a8ea8bdd9d
Expand the mpi library based on libgcrypt, and the ECC algorithm of mpi based on libgcrypt requires these functions. Some other algorithms will be developed based on mpi ecc, such as SM2. Signed-off-by: Tianjia Zhang <tianjia.zhang@linux.alibaba.com> Tested-by: Xufeng Zhang <yunbo.xufeng@linux.alibaba.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
144 lines
3.3 KiB
C
144 lines
3.3 KiB
C
/* mpi-inv.c - MPI functions
|
|
* Copyright (C) 1998, 2001, 2002, 2003 Free Software Foundation, Inc.
|
|
*
|
|
* This file is part of Libgcrypt.
|
|
*
|
|
* Libgcrypt is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU Lesser General Public License as
|
|
* published by the Free Software Foundation; either version 2.1 of
|
|
* the License, or (at your option) any later version.
|
|
*
|
|
* Libgcrypt is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this program; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "mpi-internal.h"
|
|
|
|
/****************
|
|
* Calculate the multiplicative inverse X of A mod N
|
|
* That is: Find the solution x for
|
|
* 1 = (a*x) mod n
|
|
*/
|
|
int mpi_invm(MPI x, MPI a, MPI n)
|
|
{
|
|
/* Extended Euclid's algorithm (See TAOCP Vol II, 4.5.2, Alg X)
|
|
* modified according to Michael Penk's solution for Exercise 35
|
|
* with further enhancement
|
|
*/
|
|
MPI u, v, u1, u2 = NULL, u3, v1, v2 = NULL, v3, t1, t2 = NULL, t3;
|
|
unsigned int k;
|
|
int sign;
|
|
int odd;
|
|
|
|
if (!mpi_cmp_ui(a, 0))
|
|
return 0; /* Inverse does not exists. */
|
|
if (!mpi_cmp_ui(n, 1))
|
|
return 0; /* Inverse does not exists. */
|
|
|
|
u = mpi_copy(a);
|
|
v = mpi_copy(n);
|
|
|
|
for (k = 0; !mpi_test_bit(u, 0) && !mpi_test_bit(v, 0); k++) {
|
|
mpi_rshift(u, u, 1);
|
|
mpi_rshift(v, v, 1);
|
|
}
|
|
odd = mpi_test_bit(v, 0);
|
|
|
|
u1 = mpi_alloc_set_ui(1);
|
|
if (!odd)
|
|
u2 = mpi_alloc_set_ui(0);
|
|
u3 = mpi_copy(u);
|
|
v1 = mpi_copy(v);
|
|
if (!odd) {
|
|
v2 = mpi_alloc(mpi_get_nlimbs(u));
|
|
mpi_sub(v2, u1, u); /* U is used as const 1 */
|
|
}
|
|
v3 = mpi_copy(v);
|
|
if (mpi_test_bit(u, 0)) { /* u is odd */
|
|
t1 = mpi_alloc_set_ui(0);
|
|
if (!odd) {
|
|
t2 = mpi_alloc_set_ui(1);
|
|
t2->sign = 1;
|
|
}
|
|
t3 = mpi_copy(v);
|
|
t3->sign = !t3->sign;
|
|
goto Y4;
|
|
} else {
|
|
t1 = mpi_alloc_set_ui(1);
|
|
if (!odd)
|
|
t2 = mpi_alloc_set_ui(0);
|
|
t3 = mpi_copy(u);
|
|
}
|
|
|
|
do {
|
|
do {
|
|
if (!odd) {
|
|
if (mpi_test_bit(t1, 0) || mpi_test_bit(t2, 0)) {
|
|
/* one is odd */
|
|
mpi_add(t1, t1, v);
|
|
mpi_sub(t2, t2, u);
|
|
}
|
|
mpi_rshift(t1, t1, 1);
|
|
mpi_rshift(t2, t2, 1);
|
|
mpi_rshift(t3, t3, 1);
|
|
} else {
|
|
if (mpi_test_bit(t1, 0))
|
|
mpi_add(t1, t1, v);
|
|
mpi_rshift(t1, t1, 1);
|
|
mpi_rshift(t3, t3, 1);
|
|
}
|
|
Y4:
|
|
;
|
|
} while (!mpi_test_bit(t3, 0)); /* while t3 is even */
|
|
|
|
if (!t3->sign) {
|
|
mpi_set(u1, t1);
|
|
if (!odd)
|
|
mpi_set(u2, t2);
|
|
mpi_set(u3, t3);
|
|
} else {
|
|
mpi_sub(v1, v, t1);
|
|
sign = u->sign; u->sign = !u->sign;
|
|
if (!odd)
|
|
mpi_sub(v2, u, t2);
|
|
u->sign = sign;
|
|
sign = t3->sign; t3->sign = !t3->sign;
|
|
mpi_set(v3, t3);
|
|
t3->sign = sign;
|
|
}
|
|
mpi_sub(t1, u1, v1);
|
|
if (!odd)
|
|
mpi_sub(t2, u2, v2);
|
|
mpi_sub(t3, u3, v3);
|
|
if (t1->sign) {
|
|
mpi_add(t1, t1, v);
|
|
if (!odd)
|
|
mpi_sub(t2, t2, u);
|
|
}
|
|
} while (mpi_cmp_ui(t3, 0)); /* while t3 != 0 */
|
|
/* mpi_lshift( u3, k ); */
|
|
mpi_set(x, u1);
|
|
|
|
mpi_free(u1);
|
|
mpi_free(v1);
|
|
mpi_free(t1);
|
|
if (!odd) {
|
|
mpi_free(u2);
|
|
mpi_free(v2);
|
|
mpi_free(t2);
|
|
}
|
|
mpi_free(u3);
|
|
mpi_free(v3);
|
|
mpi_free(t3);
|
|
|
|
mpi_free(u);
|
|
mpi_free(v);
|
|
return 1;
|
|
}
|
|
EXPORT_SYMBOL_GPL(mpi_invm);
|