAGE_PMD_NR - 1) {
 | |
| 		unsigned long address = __vma_address(page, avc->vma);
 | |
| 
 | |
| 		mmu_notifier_invalidate_range_start(avc->vma->vm_mm,
 | |
| 				address, address + HPAGE_PMD_SIZE);
 | |
| 		unfreeze_page_vma(avc->vma, page, address);
 | |
| 		mmu_notifier_invalidate_range_end(avc->vma->vm_mm,
 | |
| 				address, address + HPAGE_PMD_SIZE);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int __split_huge_page_tail(struct page *head, int tail,
 | |
| 		struct lruvec *lruvec, struct list_head *list)
 | |
| {
 | |
| 	int mapcount;
 | |
| 	struct page *page_tail = head + tail;
 | |
| 
 | |
| 	mapcount = atomic_read(&page_tail->_mapcount) + 1;
 | |
| 	VM_BUG_ON_PAGE(atomic_read(&page_tail->_count) != 0, page_tail);
 | |
| 
 | |
| 	/*
 | |
| 	 * tail_page->_count is zero and not changing from under us. But
 | |
| 	 * get_page_unless_zero() may be running from under us on the
 | |
| 	 * tail_page. If we used atomic_set() below instead of atomic_add(), we
 | |
| 	 * would then run atomic_set() concurrently with
 | |
| 	 * get_page_unless_zero(), and atomic_set() is implemented in C not
 | |
| 	 * using locked ops. spin_unlock on x86 sometime uses locked ops
 | |
| 	 * because of PPro errata 66, 92, so unless somebody can guarantee
 | |
| 	 * atomic_set() here would be safe on all archs (and not only on x86),
 | |
| 	 * it's safer to use atomic_add().
 | |
| 	 */
 | |
| 	atomic_add(mapcount + 1, &page_tail->_count);
 | |
| 
 | |
| 
 | |
| 	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
 | |
| 	page_tail->flags |= (head->flags &
 | |
| 			((1L << PG_referenced) |
 | |
| 			 (1L << PG_swapbacked) |
 | |
| 			 (1L << PG_mlocked) |
 | |
| 			 (1L << PG_uptodate) |
 | |
| 			 (1L << PG_active) |
 | |
| 			 (1L << PG_locked) |
 | |
| 			 (1L << PG_unevictable) |
 | |
| 			 (1L << PG_dirty)));
 | |
| 
 | |
| 	/*
 | |
| 	 * After clearing PageTail the gup refcount can be released.
 | |
| 	 * Page flags also must be visible before we make the page non-compound.
 | |
| 	 */
 | |
| 	smp_wmb();
 | |
| 
 | |
| 	clear_compound_head(page_tail);
 | |
| 
 | |
| 	if (page_is_young(head))
 | |
| 		set_page_young(page_tail);
 | |
| 	if (page_is_idle(head))
 | |
| 		set_page_idle(page_tail);
 | |
| 
 | |
| 	/* ->mapping in first tail page is compound_mapcount */
 | |
| 	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
 | |
| 			page_tail);
 | |
| 	page_tail->mapping = head->mapping;
 | |
| 
 | |
| 	page_tail->index = head->index + tail;
 | |
| 	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
 | |
| 	lru_add_page_tail(head, page_tail, lruvec, list);
 | |
| 
 | |
| 	return mapcount;
 | |
| }
 | |
| 
 | |
| static void __split_huge_page(struct page *page, struct list_head *list)
 | |
| {
 | |
| 	struct page *head = compound_head(page);
 | |
| 	struct zone *zone = page_zone(head);
 | |
| 	struct lruvec *lruvec;
 | |
| 	int i, tail_mapcount;
 | |
| 
 | |
| 	/* prevent PageLRU to go away from under us, and freeze lru stats */
 | |
| 	spin_lock_irq(&zone->lru_lock);
 | |
| 	lruvec = mem_cgroup_page_lruvec(head, zone);
 | |
| 
 | |
| 	/* complete memcg works before add pages to LRU */
 | |
| 	mem_cgroup_split_huge_fixup(head);
 | |
| 
 | |
| 	tail_mapcount = 0;
 | |
| 	for (i = HPAGE_PMD_NR - 1; i >= 1; i--)
 | |
| 		tail_mapcount += __split_huge_page_tail(head, i, lruvec, list);
 | |
| 	atomic_sub(tail_mapcount, &head->_count);
 | |
| 
 | |
| 	ClearPageCompound(head);
 | |
| 	spin_unlock_irq(&zone->lru_lock);
 | |
| 
 | |
| 	unfreeze_page(page_anon_vma(head), head);
 | |
| 
 | |
| 	for (i = 0; i < HPAGE_PMD_NR; i++) {
 | |
| 		struct page *subpage = head + i;
 | |
| 		if (subpage == page)
 | |
| 			continue;
 | |
| 		unlock_page(subpage);
 | |
| 
 | |
| 		/*
 | |
| 		 * Subpages may be freed if there wasn't any mapping
 | |
| 		 * like if add_to_swap() is running on a lru page that
 | |
| 		 * had its mapping zapped. And freeing these pages
 | |
| 		 * requires taking the lru_lock so we do the put_page
 | |
| 		 * of the tail pages after the split is complete.
 | |
| 		 */
 | |
| 		put_page(subpage);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int total_mapcount(struct page *page)
 | |
| {
 | |
| 	int i, ret;
 | |
| 
 | |
| 	VM_BUG_ON_PAGE(PageTail(page), page);
 | |
| 
 | |
| 	if (likely(!PageCompound(page)))
 | |
| 		return atomic_read(&page->_mapcount) + 1;
 | |
| 
 | |
| 	ret = compound_mapcount(page);
 | |
| 	if (PageHuge(page))
 | |
| 		return ret;
 | |
| 	for (i = 0; i < HPAGE_PMD_NR; i++)
 | |
| 		ret += atomic_read(&page[i]._mapcount) + 1;
 | |
| 	if (PageDoubleMap(page))
 | |
| 		ret -= HPAGE_PMD_NR;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function splits huge page into normal pages. @page can point to any
 | |
|  * subpage of huge page to split. Split doesn't change the position of @page.
 | |
|  *
 | |
|  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
 | |
|  * The huge page must be locked.
 | |
|  *
 | |
|  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
 | |
|  *
 | |
|  * Both head page and tail pages will inherit mapping, flags, and so on from
 | |
|  * the hugepage.
 | |
|  *
 | |
|  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
 | |
|  * they are not mapped.
 | |
|  *
 | |
|  * Returns 0 if the hugepage is split successfully.
 | |
|  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
 | |
|  * us.
 | |
|  */
 | |
| int split_huge_page_to_list(struct page *page, struct list_head *list)
 | |
| {
 | |
| 	struct page *head = compound_head(page);
 | |
| 	struct anon_vma *anon_vma;
 | |
| 	int count, mapcount, ret;
 | |
| 	bool mlocked;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
 | |
| 	VM_BUG_ON_PAGE(!PageAnon(page), page);
 | |
| 	VM_BUG_ON_PAGE(!PageLocked(page), page);
 | |
| 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
 | |
| 	VM_BUG_ON_PAGE(!PageCompound(page), page);
 | |
| 
 | |
| 	/*
 | |
| 	 * The caller does not necessarily hold an mmap_sem that would prevent
 | |
| 	 * the anon_vma disappearing so we first we take a reference to it
 | |
| 	 * and then lock the anon_vma for write. This is similar to
 | |
| 	 * page_lock_anon_vma_read except the write lock is taken to serialise
 | |
| 	 * against parallel split or collapse operations.
 | |
| 	 */
 | |
| 	anon_vma = page_get_anon_vma(head);
 | |
| 	if (!anon_vma) {
 | |
| 		ret = -EBUSY;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	anon_vma_lock_write(anon_vma);
 | |
| 
 | |
| 	/*
 | |
| 	 * Racy check if we can split the page, before freeze_page() will
 | |
| 	 * split PMDs
 | |
| 	 */
 | |
| 	if (total_mapcount(head) != page_count(head) - 1) {
 | |
| 		ret = -EBUSY;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	mlocked = PageMlocked(page);
 | |
| 	freeze_page(anon_vma, head);
 | |
| 	VM_BUG_ON_PAGE(compound_mapcount(head), head);
 | |
| 
 | |
| 	/* Make sure the page is not on per-CPU pagevec as it takes pin */
 | |
| 	if (mlocked)
 | |
| 		lru_add_drain();
 | |
| 
 | |
| 	/* Prevent deferred_split_scan() touching ->_count */
 | |
| 	spin_lock_irqsave(&split_queue_lock, flags);
 | |
| 	count = page_count(head);
 | |
| 	mapcount = total_mapcount(head);
 | |
| 	if (!mapcount && count == 1) {
 | |
| 		if (!list_empty(page_deferred_list(head))) {
 | |
| 			split_queue_len--;
 | |
| 			list_del(page_deferred_list(head));
 | |
| 		}
 | |
| 		spin_unlock_irqrestore(&split_queue_lock, flags);
 | |
| 		__split_huge_page(page, list);
 | |
| 		ret = 0;
 | |
| 	} else if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
 | |
| 		spin_unlock_irqrestore(&split_queue_lock, flags);
 | |
| 		pr_alert("total_mapcount: %u, page_count(): %u\n",
 | |
| 				mapcount, count);
 | |
| 		if (PageTail(page))
 | |
| 			dump_page(head, NULL);
 | |
| 		dump_page(page, "total_mapcount(head) > 0");
 | |
| 		BUG();
 | |
| 	} else {
 | |
| 		spin_unlock_irqrestore(&split_queue_lock, flags);
 | |
| 		unfreeze_page(anon_vma, head);
 | |
| 		ret = -EBUSY;
 | |
| 	}
 | |
| 
 | |
| out_unlock:
 | |
| 	anon_vma_unlock_write(anon_vma);
 | |
| 	put_anon_vma(anon_vma);
 | |
| out:
 | |
| 	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void free_transhuge_page(struct page *page)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&split_queue_lock, flags);
 | |
| 	if (!list_empty(page_deferred_list(page))) {
 | |
| 		split_queue_len--;
 | |
| 		list_del(page_deferred_list(page));
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&split_queue_lock, flags);
 | |
| 	free_compound_page(page);
 | |
| }
 | |
| 
 | |
| void deferred_split_huge_page(struct page *page)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	VM_BUG_ON_PAGE(!PageTransHuge(page), page);
 | |
| 
 | |
| 	spin_lock_irqsave(&split_queue_lock, flags);
 | |
| 	if (list_empty(page_deferred_list(page))) {
 | |
| 		list_add_tail(page_deferred_list(page), &split_queue);
 | |
| 		split_queue_len++;
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&split_queue_lock, flags);
 | |
| }
 | |
| 
 | |
| static unsigned long deferred_split_count(struct shrinker *shrink,
 | |
| 		struct shrink_control *sc)
 | |
| {
 | |
| 	/*
 | |
| 	 * Split a page from split_queue will free up at least one page,
 | |
| 	 * at most HPAGE_PMD_NR - 1. We don't track exact number.
 | |
| 	 * Let's use HPAGE_PMD_NR / 2 as ballpark.
 | |
| 	 */
 | |
| 	return ACCESS_ONCE(split_queue_len) * HPAGE_PMD_NR / 2;
 | |
| }
 | |
| 
 | |
| static unsigned long deferred_split_scan(struct shrinker *shrink,
 | |
| 		struct shrink_control *sc)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	LIST_HEAD(list), *pos, *next;
 | |
| 	struct page *page;
 | |
| 	int split = 0;
 | |
| 
 | |
| 	spin_lock_irqsave(&split_queue_lock, flags);
 | |
| 	list_splice_init(&split_queue, &list);
 | |
| 
 | |
| 	/* Take pin on all head pages to avoid freeing them under us */
 | |
| 	list_for_each_safe(pos, next, &list) {
 | |
| 		page = list_entry((void *)pos, struct page, mapping);
 | |
| 		page = compound_head(page);
 | |
| 		/* race with put_compound_page() */
 | |
| 		if (!get_page_unless_zero(page)) {
 | |
| 			list_del_init(page_deferred_list(page));
 | |
| 			split_queue_len--;
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&split_queue_lock, flags);
 | |
| 
 | |
| 	list_for_each_safe(pos, next, &list) {
 | |
| 		page = list_entry((void *)pos, struct page, mapping);
 | |
| 		lock_page(page);
 | |
| 		/* split_huge_page() removes page from list on success */
 | |
| 		if (!split_huge_page(page))
 | |
| 			split++;
 | |
| 		unlock_page(page);
 | |
| 		put_page(page);
 | |
| 	}
 | |
| 
 | |
| 	spin_lock_irqsave(&split_queue_lock, flags);
 | |
| 	list_splice_tail(&list, &split_queue);
 | |
| 	spin_unlock_irqrestore(&split_queue_lock, flags);
 | |
| 
 | |
| 	return split * HPAGE_PMD_NR / 2;
 | |
| }
 | |
| 
 | |
| static struct shrinker deferred_split_shrinker = {
 | |
| 	.count_objects = deferred_split_count,
 | |
| 	.scan_objects = deferred_split_scan,
 | |
| 	.seeks = DEFAULT_SEEKS,
 | |
| };
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_FS
 | |
| static int split_huge_pages_set(void *data, u64 val)
 | |
| {
 | |
| 	struct zone *zone;
 | |
| 	struct page *page;
 | |
| 	unsigned long pfn, max_zone_pfn;
 | |
| 	unsigned long total = 0, split = 0;
 | |
| 
 | |
| 	if (val != 1)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	for_each_populated_zone(zone) {
 | |
| 		max_zone_pfn = zone_end_pfn(zone);
 | |
| 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
 | |
| 			if (!pfn_valid(pfn))
 | |
| 				continue;
 | |
| 
 | |
| 			page = pfn_to_page(pfn);
 | |
| 			if (!get_page_unless_zero(page))
 | |
| 				continue;
 | |
| 
 | |
| 			if (zone != page_zone(page))
 | |
| 				goto next;
 | |
| 
 | |
| 			if (!PageHead(page) || !PageAnon(page) ||
 | |
| 					PageHuge(page))
 | |
| 				goto next;
 | |
| 
 | |
| 			total++;
 | |
| 			lock_page(page);
 | |
| 			if (!split_huge_page(page))
 | |
| 				split++;
 | |
| 			unlock_page(page);
 | |
| next:
 | |
| 			put_page(page);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	pr_info("%lu of %lu THP split", split, total);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
 | |
| 		"%llu\n");
 | |
| 
 | |
| static int __init split_huge_pages_debugfs(void)
 | |
| {
 | |
| 	void *ret;
 | |
| 
 | |
| 	ret = debugfs_create_file("split_huge_pages", 0644, NULL, NULL,
 | |
| 			&split_huge_pages_fops);
 | |
| 	if (!ret)
 | |
| 		pr_warn("Failed to create split_huge_pages in debugfs");
 | |
| 	return 0;
 | |
| }
 | |
| late_initcall(split_huge_pages_debugfs);
 | |
| #endif
 |