linux/arch/powerpc/net/bpf_jit_comp64.c
Hari Bathini 90d862f370 powerpc/bpf: use bpf_jit_binary_pack_[alloc|finalize|free]
Use bpf_jit_binary_pack_alloc in powerpc jit. The jit engine first
writes the program to the rw buffer. When the jit is done, the program
is copied to the final location with bpf_jit_binary_pack_finalize.
With multiple jit_subprogs, bpf_jit_free is called on some subprograms
that haven't got bpf_jit_binary_pack_finalize() yet. Implement custom
bpf_jit_free() like in commit 1d5f82d9dd47 ("bpf, x86: fix freeing of
not-finalized bpf_prog_pack") to call bpf_jit_binary_pack_finalize(),
if necessary. As bpf_flush_icache() is not needed anymore, remove it.

Signed-off-by: Hari Bathini <hbathini@linux.ibm.com>
Acked-by: Song Liu <song@kernel.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://msgid.link/20231020141358.643575-6-hbathini@linux.ibm.com
2023-10-23 20:33:19 +11:00

1229 lines
36 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* bpf_jit_comp64.c: eBPF JIT compiler
*
* Copyright 2016 Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
* IBM Corporation
*
* Based on the powerpc classic BPF JIT compiler by Matt Evans
*/
#include <linux/moduleloader.h>
#include <asm/cacheflush.h>
#include <asm/asm-compat.h>
#include <linux/netdevice.h>
#include <linux/filter.h>
#include <linux/if_vlan.h>
#include <asm/kprobes.h>
#include <linux/bpf.h>
#include <asm/security_features.h>
#include "bpf_jit.h"
/*
* Stack layout:
* Ensure the top half (upto local_tmp_var) stays consistent
* with our redzone usage.
*
* [ prev sp ] <-------------
* [ nv gpr save area ] 5*8 |
* [ tail_call_cnt ] 8 |
* [ local_tmp_var ] 16 |
* fp (r31) --> [ ebpf stack space ] upto 512 |
* [ frame header ] 32/112 |
* sp (r1) ---> [ stack pointer ] --------------
*/
/* for gpr non volatile registers BPG_REG_6 to 10 */
#define BPF_PPC_STACK_SAVE (5*8)
/* for bpf JIT code internal usage */
#define BPF_PPC_STACK_LOCALS 24
/* stack frame excluding BPF stack, ensure this is quadword aligned */
#define BPF_PPC_STACKFRAME (STACK_FRAME_MIN_SIZE + \
BPF_PPC_STACK_LOCALS + BPF_PPC_STACK_SAVE)
/* BPF register usage */
#define TMP_REG_1 (MAX_BPF_JIT_REG + 0)
#define TMP_REG_2 (MAX_BPF_JIT_REG + 1)
/* BPF to ppc register mappings */
void bpf_jit_init_reg_mapping(struct codegen_context *ctx)
{
/* function return value */
ctx->b2p[BPF_REG_0] = _R8;
/* function arguments */
ctx->b2p[BPF_REG_1] = _R3;
ctx->b2p[BPF_REG_2] = _R4;
ctx->b2p[BPF_REG_3] = _R5;
ctx->b2p[BPF_REG_4] = _R6;
ctx->b2p[BPF_REG_5] = _R7;
/* non volatile registers */
ctx->b2p[BPF_REG_6] = _R27;
ctx->b2p[BPF_REG_7] = _R28;
ctx->b2p[BPF_REG_8] = _R29;
ctx->b2p[BPF_REG_9] = _R30;
/* frame pointer aka BPF_REG_10 */
ctx->b2p[BPF_REG_FP] = _R31;
/* eBPF jit internal registers */
ctx->b2p[BPF_REG_AX] = _R12;
ctx->b2p[TMP_REG_1] = _R9;
ctx->b2p[TMP_REG_2] = _R10;
}
/* PPC NVR range -- update this if we ever use NVRs below r27 */
#define BPF_PPC_NVR_MIN _R27
static inline bool bpf_has_stack_frame(struct codegen_context *ctx)
{
/*
* We only need a stack frame if:
* - we call other functions (kernel helpers), or
* - the bpf program uses its stack area
* The latter condition is deduced from the usage of BPF_REG_FP
*/
return ctx->seen & SEEN_FUNC || bpf_is_seen_register(ctx, bpf_to_ppc(BPF_REG_FP));
}
/*
* When not setting up our own stackframe, the redzone usage is:
*
* [ prev sp ] <-------------
* [ ... ] |
* sp (r1) ---> [ stack pointer ] --------------
* [ nv gpr save area ] 5*8
* [ tail_call_cnt ] 8
* [ local_tmp_var ] 16
* [ unused red zone ] 208 bytes protected
*/
static int bpf_jit_stack_local(struct codegen_context *ctx)
{
if (bpf_has_stack_frame(ctx))
return STACK_FRAME_MIN_SIZE + ctx->stack_size;
else
return -(BPF_PPC_STACK_SAVE + 24);
}
static int bpf_jit_stack_tailcallcnt(struct codegen_context *ctx)
{
return bpf_jit_stack_local(ctx) + 16;
}
static int bpf_jit_stack_offsetof(struct codegen_context *ctx, int reg)
{
if (reg >= BPF_PPC_NVR_MIN && reg < 32)
return (bpf_has_stack_frame(ctx) ?
(BPF_PPC_STACKFRAME + ctx->stack_size) : 0)
- (8 * (32 - reg));
pr_err("BPF JIT is asking about unknown registers");
BUG();
}
void bpf_jit_realloc_regs(struct codegen_context *ctx)
{
}
void bpf_jit_build_prologue(u32 *image, struct codegen_context *ctx)
{
int i;
#ifndef CONFIG_PPC_KERNEL_PCREL
if (IS_ENABLED(CONFIG_PPC64_ELF_ABI_V2))
EMIT(PPC_RAW_LD(_R2, _R13, offsetof(struct paca_struct, kernel_toc)));
#endif
/*
* Initialize tail_call_cnt if we do tail calls.
* Otherwise, put in NOPs so that it can be skipped when we are
* invoked through a tail call.
*/
if (ctx->seen & SEEN_TAILCALL) {
EMIT(PPC_RAW_LI(bpf_to_ppc(TMP_REG_1), 0));
/* this goes in the redzone */
EMIT(PPC_RAW_STD(bpf_to_ppc(TMP_REG_1), _R1, -(BPF_PPC_STACK_SAVE + 8)));
} else {
EMIT(PPC_RAW_NOP());
EMIT(PPC_RAW_NOP());
}
if (bpf_has_stack_frame(ctx)) {
/*
* We need a stack frame, but we don't necessarily need to
* save/restore LR unless we call other functions
*/
if (ctx->seen & SEEN_FUNC) {
EMIT(PPC_RAW_MFLR(_R0));
EMIT(PPC_RAW_STD(_R0, _R1, PPC_LR_STKOFF));
}
EMIT(PPC_RAW_STDU(_R1, _R1, -(BPF_PPC_STACKFRAME + ctx->stack_size)));
}
/*
* Back up non-volatile regs -- BPF registers 6-10
* If we haven't created our own stack frame, we save these
* in the protected zone below the previous stack frame
*/
for (i = BPF_REG_6; i <= BPF_REG_10; i++)
if (bpf_is_seen_register(ctx, bpf_to_ppc(i)))
EMIT(PPC_RAW_STD(bpf_to_ppc(i), _R1, bpf_jit_stack_offsetof(ctx, bpf_to_ppc(i))));
/* Setup frame pointer to point to the bpf stack area */
if (bpf_is_seen_register(ctx, bpf_to_ppc(BPF_REG_FP)))
EMIT(PPC_RAW_ADDI(bpf_to_ppc(BPF_REG_FP), _R1,
STACK_FRAME_MIN_SIZE + ctx->stack_size));
}
static void bpf_jit_emit_common_epilogue(u32 *image, struct codegen_context *ctx)
{
int i;
/* Restore NVRs */
for (i = BPF_REG_6; i <= BPF_REG_10; i++)
if (bpf_is_seen_register(ctx, bpf_to_ppc(i)))
EMIT(PPC_RAW_LD(bpf_to_ppc(i), _R1, bpf_jit_stack_offsetof(ctx, bpf_to_ppc(i))));
/* Tear down our stack frame */
if (bpf_has_stack_frame(ctx)) {
EMIT(PPC_RAW_ADDI(_R1, _R1, BPF_PPC_STACKFRAME + ctx->stack_size));
if (ctx->seen & SEEN_FUNC) {
EMIT(PPC_RAW_LD(_R0, _R1, PPC_LR_STKOFF));
EMIT(PPC_RAW_MTLR(_R0));
}
}
}
void bpf_jit_build_epilogue(u32 *image, struct codegen_context *ctx)
{
bpf_jit_emit_common_epilogue(image, ctx);
/* Move result to r3 */
EMIT(PPC_RAW_MR(_R3, bpf_to_ppc(BPF_REG_0)));
EMIT(PPC_RAW_BLR());
}
static int bpf_jit_emit_func_call_hlp(u32 *image, struct codegen_context *ctx, u64 func)
{
unsigned long func_addr = func ? ppc_function_entry((void *)func) : 0;
long reladdr;
if (WARN_ON_ONCE(!core_kernel_text(func_addr)))
return -EINVAL;
if (IS_ENABLED(CONFIG_PPC_KERNEL_PCREL)) {
reladdr = func_addr - CTX_NIA(ctx);
if (reladdr >= (long)SZ_8G || reladdr < -(long)SZ_8G) {
pr_err("eBPF: address of %ps out of range of pcrel address.\n",
(void *)func);
return -ERANGE;
}
/* pla r12,addr */
EMIT(PPC_PREFIX_MLS | __PPC_PRFX_R(1) | IMM_H18(reladdr));
EMIT(PPC_INST_PADDI | ___PPC_RT(_R12) | IMM_L(reladdr));
EMIT(PPC_RAW_MTCTR(_R12));
EMIT(PPC_RAW_BCTR());
} else {
reladdr = func_addr - kernel_toc_addr();
if (reladdr > 0x7FFFFFFF || reladdr < -(0x80000000L)) {
pr_err("eBPF: address of %ps out of range of kernel_toc.\n", (void *)func);
return -ERANGE;
}
EMIT(PPC_RAW_ADDIS(_R12, _R2, PPC_HA(reladdr)));
EMIT(PPC_RAW_ADDI(_R12, _R12, PPC_LO(reladdr)));
EMIT(PPC_RAW_MTCTR(_R12));
EMIT(PPC_RAW_BCTRL());
}
return 0;
}
int bpf_jit_emit_func_call_rel(u32 *image, u32 *fimage, struct codegen_context *ctx, u64 func)
{
unsigned int i, ctx_idx = ctx->idx;
if (WARN_ON_ONCE(func && is_module_text_address(func)))
return -EINVAL;
/* skip past descriptor if elf v1 */
func += FUNCTION_DESCR_SIZE;
/* Load function address into r12 */
PPC_LI64(_R12, func);
/* For bpf-to-bpf function calls, the callee's address is unknown
* until the last extra pass. As seen above, we use PPC_LI64() to
* load the callee's address, but this may optimize the number of
* instructions required based on the nature of the address.
*
* Since we don't want the number of instructions emitted to increase,
* we pad the optimized PPC_LI64() call with NOPs to guarantee that
* we always have a five-instruction sequence, which is the maximum
* that PPC_LI64() can emit.
*/
if (!image)
for (i = ctx->idx - ctx_idx; i < 5; i++)
EMIT(PPC_RAW_NOP());
EMIT(PPC_RAW_MTCTR(_R12));
EMIT(PPC_RAW_BCTRL());
return 0;
}
static int bpf_jit_emit_tail_call(u32 *image, struct codegen_context *ctx, u32 out)
{
/*
* By now, the eBPF program has already setup parameters in r3, r4 and r5
* r3/BPF_REG_1 - pointer to ctx -- passed as is to the next bpf program
* r4/BPF_REG_2 - pointer to bpf_array
* r5/BPF_REG_3 - index in bpf_array
*/
int b2p_bpf_array = bpf_to_ppc(BPF_REG_2);
int b2p_index = bpf_to_ppc(BPF_REG_3);
int bpf_tailcall_prologue_size = 8;
if (IS_ENABLED(CONFIG_PPC64_ELF_ABI_V2))
bpf_tailcall_prologue_size += 4; /* skip past the toc load */
/*
* if (index >= array->map.max_entries)
* goto out;
*/
EMIT(PPC_RAW_LWZ(bpf_to_ppc(TMP_REG_1), b2p_bpf_array, offsetof(struct bpf_array, map.max_entries)));
EMIT(PPC_RAW_RLWINM(b2p_index, b2p_index, 0, 0, 31));
EMIT(PPC_RAW_CMPLW(b2p_index, bpf_to_ppc(TMP_REG_1)));
PPC_BCC_SHORT(COND_GE, out);
/*
* if (tail_call_cnt >= MAX_TAIL_CALL_CNT)
* goto out;
*/
EMIT(PPC_RAW_LD(bpf_to_ppc(TMP_REG_1), _R1, bpf_jit_stack_tailcallcnt(ctx)));
EMIT(PPC_RAW_CMPLWI(bpf_to_ppc(TMP_REG_1), MAX_TAIL_CALL_CNT));
PPC_BCC_SHORT(COND_GE, out);
/*
* tail_call_cnt++;
*/
EMIT(PPC_RAW_ADDI(bpf_to_ppc(TMP_REG_1), bpf_to_ppc(TMP_REG_1), 1));
EMIT(PPC_RAW_STD(bpf_to_ppc(TMP_REG_1), _R1, bpf_jit_stack_tailcallcnt(ctx)));
/* prog = array->ptrs[index]; */
EMIT(PPC_RAW_MULI(bpf_to_ppc(TMP_REG_1), b2p_index, 8));
EMIT(PPC_RAW_ADD(bpf_to_ppc(TMP_REG_1), bpf_to_ppc(TMP_REG_1), b2p_bpf_array));
EMIT(PPC_RAW_LD(bpf_to_ppc(TMP_REG_1), bpf_to_ppc(TMP_REG_1), offsetof(struct bpf_array, ptrs)));
/*
* if (prog == NULL)
* goto out;
*/
EMIT(PPC_RAW_CMPLDI(bpf_to_ppc(TMP_REG_1), 0));
PPC_BCC_SHORT(COND_EQ, out);
/* goto *(prog->bpf_func + prologue_size); */
EMIT(PPC_RAW_LD(bpf_to_ppc(TMP_REG_1), bpf_to_ppc(TMP_REG_1), offsetof(struct bpf_prog, bpf_func)));
EMIT(PPC_RAW_ADDI(bpf_to_ppc(TMP_REG_1), bpf_to_ppc(TMP_REG_1),
FUNCTION_DESCR_SIZE + bpf_tailcall_prologue_size));
EMIT(PPC_RAW_MTCTR(bpf_to_ppc(TMP_REG_1)));
/* tear down stack, restore NVRs, ... */
bpf_jit_emit_common_epilogue(image, ctx);
EMIT(PPC_RAW_BCTR());
/* out: */
return 0;
}
/*
* We spill into the redzone always, even if the bpf program has its own stackframe.
* Offsets hardcoded based on BPF_PPC_STACK_SAVE -- see bpf_jit_stack_local()
*/
void bpf_stf_barrier(void);
asm (
" .global bpf_stf_barrier ;"
" bpf_stf_barrier: ;"
" std 21,-64(1) ;"
" std 22,-56(1) ;"
" sync ;"
" ld 21,-64(1) ;"
" ld 22,-56(1) ;"
" ori 31,31,0 ;"
" .rept 14 ;"
" b 1f ;"
" 1: ;"
" .endr ;"
" blr ;"
);
/* Assemble the body code between the prologue & epilogue */
int bpf_jit_build_body(struct bpf_prog *fp, u32 *image, u32 *fimage, struct codegen_context *ctx,
u32 *addrs, int pass, bool extra_pass)
{
enum stf_barrier_type stf_barrier = stf_barrier_type_get();
const struct bpf_insn *insn = fp->insnsi;
int flen = fp->len;
int i, ret;
/* Start of epilogue code - will only be valid 2nd pass onwards */
u32 exit_addr = addrs[flen];
for (i = 0; i < flen; i++) {
u32 code = insn[i].code;
u32 dst_reg = bpf_to_ppc(insn[i].dst_reg);
u32 src_reg = bpf_to_ppc(insn[i].src_reg);
u32 size = BPF_SIZE(code);
u32 tmp1_reg = bpf_to_ppc(TMP_REG_1);
u32 tmp2_reg = bpf_to_ppc(TMP_REG_2);
u32 save_reg, ret_reg;
s16 off = insn[i].off;
s32 imm = insn[i].imm;
bool func_addr_fixed;
u64 func_addr;
u64 imm64;
u32 true_cond;
u32 tmp_idx;
int j;
/*
* addrs[] maps a BPF bytecode address into a real offset from
* the start of the body code.
*/
addrs[i] = ctx->idx * 4;
/*
* As an optimization, we note down which non-volatile registers
* are used so that we can only save/restore those in our
* prologue and epilogue. We do this here regardless of whether
* the actual BPF instruction uses src/dst registers or not
* (for instance, BPF_CALL does not use them). The expectation
* is that those instructions will have src_reg/dst_reg set to
* 0. Even otherwise, we just lose some prologue/epilogue
* optimization but everything else should work without
* any issues.
*/
if (dst_reg >= BPF_PPC_NVR_MIN && dst_reg < 32)
bpf_set_seen_register(ctx, dst_reg);
if (src_reg >= BPF_PPC_NVR_MIN && src_reg < 32)
bpf_set_seen_register(ctx, src_reg);
switch (code) {
/*
* Arithmetic operations: ADD/SUB/MUL/DIV/MOD/NEG
*/
case BPF_ALU | BPF_ADD | BPF_X: /* (u32) dst += (u32) src */
case BPF_ALU64 | BPF_ADD | BPF_X: /* dst += src */
EMIT(PPC_RAW_ADD(dst_reg, dst_reg, src_reg));
goto bpf_alu32_trunc;
case BPF_ALU | BPF_SUB | BPF_X: /* (u32) dst -= (u32) src */
case BPF_ALU64 | BPF_SUB | BPF_X: /* dst -= src */
EMIT(PPC_RAW_SUB(dst_reg, dst_reg, src_reg));
goto bpf_alu32_trunc;
case BPF_ALU | BPF_ADD | BPF_K: /* (u32) dst += (u32) imm */
case BPF_ALU64 | BPF_ADD | BPF_K: /* dst += imm */
if (!imm) {
goto bpf_alu32_trunc;
} else if (imm >= -32768 && imm < 32768) {
EMIT(PPC_RAW_ADDI(dst_reg, dst_reg, IMM_L(imm)));
} else {
PPC_LI32(tmp1_reg, imm);
EMIT(PPC_RAW_ADD(dst_reg, dst_reg, tmp1_reg));
}
goto bpf_alu32_trunc;
case BPF_ALU | BPF_SUB | BPF_K: /* (u32) dst -= (u32) imm */
case BPF_ALU64 | BPF_SUB | BPF_K: /* dst -= imm */
if (!imm) {
goto bpf_alu32_trunc;
} else if (imm > -32768 && imm <= 32768) {
EMIT(PPC_RAW_ADDI(dst_reg, dst_reg, IMM_L(-imm)));
} else {
PPC_LI32(tmp1_reg, imm);
EMIT(PPC_RAW_SUB(dst_reg, dst_reg, tmp1_reg));
}
goto bpf_alu32_trunc;
case BPF_ALU | BPF_MUL | BPF_X: /* (u32) dst *= (u32) src */
case BPF_ALU64 | BPF_MUL | BPF_X: /* dst *= src */
if (BPF_CLASS(code) == BPF_ALU)
EMIT(PPC_RAW_MULW(dst_reg, dst_reg, src_reg));
else
EMIT(PPC_RAW_MULD(dst_reg, dst_reg, src_reg));
goto bpf_alu32_trunc;
case BPF_ALU | BPF_MUL | BPF_K: /* (u32) dst *= (u32) imm */
case BPF_ALU64 | BPF_MUL | BPF_K: /* dst *= imm */
if (imm >= -32768 && imm < 32768)
EMIT(PPC_RAW_MULI(dst_reg, dst_reg, IMM_L(imm)));
else {
PPC_LI32(tmp1_reg, imm);
if (BPF_CLASS(code) == BPF_ALU)
EMIT(PPC_RAW_MULW(dst_reg, dst_reg, tmp1_reg));
else
EMIT(PPC_RAW_MULD(dst_reg, dst_reg, tmp1_reg));
}
goto bpf_alu32_trunc;
case BPF_ALU | BPF_DIV | BPF_X: /* (u32) dst /= (u32) src */
case BPF_ALU | BPF_MOD | BPF_X: /* (u32) dst %= (u32) src */
if (BPF_OP(code) == BPF_MOD) {
EMIT(PPC_RAW_DIVWU(tmp1_reg, dst_reg, src_reg));
EMIT(PPC_RAW_MULW(tmp1_reg, src_reg, tmp1_reg));
EMIT(PPC_RAW_SUB(dst_reg, dst_reg, tmp1_reg));
} else
EMIT(PPC_RAW_DIVWU(dst_reg, dst_reg, src_reg));
goto bpf_alu32_trunc;
case BPF_ALU64 | BPF_DIV | BPF_X: /* dst /= src */
case BPF_ALU64 | BPF_MOD | BPF_X: /* dst %= src */
if (BPF_OP(code) == BPF_MOD) {
EMIT(PPC_RAW_DIVDU(tmp1_reg, dst_reg, src_reg));
EMIT(PPC_RAW_MULD(tmp1_reg, src_reg, tmp1_reg));
EMIT(PPC_RAW_SUB(dst_reg, dst_reg, tmp1_reg));
} else
EMIT(PPC_RAW_DIVDU(dst_reg, dst_reg, src_reg));
break;
case BPF_ALU | BPF_MOD | BPF_K: /* (u32) dst %= (u32) imm */
case BPF_ALU | BPF_DIV | BPF_K: /* (u32) dst /= (u32) imm */
case BPF_ALU64 | BPF_MOD | BPF_K: /* dst %= imm */
case BPF_ALU64 | BPF_DIV | BPF_K: /* dst /= imm */
if (imm == 0)
return -EINVAL;
if (imm == 1) {
if (BPF_OP(code) == BPF_DIV) {
goto bpf_alu32_trunc;
} else {
EMIT(PPC_RAW_LI(dst_reg, 0));
break;
}
}
PPC_LI32(tmp1_reg, imm);
switch (BPF_CLASS(code)) {
case BPF_ALU:
if (BPF_OP(code) == BPF_MOD) {
EMIT(PPC_RAW_DIVWU(tmp2_reg, dst_reg, tmp1_reg));
EMIT(PPC_RAW_MULW(tmp1_reg, tmp1_reg, tmp2_reg));
EMIT(PPC_RAW_SUB(dst_reg, dst_reg, tmp1_reg));
} else
EMIT(PPC_RAW_DIVWU(dst_reg, dst_reg, tmp1_reg));
break;
case BPF_ALU64:
if (BPF_OP(code) == BPF_MOD) {
EMIT(PPC_RAW_DIVDU(tmp2_reg, dst_reg, tmp1_reg));
EMIT(PPC_RAW_MULD(tmp1_reg, tmp1_reg, tmp2_reg));
EMIT(PPC_RAW_SUB(dst_reg, dst_reg, tmp1_reg));
} else
EMIT(PPC_RAW_DIVDU(dst_reg, dst_reg, tmp1_reg));
break;
}
goto bpf_alu32_trunc;
case BPF_ALU | BPF_NEG: /* (u32) dst = -dst */
case BPF_ALU64 | BPF_NEG: /* dst = -dst */
EMIT(PPC_RAW_NEG(dst_reg, dst_reg));
goto bpf_alu32_trunc;
/*
* Logical operations: AND/OR/XOR/[A]LSH/[A]RSH
*/
case BPF_ALU | BPF_AND | BPF_X: /* (u32) dst = dst & src */
case BPF_ALU64 | BPF_AND | BPF_X: /* dst = dst & src */
EMIT(PPC_RAW_AND(dst_reg, dst_reg, src_reg));
goto bpf_alu32_trunc;
case BPF_ALU | BPF_AND | BPF_K: /* (u32) dst = dst & imm */
case BPF_ALU64 | BPF_AND | BPF_K: /* dst = dst & imm */
if (!IMM_H(imm))
EMIT(PPC_RAW_ANDI(dst_reg, dst_reg, IMM_L(imm)));
else {
/* Sign-extended */
PPC_LI32(tmp1_reg, imm);
EMIT(PPC_RAW_AND(dst_reg, dst_reg, tmp1_reg));
}
goto bpf_alu32_trunc;
case BPF_ALU | BPF_OR | BPF_X: /* dst = (u32) dst | (u32) src */
case BPF_ALU64 | BPF_OR | BPF_X: /* dst = dst | src */
EMIT(PPC_RAW_OR(dst_reg, dst_reg, src_reg));
goto bpf_alu32_trunc;
case BPF_ALU | BPF_OR | BPF_K:/* dst = (u32) dst | (u32) imm */
case BPF_ALU64 | BPF_OR | BPF_K:/* dst = dst | imm */
if (imm < 0 && BPF_CLASS(code) == BPF_ALU64) {
/* Sign-extended */
PPC_LI32(tmp1_reg, imm);
EMIT(PPC_RAW_OR(dst_reg, dst_reg, tmp1_reg));
} else {
if (IMM_L(imm))
EMIT(PPC_RAW_ORI(dst_reg, dst_reg, IMM_L(imm)));
if (IMM_H(imm))
EMIT(PPC_RAW_ORIS(dst_reg, dst_reg, IMM_H(imm)));
}
goto bpf_alu32_trunc;
case BPF_ALU | BPF_XOR | BPF_X: /* (u32) dst ^= src */
case BPF_ALU64 | BPF_XOR | BPF_X: /* dst ^= src */
EMIT(PPC_RAW_XOR(dst_reg, dst_reg, src_reg));
goto bpf_alu32_trunc;
case BPF_ALU | BPF_XOR | BPF_K: /* (u32) dst ^= (u32) imm */
case BPF_ALU64 | BPF_XOR | BPF_K: /* dst ^= imm */
if (imm < 0 && BPF_CLASS(code) == BPF_ALU64) {
/* Sign-extended */
PPC_LI32(tmp1_reg, imm);
EMIT(PPC_RAW_XOR(dst_reg, dst_reg, tmp1_reg));
} else {
if (IMM_L(imm))
EMIT(PPC_RAW_XORI(dst_reg, dst_reg, IMM_L(imm)));
if (IMM_H(imm))
EMIT(PPC_RAW_XORIS(dst_reg, dst_reg, IMM_H(imm)));
}
goto bpf_alu32_trunc;
case BPF_ALU | BPF_LSH | BPF_X: /* (u32) dst <<= (u32) src */
/* slw clears top 32 bits */
EMIT(PPC_RAW_SLW(dst_reg, dst_reg, src_reg));
/* skip zero extension move, but set address map. */
if (insn_is_zext(&insn[i + 1]))
addrs[++i] = ctx->idx * 4;
break;
case BPF_ALU64 | BPF_LSH | BPF_X: /* dst <<= src; */
EMIT(PPC_RAW_SLD(dst_reg, dst_reg, src_reg));
break;
case BPF_ALU | BPF_LSH | BPF_K: /* (u32) dst <<== (u32) imm */
/* with imm 0, we still need to clear top 32 bits */
EMIT(PPC_RAW_SLWI(dst_reg, dst_reg, imm));
if (insn_is_zext(&insn[i + 1]))
addrs[++i] = ctx->idx * 4;
break;
case BPF_ALU64 | BPF_LSH | BPF_K: /* dst <<== imm */
if (imm != 0)
EMIT(PPC_RAW_SLDI(dst_reg, dst_reg, imm));
break;
case BPF_ALU | BPF_RSH | BPF_X: /* (u32) dst >>= (u32) src */
EMIT(PPC_RAW_SRW(dst_reg, dst_reg, src_reg));
if (insn_is_zext(&insn[i + 1]))
addrs[++i] = ctx->idx * 4;
break;
case BPF_ALU64 | BPF_RSH | BPF_X: /* dst >>= src */
EMIT(PPC_RAW_SRD(dst_reg, dst_reg, src_reg));
break;
case BPF_ALU | BPF_RSH | BPF_K: /* (u32) dst >>= (u32) imm */
EMIT(PPC_RAW_SRWI(dst_reg, dst_reg, imm));
if (insn_is_zext(&insn[i + 1]))
addrs[++i] = ctx->idx * 4;
break;
case BPF_ALU64 | BPF_RSH | BPF_K: /* dst >>= imm */
if (imm != 0)
EMIT(PPC_RAW_SRDI(dst_reg, dst_reg, imm));
break;
case BPF_ALU | BPF_ARSH | BPF_X: /* (s32) dst >>= src */
EMIT(PPC_RAW_SRAW(dst_reg, dst_reg, src_reg));
goto bpf_alu32_trunc;
case BPF_ALU64 | BPF_ARSH | BPF_X: /* (s64) dst >>= src */
EMIT(PPC_RAW_SRAD(dst_reg, dst_reg, src_reg));
break;
case BPF_ALU | BPF_ARSH | BPF_K: /* (s32) dst >>= imm */
EMIT(PPC_RAW_SRAWI(dst_reg, dst_reg, imm));
goto bpf_alu32_trunc;
case BPF_ALU64 | BPF_ARSH | BPF_K: /* (s64) dst >>= imm */
if (imm != 0)
EMIT(PPC_RAW_SRADI(dst_reg, dst_reg, imm));
break;
/*
* MOV
*/
case BPF_ALU | BPF_MOV | BPF_X: /* (u32) dst = src */
case BPF_ALU64 | BPF_MOV | BPF_X: /* dst = src */
if (imm == 1) {
/* special mov32 for zext */
EMIT(PPC_RAW_RLWINM(dst_reg, dst_reg, 0, 0, 31));
break;
}
EMIT(PPC_RAW_MR(dst_reg, src_reg));
goto bpf_alu32_trunc;
case BPF_ALU | BPF_MOV | BPF_K: /* (u32) dst = imm */
case BPF_ALU64 | BPF_MOV | BPF_K: /* dst = (s64) imm */
PPC_LI32(dst_reg, imm);
if (imm < 0)
goto bpf_alu32_trunc;
else if (insn_is_zext(&insn[i + 1]))
addrs[++i] = ctx->idx * 4;
break;
bpf_alu32_trunc:
/* Truncate to 32-bits */
if (BPF_CLASS(code) == BPF_ALU && !fp->aux->verifier_zext)
EMIT(PPC_RAW_RLWINM(dst_reg, dst_reg, 0, 0, 31));
break;
/*
* BPF_FROM_BE/LE
*/
case BPF_ALU | BPF_END | BPF_FROM_LE:
case BPF_ALU | BPF_END | BPF_FROM_BE:
#ifdef __BIG_ENDIAN__
if (BPF_SRC(code) == BPF_FROM_BE)
goto emit_clear;
#else /* !__BIG_ENDIAN__ */
if (BPF_SRC(code) == BPF_FROM_LE)
goto emit_clear;
#endif
switch (imm) {
case 16:
/* Rotate 8 bits left & mask with 0x0000ff00 */
EMIT(PPC_RAW_RLWINM(tmp1_reg, dst_reg, 8, 16, 23));
/* Rotate 8 bits right & insert LSB to reg */
EMIT(PPC_RAW_RLWIMI(tmp1_reg, dst_reg, 24, 24, 31));
/* Move result back to dst_reg */
EMIT(PPC_RAW_MR(dst_reg, tmp1_reg));
break;
case 32:
/*
* Rotate word left by 8 bits:
* 2 bytes are already in their final position
* -- byte 2 and 4 (of bytes 1, 2, 3 and 4)
*/
EMIT(PPC_RAW_RLWINM(tmp1_reg, dst_reg, 8, 0, 31));
/* Rotate 24 bits and insert byte 1 */
EMIT(PPC_RAW_RLWIMI(tmp1_reg, dst_reg, 24, 0, 7));
/* Rotate 24 bits and insert byte 3 */
EMIT(PPC_RAW_RLWIMI(tmp1_reg, dst_reg, 24, 16, 23));
EMIT(PPC_RAW_MR(dst_reg, tmp1_reg));
break;
case 64:
/* Store the value to stack and then use byte-reverse loads */
EMIT(PPC_RAW_STD(dst_reg, _R1, bpf_jit_stack_local(ctx)));
EMIT(PPC_RAW_ADDI(tmp1_reg, _R1, bpf_jit_stack_local(ctx)));
if (cpu_has_feature(CPU_FTR_ARCH_206)) {
EMIT(PPC_RAW_LDBRX(dst_reg, 0, tmp1_reg));
} else {
EMIT(PPC_RAW_LWBRX(dst_reg, 0, tmp1_reg));
if (IS_ENABLED(CONFIG_CPU_LITTLE_ENDIAN))
EMIT(PPC_RAW_SLDI(dst_reg, dst_reg, 32));
EMIT(PPC_RAW_LI(tmp2_reg, 4));
EMIT(PPC_RAW_LWBRX(tmp2_reg, tmp2_reg, tmp1_reg));
if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
EMIT(PPC_RAW_SLDI(tmp2_reg, tmp2_reg, 32));
EMIT(PPC_RAW_OR(dst_reg, dst_reg, tmp2_reg));
}
break;
}
break;
emit_clear:
switch (imm) {
case 16:
/* zero-extend 16 bits into 64 bits */
EMIT(PPC_RAW_RLDICL(dst_reg, dst_reg, 0, 48));
if (insn_is_zext(&insn[i + 1]))
addrs[++i] = ctx->idx * 4;
break;
case 32:
if (!fp->aux->verifier_zext)
/* zero-extend 32 bits into 64 bits */
EMIT(PPC_RAW_RLDICL(dst_reg, dst_reg, 0, 32));
break;
case 64:
/* nop */
break;
}
break;
/*
* BPF_ST NOSPEC (speculation barrier)
*/
case BPF_ST | BPF_NOSPEC:
if (!security_ftr_enabled(SEC_FTR_FAVOUR_SECURITY) ||
!security_ftr_enabled(SEC_FTR_STF_BARRIER))
break;
switch (stf_barrier) {
case STF_BARRIER_EIEIO:
EMIT(PPC_RAW_EIEIO() | 0x02000000);
break;
case STF_BARRIER_SYNC_ORI:
EMIT(PPC_RAW_SYNC());
EMIT(PPC_RAW_LD(tmp1_reg, _R13, 0));
EMIT(PPC_RAW_ORI(_R31, _R31, 0));
break;
case STF_BARRIER_FALLBACK:
ctx->seen |= SEEN_FUNC;
PPC_LI64(_R12, dereference_kernel_function_descriptor(bpf_stf_barrier));
EMIT(PPC_RAW_MTCTR(_R12));
EMIT(PPC_RAW_BCTRL());
break;
case STF_BARRIER_NONE:
break;
}
break;
/*
* BPF_ST(X)
*/
case BPF_STX | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = src */
case BPF_ST | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = imm */
if (BPF_CLASS(code) == BPF_ST) {
EMIT(PPC_RAW_LI(tmp1_reg, imm));
src_reg = tmp1_reg;
}
EMIT(PPC_RAW_STB(src_reg, dst_reg, off));
break;
case BPF_STX | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = src */
case BPF_ST | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = imm */
if (BPF_CLASS(code) == BPF_ST) {
EMIT(PPC_RAW_LI(tmp1_reg, imm));
src_reg = tmp1_reg;
}
EMIT(PPC_RAW_STH(src_reg, dst_reg, off));
break;
case BPF_STX | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = src */
case BPF_ST | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = imm */
if (BPF_CLASS(code) == BPF_ST) {
PPC_LI32(tmp1_reg, imm);
src_reg = tmp1_reg;
}
EMIT(PPC_RAW_STW(src_reg, dst_reg, off));
break;
case BPF_STX | BPF_MEM | BPF_DW: /* (u64 *)(dst + off) = src */
case BPF_ST | BPF_MEM | BPF_DW: /* *(u64 *)(dst + off) = imm */
if (BPF_CLASS(code) == BPF_ST) {
PPC_LI32(tmp1_reg, imm);
src_reg = tmp1_reg;
}
if (off % 4) {
EMIT(PPC_RAW_LI(tmp2_reg, off));
EMIT(PPC_RAW_STDX(src_reg, dst_reg, tmp2_reg));
} else {
EMIT(PPC_RAW_STD(src_reg, dst_reg, off));
}
break;
/*
* BPF_STX ATOMIC (atomic ops)
*/
case BPF_STX | BPF_ATOMIC | BPF_W:
case BPF_STX | BPF_ATOMIC | BPF_DW:
save_reg = tmp2_reg;
ret_reg = src_reg;
/* Get offset into TMP_REG_1 */
EMIT(PPC_RAW_LI(tmp1_reg, off));
tmp_idx = ctx->idx * 4;
/* load value from memory into TMP_REG_2 */
if (size == BPF_DW)
EMIT(PPC_RAW_LDARX(tmp2_reg, tmp1_reg, dst_reg, 0));
else
EMIT(PPC_RAW_LWARX(tmp2_reg, tmp1_reg, dst_reg, 0));
/* Save old value in _R0 */
if (imm & BPF_FETCH)
EMIT(PPC_RAW_MR(_R0, tmp2_reg));
switch (imm) {
case BPF_ADD:
case BPF_ADD | BPF_FETCH:
EMIT(PPC_RAW_ADD(tmp2_reg, tmp2_reg, src_reg));
break;
case BPF_AND:
case BPF_AND | BPF_FETCH:
EMIT(PPC_RAW_AND(tmp2_reg, tmp2_reg, src_reg));
break;
case BPF_OR:
case BPF_OR | BPF_FETCH:
EMIT(PPC_RAW_OR(tmp2_reg, tmp2_reg, src_reg));
break;
case BPF_XOR:
case BPF_XOR | BPF_FETCH:
EMIT(PPC_RAW_XOR(tmp2_reg, tmp2_reg, src_reg));
break;
case BPF_CMPXCHG:
/*
* Return old value in BPF_REG_0 for BPF_CMPXCHG &
* in src_reg for other cases.
*/
ret_reg = bpf_to_ppc(BPF_REG_0);
/* Compare with old value in BPF_R0 */
if (size == BPF_DW)
EMIT(PPC_RAW_CMPD(bpf_to_ppc(BPF_REG_0), tmp2_reg));
else
EMIT(PPC_RAW_CMPW(bpf_to_ppc(BPF_REG_0), tmp2_reg));
/* Don't set if different from old value */
PPC_BCC_SHORT(COND_NE, (ctx->idx + 3) * 4);
fallthrough;
case BPF_XCHG:
save_reg = src_reg;
break;
default:
pr_err_ratelimited(
"eBPF filter atomic op code %02x (@%d) unsupported\n",
code, i);
return -EOPNOTSUPP;
}
/* store new value */
if (size == BPF_DW)
EMIT(PPC_RAW_STDCX(save_reg, tmp1_reg, dst_reg));
else
EMIT(PPC_RAW_STWCX(save_reg, tmp1_reg, dst_reg));
/* we're done if this succeeded */
PPC_BCC_SHORT(COND_NE, tmp_idx);
if (imm & BPF_FETCH) {
EMIT(PPC_RAW_MR(ret_reg, _R0));
/*
* Skip unnecessary zero-extension for 32-bit cmpxchg.
* For context, see commit 39491867ace5.
*/
if (size != BPF_DW && imm == BPF_CMPXCHG &&
insn_is_zext(&insn[i + 1]))
addrs[++i] = ctx->idx * 4;
}
break;
/*
* BPF_LDX
*/
/* dst = *(u8 *)(ul) (src + off) */
case BPF_LDX | BPF_MEM | BPF_B:
case BPF_LDX | BPF_PROBE_MEM | BPF_B:
/* dst = *(u16 *)(ul) (src + off) */
case BPF_LDX | BPF_MEM | BPF_H:
case BPF_LDX | BPF_PROBE_MEM | BPF_H:
/* dst = *(u32 *)(ul) (src + off) */
case BPF_LDX | BPF_MEM | BPF_W:
case BPF_LDX | BPF_PROBE_MEM | BPF_W:
/* dst = *(u64 *)(ul) (src + off) */
case BPF_LDX | BPF_MEM | BPF_DW:
case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
/*
* As PTR_TO_BTF_ID that uses BPF_PROBE_MEM mode could either be a valid
* kernel pointer or NULL but not a userspace address, execute BPF_PROBE_MEM
* load only if addr is kernel address (see is_kernel_addr()), otherwise
* set dst_reg=0 and move on.
*/
if (BPF_MODE(code) == BPF_PROBE_MEM) {
EMIT(PPC_RAW_ADDI(tmp1_reg, src_reg, off));
if (IS_ENABLED(CONFIG_PPC_BOOK3E_64))
PPC_LI64(tmp2_reg, 0x8000000000000000ul);
else /* BOOK3S_64 */
PPC_LI64(tmp2_reg, PAGE_OFFSET);
EMIT(PPC_RAW_CMPLD(tmp1_reg, tmp2_reg));
PPC_BCC_SHORT(COND_GT, (ctx->idx + 3) * 4);
EMIT(PPC_RAW_LI(dst_reg, 0));
/*
* Check if 'off' is word aligned for BPF_DW, because
* we might generate two instructions.
*/
if (BPF_SIZE(code) == BPF_DW && (off & 3))
PPC_JMP((ctx->idx + 3) * 4);
else
PPC_JMP((ctx->idx + 2) * 4);
}
switch (size) {
case BPF_B:
EMIT(PPC_RAW_LBZ(dst_reg, src_reg, off));
break;
case BPF_H:
EMIT(PPC_RAW_LHZ(dst_reg, src_reg, off));
break;
case BPF_W:
EMIT(PPC_RAW_LWZ(dst_reg, src_reg, off));
break;
case BPF_DW:
if (off % 4) {
EMIT(PPC_RAW_LI(tmp1_reg, off));
EMIT(PPC_RAW_LDX(dst_reg, src_reg, tmp1_reg));
} else {
EMIT(PPC_RAW_LD(dst_reg, src_reg, off));
}
break;
}
if (size != BPF_DW && insn_is_zext(&insn[i + 1]))
addrs[++i] = ctx->idx * 4;
if (BPF_MODE(code) == BPF_PROBE_MEM) {
ret = bpf_add_extable_entry(fp, image, fimage, pass, ctx,
ctx->idx - 1, 4, dst_reg);
if (ret)
return ret;
}
break;
/*
* Doubleword load
* 16 byte instruction that uses two 'struct bpf_insn'
*/
case BPF_LD | BPF_IMM | BPF_DW: /* dst = (u64) imm */
imm64 = ((u64)(u32) insn[i].imm) |
(((u64)(u32) insn[i+1].imm) << 32);
tmp_idx = ctx->idx;
PPC_LI64(dst_reg, imm64);
/* padding to allow full 5 instructions for later patching */
if (!image)
for (j = ctx->idx - tmp_idx; j < 5; j++)
EMIT(PPC_RAW_NOP());
/* Adjust for two bpf instructions */
addrs[++i] = ctx->idx * 4;
break;
/*
* Return/Exit
*/
case BPF_JMP | BPF_EXIT:
/*
* If this isn't the very last instruction, branch to
* the epilogue. If we _are_ the last instruction,
* we'll just fall through to the epilogue.
*/
if (i != flen - 1) {
ret = bpf_jit_emit_exit_insn(image, ctx, tmp1_reg, exit_addr);
if (ret)
return ret;
}
/* else fall through to the epilogue */
break;
/*
* Call kernel helper or bpf function
*/
case BPF_JMP | BPF_CALL:
ctx->seen |= SEEN_FUNC;
ret = bpf_jit_get_func_addr(fp, &insn[i], extra_pass,
&func_addr, &func_addr_fixed);
if (ret < 0)
return ret;
if (func_addr_fixed)
ret = bpf_jit_emit_func_call_hlp(image, ctx, func_addr);
else
ret = bpf_jit_emit_func_call_rel(image, fimage, ctx, func_addr);
if (ret)
return ret;
/* move return value from r3 to BPF_REG_0 */
EMIT(PPC_RAW_MR(bpf_to_ppc(BPF_REG_0), _R3));
break;
/*
* Jumps and branches
*/
case BPF_JMP | BPF_JA:
PPC_JMP(addrs[i + 1 + off]);
break;
case BPF_JMP | BPF_JGT | BPF_K:
case BPF_JMP | BPF_JGT | BPF_X:
case BPF_JMP | BPF_JSGT | BPF_K:
case BPF_JMP | BPF_JSGT | BPF_X:
case BPF_JMP32 | BPF_JGT | BPF_K:
case BPF_JMP32 | BPF_JGT | BPF_X:
case BPF_JMP32 | BPF_JSGT | BPF_K:
case BPF_JMP32 | BPF_JSGT | BPF_X:
true_cond = COND_GT;
goto cond_branch;
case BPF_JMP | BPF_JLT | BPF_K:
case BPF_JMP | BPF_JLT | BPF_X:
case BPF_JMP | BPF_JSLT | BPF_K:
case BPF_JMP | BPF_JSLT | BPF_X:
case BPF_JMP32 | BPF_JLT | BPF_K:
case BPF_JMP32 | BPF_JLT | BPF_X:
case BPF_JMP32 | BPF_JSLT | BPF_K:
case BPF_JMP32 | BPF_JSLT | BPF_X:
true_cond = COND_LT;
goto cond_branch;
case BPF_JMP | BPF_JGE | BPF_K:
case BPF_JMP | BPF_JGE | BPF_X:
case BPF_JMP | BPF_JSGE | BPF_K:
case BPF_JMP | BPF_JSGE | BPF_X:
case BPF_JMP32 | BPF_JGE | BPF_K:
case BPF_JMP32 | BPF_JGE | BPF_X:
case BPF_JMP32 | BPF_JSGE | BPF_K:
case BPF_JMP32 | BPF_JSGE | BPF_X:
true_cond = COND_GE;
goto cond_branch;
case BPF_JMP | BPF_JLE | BPF_K:
case BPF_JMP | BPF_JLE | BPF_X:
case BPF_JMP | BPF_JSLE | BPF_K:
case BPF_JMP | BPF_JSLE | BPF_X:
case BPF_JMP32 | BPF_JLE | BPF_K:
case BPF_JMP32 | BPF_JLE | BPF_X:
case BPF_JMP32 | BPF_JSLE | BPF_K:
case BPF_JMP32 | BPF_JSLE | BPF_X:
true_cond = COND_LE;
goto cond_branch;
case BPF_JMP | BPF_JEQ | BPF_K:
case BPF_JMP | BPF_JEQ | BPF_X:
case BPF_JMP32 | BPF_JEQ | BPF_K:
case BPF_JMP32 | BPF_JEQ | BPF_X:
true_cond = COND_EQ;
goto cond_branch;
case BPF_JMP | BPF_JNE | BPF_K:
case BPF_JMP | BPF_JNE | BPF_X:
case BPF_JMP32 | BPF_JNE | BPF_K:
case BPF_JMP32 | BPF_JNE | BPF_X:
true_cond = COND_NE;
goto cond_branch;
case BPF_JMP | BPF_JSET | BPF_K:
case BPF_JMP | BPF_JSET | BPF_X:
case BPF_JMP32 | BPF_JSET | BPF_K:
case BPF_JMP32 | BPF_JSET | BPF_X:
true_cond = COND_NE;
/* Fall through */
cond_branch:
switch (code) {
case BPF_JMP | BPF_JGT | BPF_X:
case BPF_JMP | BPF_JLT | BPF_X:
case BPF_JMP | BPF_JGE | BPF_X:
case BPF_JMP | BPF_JLE | BPF_X:
case BPF_JMP | BPF_JEQ | BPF_X:
case BPF_JMP | BPF_JNE | BPF_X:
case BPF_JMP32 | BPF_JGT | BPF_X:
case BPF_JMP32 | BPF_JLT | BPF_X:
case BPF_JMP32 | BPF_JGE | BPF_X:
case BPF_JMP32 | BPF_JLE | BPF_X:
case BPF_JMP32 | BPF_JEQ | BPF_X:
case BPF_JMP32 | BPF_JNE | BPF_X:
/* unsigned comparison */
if (BPF_CLASS(code) == BPF_JMP32)
EMIT(PPC_RAW_CMPLW(dst_reg, src_reg));
else
EMIT(PPC_RAW_CMPLD(dst_reg, src_reg));
break;
case BPF_JMP | BPF_JSGT | BPF_X:
case BPF_JMP | BPF_JSLT | BPF_X:
case BPF_JMP | BPF_JSGE | BPF_X:
case BPF_JMP | BPF_JSLE | BPF_X:
case BPF_JMP32 | BPF_JSGT | BPF_X:
case BPF_JMP32 | BPF_JSLT | BPF_X:
case BPF_JMP32 | BPF_JSGE | BPF_X:
case BPF_JMP32 | BPF_JSLE | BPF_X:
/* signed comparison */
if (BPF_CLASS(code) == BPF_JMP32)
EMIT(PPC_RAW_CMPW(dst_reg, src_reg));
else
EMIT(PPC_RAW_CMPD(dst_reg, src_reg));
break;
case BPF_JMP | BPF_JSET | BPF_X:
case BPF_JMP32 | BPF_JSET | BPF_X:
if (BPF_CLASS(code) == BPF_JMP) {
EMIT(PPC_RAW_AND_DOT(tmp1_reg, dst_reg, src_reg));
} else {
EMIT(PPC_RAW_AND(tmp1_reg, dst_reg, src_reg));
EMIT(PPC_RAW_RLWINM_DOT(tmp1_reg, tmp1_reg, 0, 0, 31));
}
break;
case BPF_JMP | BPF_JNE | BPF_K:
case BPF_JMP | BPF_JEQ | BPF_K:
case BPF_JMP | BPF_JGT | BPF_K:
case BPF_JMP | BPF_JLT | BPF_K:
case BPF_JMP | BPF_JGE | BPF_K:
case BPF_JMP | BPF_JLE | BPF_K:
case BPF_JMP32 | BPF_JNE | BPF_K:
case BPF_JMP32 | BPF_JEQ | BPF_K:
case BPF_JMP32 | BPF_JGT | BPF_K:
case BPF_JMP32 | BPF_JLT | BPF_K:
case BPF_JMP32 | BPF_JGE | BPF_K:
case BPF_JMP32 | BPF_JLE | BPF_K:
{
bool is_jmp32 = BPF_CLASS(code) == BPF_JMP32;
/*
* Need sign-extended load, so only positive
* values can be used as imm in cmpldi
*/
if (imm >= 0 && imm < 32768) {
if (is_jmp32)
EMIT(PPC_RAW_CMPLWI(dst_reg, imm));
else
EMIT(PPC_RAW_CMPLDI(dst_reg, imm));
} else {
/* sign-extending load */
PPC_LI32(tmp1_reg, imm);
/* ... but unsigned comparison */
if (is_jmp32)
EMIT(PPC_RAW_CMPLW(dst_reg, tmp1_reg));
else
EMIT(PPC_RAW_CMPLD(dst_reg, tmp1_reg));
}
break;
}
case BPF_JMP | BPF_JSGT | BPF_K:
case BPF_JMP | BPF_JSLT | BPF_K:
case BPF_JMP | BPF_JSGE | BPF_K:
case BPF_JMP | BPF_JSLE | BPF_K:
case BPF_JMP32 | BPF_JSGT | BPF_K:
case BPF_JMP32 | BPF_JSLT | BPF_K:
case BPF_JMP32 | BPF_JSGE | BPF_K:
case BPF_JMP32 | BPF_JSLE | BPF_K:
{
bool is_jmp32 = BPF_CLASS(code) == BPF_JMP32;
/*
* signed comparison, so any 16-bit value
* can be used in cmpdi
*/
if (imm >= -32768 && imm < 32768) {
if (is_jmp32)
EMIT(PPC_RAW_CMPWI(dst_reg, imm));
else
EMIT(PPC_RAW_CMPDI(dst_reg, imm));
} else {
PPC_LI32(tmp1_reg, imm);
if (is_jmp32)
EMIT(PPC_RAW_CMPW(dst_reg, tmp1_reg));
else
EMIT(PPC_RAW_CMPD(dst_reg, tmp1_reg));
}
break;
}
case BPF_JMP | BPF_JSET | BPF_K:
case BPF_JMP32 | BPF_JSET | BPF_K:
/* andi does not sign-extend the immediate */
if (imm >= 0 && imm < 32768)
/* PPC_ANDI is _only/always_ dot-form */
EMIT(PPC_RAW_ANDI(tmp1_reg, dst_reg, imm));
else {
PPC_LI32(tmp1_reg, imm);
if (BPF_CLASS(code) == BPF_JMP) {
EMIT(PPC_RAW_AND_DOT(tmp1_reg, dst_reg,
tmp1_reg));
} else {
EMIT(PPC_RAW_AND(tmp1_reg, dst_reg, tmp1_reg));
EMIT(PPC_RAW_RLWINM_DOT(tmp1_reg, tmp1_reg,
0, 0, 31));
}
}
break;
}
PPC_BCC(true_cond, addrs[i + 1 + off]);
break;
/*
* Tail call
*/
case BPF_JMP | BPF_TAIL_CALL:
ctx->seen |= SEEN_TAILCALL;
ret = bpf_jit_emit_tail_call(image, ctx, addrs[i + 1]);
if (ret < 0)
return ret;
break;
default:
/*
* The filter contains something cruel & unusual.
* We don't handle it, but also there shouldn't be
* anything missing from our list.
*/
pr_err_ratelimited("eBPF filter opcode %04x (@%d) unsupported\n",
code, i);
return -ENOTSUPP;
}
}
/* Set end-of-body-code address for exit. */
addrs[i] = ctx->idx * 4;
return 0;
}