2ec8efe64e
objtool found a few cases where this code called out into instrumented code: vmlinux.o: warning: objtool: intel_idle_s2idle+0x6e: call to __monitor.constprop.0() leaves .noinstr.text section vmlinux.o: warning: objtool: intel_idle_irq+0x8c: call to __monitor.constprop.0() leaves .noinstr.text section vmlinux.o: warning: objtool: intel_idle+0x73: call to __monitor.constprop.0() leaves .noinstr.text section vmlinux.o: warning: objtool: mwait_idle+0x88: call to clflush() leaves .noinstr.text section Fix it by marking the affected methods as __always_inline. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Tested-by: Tony Lindgren <tony@atomide.com> Tested-by: Ulf Hansson <ulf.hansson@linaro.org> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Frederic Weisbecker <frederic@kernel.org> Link: https://lore.kernel.org/r/20230112195541.050542952@infradead.org
145 lines
4.4 KiB
C
145 lines
4.4 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
#ifndef _ASM_X86_MWAIT_H
|
|
#define _ASM_X86_MWAIT_H
|
|
|
|
#include <linux/sched.h>
|
|
#include <linux/sched/idle.h>
|
|
|
|
#include <asm/cpufeature.h>
|
|
#include <asm/nospec-branch.h>
|
|
|
|
#define MWAIT_SUBSTATE_MASK 0xf
|
|
#define MWAIT_CSTATE_MASK 0xf
|
|
#define MWAIT_SUBSTATE_SIZE 4
|
|
#define MWAIT_HINT2CSTATE(hint) (((hint) >> MWAIT_SUBSTATE_SIZE) & MWAIT_CSTATE_MASK)
|
|
#define MWAIT_HINT2SUBSTATE(hint) ((hint) & MWAIT_CSTATE_MASK)
|
|
#define MWAIT_C1_SUBSTATE_MASK 0xf0
|
|
|
|
#define CPUID_MWAIT_LEAF 5
|
|
#define CPUID5_ECX_EXTENSIONS_SUPPORTED 0x1
|
|
#define CPUID5_ECX_INTERRUPT_BREAK 0x2
|
|
|
|
#define MWAIT_ECX_INTERRUPT_BREAK 0x1
|
|
#define MWAITX_ECX_TIMER_ENABLE BIT(1)
|
|
#define MWAITX_MAX_WAIT_CYCLES UINT_MAX
|
|
#define MWAITX_DISABLE_CSTATES 0xf0
|
|
#define TPAUSE_C01_STATE 1
|
|
#define TPAUSE_C02_STATE 0
|
|
|
|
static __always_inline void __monitor(const void *eax, unsigned long ecx,
|
|
unsigned long edx)
|
|
{
|
|
/* "monitor %eax, %ecx, %edx;" */
|
|
asm volatile(".byte 0x0f, 0x01, 0xc8;"
|
|
:: "a" (eax), "c" (ecx), "d"(edx));
|
|
}
|
|
|
|
static __always_inline void __monitorx(const void *eax, unsigned long ecx,
|
|
unsigned long edx)
|
|
{
|
|
/* "monitorx %eax, %ecx, %edx;" */
|
|
asm volatile(".byte 0x0f, 0x01, 0xfa;"
|
|
:: "a" (eax), "c" (ecx), "d"(edx));
|
|
}
|
|
|
|
static __always_inline void __mwait(unsigned long eax, unsigned long ecx)
|
|
{
|
|
mds_idle_clear_cpu_buffers();
|
|
|
|
/* "mwait %eax, %ecx;" */
|
|
asm volatile(".byte 0x0f, 0x01, 0xc9;"
|
|
:: "a" (eax), "c" (ecx));
|
|
}
|
|
|
|
/*
|
|
* MWAITX allows for a timer expiration to get the core out a wait state in
|
|
* addition to the default MWAIT exit condition of a store appearing at a
|
|
* monitored virtual address.
|
|
*
|
|
* Registers:
|
|
*
|
|
* MWAITX ECX[1]: enable timer if set
|
|
* MWAITX EBX[31:0]: max wait time expressed in SW P0 clocks. The software P0
|
|
* frequency is the same as the TSC frequency.
|
|
*
|
|
* Below is a comparison between MWAIT and MWAITX on AMD processors:
|
|
*
|
|
* MWAIT MWAITX
|
|
* opcode 0f 01 c9 | 0f 01 fb
|
|
* ECX[0] value of RFLAGS.IF seen by instruction
|
|
* ECX[1] unused/#GP if set | enable timer if set
|
|
* ECX[31:2] unused/#GP if set
|
|
* EAX unused (reserve for hint)
|
|
* EBX[31:0] unused | max wait time (P0 clocks)
|
|
*
|
|
* MONITOR MONITORX
|
|
* opcode 0f 01 c8 | 0f 01 fa
|
|
* EAX (logical) address to monitor
|
|
* ECX #GP if not zero
|
|
*/
|
|
static __always_inline void __mwaitx(unsigned long eax, unsigned long ebx,
|
|
unsigned long ecx)
|
|
{
|
|
/* No MDS buffer clear as this is AMD/HYGON only */
|
|
|
|
/* "mwaitx %eax, %ebx, %ecx;" */
|
|
asm volatile(".byte 0x0f, 0x01, 0xfb;"
|
|
:: "a" (eax), "b" (ebx), "c" (ecx));
|
|
}
|
|
|
|
static __always_inline void __sti_mwait(unsigned long eax, unsigned long ecx)
|
|
{
|
|
mds_idle_clear_cpu_buffers();
|
|
/* "mwait %eax, %ecx;" */
|
|
asm volatile("sti; .byte 0x0f, 0x01, 0xc9;"
|
|
:: "a" (eax), "c" (ecx));
|
|
}
|
|
|
|
/*
|
|
* This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
|
|
* which can obviate IPI to trigger checking of need_resched.
|
|
* We execute MONITOR against need_resched and enter optimized wait state
|
|
* through MWAIT. Whenever someone changes need_resched, we would be woken
|
|
* up from MWAIT (without an IPI).
|
|
*
|
|
* New with Core Duo processors, MWAIT can take some hints based on CPU
|
|
* capability.
|
|
*/
|
|
static __always_inline void mwait_idle_with_hints(unsigned long eax, unsigned long ecx)
|
|
{
|
|
if (static_cpu_has_bug(X86_BUG_MONITOR) || !current_set_polling_and_test()) {
|
|
if (static_cpu_has_bug(X86_BUG_CLFLUSH_MONITOR)) {
|
|
mb();
|
|
clflush((void *)¤t_thread_info()->flags);
|
|
mb();
|
|
}
|
|
|
|
__monitor((void *)¤t_thread_info()->flags, 0, 0);
|
|
if (!need_resched())
|
|
__mwait(eax, ecx);
|
|
}
|
|
current_clr_polling();
|
|
}
|
|
|
|
/*
|
|
* Caller can specify whether to enter C0.1 (low latency, less
|
|
* power saving) or C0.2 state (saves more power, but longer wakeup
|
|
* latency). This may be overridden by the IA32_UMWAIT_CONTROL MSR
|
|
* which can force requests for C0.2 to be downgraded to C0.1.
|
|
*/
|
|
static inline void __tpause(u32 ecx, u32 edx, u32 eax)
|
|
{
|
|
/* "tpause %ecx, %edx, %eax;" */
|
|
#ifdef CONFIG_AS_TPAUSE
|
|
asm volatile("tpause %%ecx\n"
|
|
:
|
|
: "c"(ecx), "d"(edx), "a"(eax));
|
|
#else
|
|
asm volatile(".byte 0x66, 0x0f, 0xae, 0xf1\t\n"
|
|
:
|
|
: "c"(ecx), "d"(edx), "a"(eax));
|
|
#endif
|
|
}
|
|
|
|
#endif /* _ASM_X86_MWAIT_H */
|