linux/drivers/net/veth.c
Liang Chen 215eb9f962 veth: Avoid NAPI scheduling on failed SKB forwarding
When an skb fails to be forwarded to the peer(e.g., skb data buffer
length exceeds MTU), it will not be added to the peer's receive queue.
Therefore, we should schedule the peer's NAPI poll function only when
skb forwarding is successful to avoid unnecessary overhead.

Signed-off-by: Liang Chen <liangchen.linux@gmail.com>
Link: https://lore.kernel.org/r/20230824123131.7673-1-liangchen.linux@gmail.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-08-25 18:52:11 -07:00

2055 lines
48 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* drivers/net/veth.c
*
* Copyright (C) 2007 OpenVZ http://openvz.org, SWsoft Inc
*
* Author: Pavel Emelianov <xemul@openvz.org>
* Ethtool interface from: Eric W. Biederman <ebiederm@xmission.com>
*
*/
#include <linux/netdevice.h>
#include <linux/slab.h>
#include <linux/ethtool.h>
#include <linux/etherdevice.h>
#include <linux/u64_stats_sync.h>
#include <net/rtnetlink.h>
#include <net/dst.h>
#include <net/xfrm.h>
#include <net/xdp.h>
#include <linux/veth.h>
#include <linux/module.h>
#include <linux/bpf.h>
#include <linux/filter.h>
#include <linux/ptr_ring.h>
#include <linux/bpf_trace.h>
#include <linux/net_tstamp.h>
#include <net/page_pool/helpers.h>
#define DRV_NAME "veth"
#define DRV_VERSION "1.0"
#define VETH_XDP_FLAG BIT(0)
#define VETH_RING_SIZE 256
#define VETH_XDP_HEADROOM (XDP_PACKET_HEADROOM + NET_IP_ALIGN)
#define VETH_XDP_TX_BULK_SIZE 16
#define VETH_XDP_BATCH 16
struct veth_stats {
u64 rx_drops;
/* xdp */
u64 xdp_packets;
u64 xdp_bytes;
u64 xdp_redirect;
u64 xdp_drops;
u64 xdp_tx;
u64 xdp_tx_err;
u64 peer_tq_xdp_xmit;
u64 peer_tq_xdp_xmit_err;
};
struct veth_rq_stats {
struct veth_stats vs;
struct u64_stats_sync syncp;
};
struct veth_rq {
struct napi_struct xdp_napi;
struct napi_struct __rcu *napi; /* points to xdp_napi when the latter is initialized */
struct net_device *dev;
struct bpf_prog __rcu *xdp_prog;
struct xdp_mem_info xdp_mem;
struct veth_rq_stats stats;
bool rx_notify_masked;
struct ptr_ring xdp_ring;
struct xdp_rxq_info xdp_rxq;
struct page_pool *page_pool;
};
struct veth_priv {
struct net_device __rcu *peer;
atomic64_t dropped;
struct bpf_prog *_xdp_prog;
struct veth_rq *rq;
unsigned int requested_headroom;
};
struct veth_xdp_tx_bq {
struct xdp_frame *q[VETH_XDP_TX_BULK_SIZE];
unsigned int count;
};
/*
* ethtool interface
*/
struct veth_q_stat_desc {
char desc[ETH_GSTRING_LEN];
size_t offset;
};
#define VETH_RQ_STAT(m) offsetof(struct veth_stats, m)
static const struct veth_q_stat_desc veth_rq_stats_desc[] = {
{ "xdp_packets", VETH_RQ_STAT(xdp_packets) },
{ "xdp_bytes", VETH_RQ_STAT(xdp_bytes) },
{ "drops", VETH_RQ_STAT(rx_drops) },
{ "xdp_redirect", VETH_RQ_STAT(xdp_redirect) },
{ "xdp_drops", VETH_RQ_STAT(xdp_drops) },
{ "xdp_tx", VETH_RQ_STAT(xdp_tx) },
{ "xdp_tx_errors", VETH_RQ_STAT(xdp_tx_err) },
};
#define VETH_RQ_STATS_LEN ARRAY_SIZE(veth_rq_stats_desc)
static const struct veth_q_stat_desc veth_tq_stats_desc[] = {
{ "xdp_xmit", VETH_RQ_STAT(peer_tq_xdp_xmit) },
{ "xdp_xmit_errors", VETH_RQ_STAT(peer_tq_xdp_xmit_err) },
};
#define VETH_TQ_STATS_LEN ARRAY_SIZE(veth_tq_stats_desc)
static struct {
const char string[ETH_GSTRING_LEN];
} ethtool_stats_keys[] = {
{ "peer_ifindex" },
};
struct veth_xdp_buff {
struct xdp_buff xdp;
struct sk_buff *skb;
};
static int veth_get_link_ksettings(struct net_device *dev,
struct ethtool_link_ksettings *cmd)
{
cmd->base.speed = SPEED_10000;
cmd->base.duplex = DUPLEX_FULL;
cmd->base.port = PORT_TP;
cmd->base.autoneg = AUTONEG_DISABLE;
return 0;
}
static void veth_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
{
strscpy(info->driver, DRV_NAME, sizeof(info->driver));
strscpy(info->version, DRV_VERSION, sizeof(info->version));
}
static void veth_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
{
u8 *p = buf;
int i, j;
switch(stringset) {
case ETH_SS_STATS:
memcpy(p, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
p += sizeof(ethtool_stats_keys);
for (i = 0; i < dev->real_num_rx_queues; i++)
for (j = 0; j < VETH_RQ_STATS_LEN; j++)
ethtool_sprintf(&p, "rx_queue_%u_%.18s",
i, veth_rq_stats_desc[j].desc);
for (i = 0; i < dev->real_num_tx_queues; i++)
for (j = 0; j < VETH_TQ_STATS_LEN; j++)
ethtool_sprintf(&p, "tx_queue_%u_%.18s",
i, veth_tq_stats_desc[j].desc);
page_pool_ethtool_stats_get_strings(p);
break;
}
}
static int veth_get_sset_count(struct net_device *dev, int sset)
{
switch (sset) {
case ETH_SS_STATS:
return ARRAY_SIZE(ethtool_stats_keys) +
VETH_RQ_STATS_LEN * dev->real_num_rx_queues +
VETH_TQ_STATS_LEN * dev->real_num_tx_queues +
page_pool_ethtool_stats_get_count();
default:
return -EOPNOTSUPP;
}
}
static void veth_get_page_pool_stats(struct net_device *dev, u64 *data)
{
#ifdef CONFIG_PAGE_POOL_STATS
struct veth_priv *priv = netdev_priv(dev);
struct page_pool_stats pp_stats = {};
int i;
for (i = 0; i < dev->real_num_rx_queues; i++) {
if (!priv->rq[i].page_pool)
continue;
page_pool_get_stats(priv->rq[i].page_pool, &pp_stats);
}
page_pool_ethtool_stats_get(data, &pp_stats);
#endif /* CONFIG_PAGE_POOL_STATS */
}
static void veth_get_ethtool_stats(struct net_device *dev,
struct ethtool_stats *stats, u64 *data)
{
struct veth_priv *rcv_priv, *priv = netdev_priv(dev);
struct net_device *peer = rtnl_dereference(priv->peer);
int i, j, idx, pp_idx;
data[0] = peer ? peer->ifindex : 0;
idx = 1;
for (i = 0; i < dev->real_num_rx_queues; i++) {
const struct veth_rq_stats *rq_stats = &priv->rq[i].stats;
const void *stats_base = (void *)&rq_stats->vs;
unsigned int start;
size_t offset;
do {
start = u64_stats_fetch_begin(&rq_stats->syncp);
for (j = 0; j < VETH_RQ_STATS_LEN; j++) {
offset = veth_rq_stats_desc[j].offset;
data[idx + j] = *(u64 *)(stats_base + offset);
}
} while (u64_stats_fetch_retry(&rq_stats->syncp, start));
idx += VETH_RQ_STATS_LEN;
}
pp_idx = idx;
if (!peer)
goto page_pool_stats;
rcv_priv = netdev_priv(peer);
for (i = 0; i < peer->real_num_rx_queues; i++) {
const struct veth_rq_stats *rq_stats = &rcv_priv->rq[i].stats;
const void *base = (void *)&rq_stats->vs;
unsigned int start, tx_idx = idx;
size_t offset;
tx_idx += (i % dev->real_num_tx_queues) * VETH_TQ_STATS_LEN;
do {
start = u64_stats_fetch_begin(&rq_stats->syncp);
for (j = 0; j < VETH_TQ_STATS_LEN; j++) {
offset = veth_tq_stats_desc[j].offset;
data[tx_idx + j] += *(u64 *)(base + offset);
}
} while (u64_stats_fetch_retry(&rq_stats->syncp, start));
pp_idx = tx_idx + VETH_TQ_STATS_LEN;
}
page_pool_stats:
veth_get_page_pool_stats(dev, &data[pp_idx]);
}
static void veth_get_channels(struct net_device *dev,
struct ethtool_channels *channels)
{
channels->tx_count = dev->real_num_tx_queues;
channels->rx_count = dev->real_num_rx_queues;
channels->max_tx = dev->num_tx_queues;
channels->max_rx = dev->num_rx_queues;
}
static int veth_set_channels(struct net_device *dev,
struct ethtool_channels *ch);
static const struct ethtool_ops veth_ethtool_ops = {
.get_drvinfo = veth_get_drvinfo,
.get_link = ethtool_op_get_link,
.get_strings = veth_get_strings,
.get_sset_count = veth_get_sset_count,
.get_ethtool_stats = veth_get_ethtool_stats,
.get_link_ksettings = veth_get_link_ksettings,
.get_ts_info = ethtool_op_get_ts_info,
.get_channels = veth_get_channels,
.set_channels = veth_set_channels,
};
/* general routines */
static bool veth_is_xdp_frame(void *ptr)
{
return (unsigned long)ptr & VETH_XDP_FLAG;
}
static struct xdp_frame *veth_ptr_to_xdp(void *ptr)
{
return (void *)((unsigned long)ptr & ~VETH_XDP_FLAG);
}
static void *veth_xdp_to_ptr(struct xdp_frame *xdp)
{
return (void *)((unsigned long)xdp | VETH_XDP_FLAG);
}
static void veth_ptr_free(void *ptr)
{
if (veth_is_xdp_frame(ptr))
xdp_return_frame(veth_ptr_to_xdp(ptr));
else
kfree_skb(ptr);
}
static void __veth_xdp_flush(struct veth_rq *rq)
{
/* Write ptr_ring before reading rx_notify_masked */
smp_mb();
if (!READ_ONCE(rq->rx_notify_masked) &&
napi_schedule_prep(&rq->xdp_napi)) {
WRITE_ONCE(rq->rx_notify_masked, true);
__napi_schedule(&rq->xdp_napi);
}
}
static int veth_xdp_rx(struct veth_rq *rq, struct sk_buff *skb)
{
if (unlikely(ptr_ring_produce(&rq->xdp_ring, skb))) {
dev_kfree_skb_any(skb);
return NET_RX_DROP;
}
return NET_RX_SUCCESS;
}
static int veth_forward_skb(struct net_device *dev, struct sk_buff *skb,
struct veth_rq *rq, bool xdp)
{
return __dev_forward_skb(dev, skb) ?: xdp ?
veth_xdp_rx(rq, skb) :
__netif_rx(skb);
}
/* return true if the specified skb has chances of GRO aggregation
* Don't strive for accuracy, but try to avoid GRO overhead in the most
* common scenarios.
* When XDP is enabled, all traffic is considered eligible, as the xmit
* device has TSO off.
* When TSO is enabled on the xmit device, we are likely interested only
* in UDP aggregation, explicitly check for that if the skb is suspected
* - the sock_wfree destructor is used by UDP, ICMP and XDP sockets -
* to belong to locally generated UDP traffic.
*/
static bool veth_skb_is_eligible_for_gro(const struct net_device *dev,
const struct net_device *rcv,
const struct sk_buff *skb)
{
return !(dev->features & NETIF_F_ALL_TSO) ||
(skb->destructor == sock_wfree &&
rcv->features & (NETIF_F_GRO_FRAGLIST | NETIF_F_GRO_UDP_FWD));
}
static netdev_tx_t veth_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct veth_priv *rcv_priv, *priv = netdev_priv(dev);
struct veth_rq *rq = NULL;
struct net_device *rcv;
int length = skb->len;
bool use_napi = false;
int rxq;
rcu_read_lock();
rcv = rcu_dereference(priv->peer);
if (unlikely(!rcv) || !pskb_may_pull(skb, ETH_HLEN)) {
kfree_skb(skb);
goto drop;
}
rcv_priv = netdev_priv(rcv);
rxq = skb_get_queue_mapping(skb);
if (rxq < rcv->real_num_rx_queues) {
rq = &rcv_priv->rq[rxq];
/* The napi pointer is available when an XDP program is
* attached or when GRO is enabled
* Don't bother with napi/GRO if the skb can't be aggregated
*/
use_napi = rcu_access_pointer(rq->napi) &&
veth_skb_is_eligible_for_gro(dev, rcv, skb);
}
skb_tx_timestamp(skb);
if (likely(veth_forward_skb(rcv, skb, rq, use_napi) == NET_RX_SUCCESS)) {
if (!use_napi)
dev_lstats_add(dev, length);
else
__veth_xdp_flush(rq);
} else {
drop:
atomic64_inc(&priv->dropped);
}
rcu_read_unlock();
return NETDEV_TX_OK;
}
static u64 veth_stats_tx(struct net_device *dev, u64 *packets, u64 *bytes)
{
struct veth_priv *priv = netdev_priv(dev);
dev_lstats_read(dev, packets, bytes);
return atomic64_read(&priv->dropped);
}
static void veth_stats_rx(struct veth_stats *result, struct net_device *dev)
{
struct veth_priv *priv = netdev_priv(dev);
int i;
result->peer_tq_xdp_xmit_err = 0;
result->xdp_packets = 0;
result->xdp_tx_err = 0;
result->xdp_bytes = 0;
result->rx_drops = 0;
for (i = 0; i < dev->num_rx_queues; i++) {
u64 packets, bytes, drops, xdp_tx_err, peer_tq_xdp_xmit_err;
struct veth_rq_stats *stats = &priv->rq[i].stats;
unsigned int start;
do {
start = u64_stats_fetch_begin(&stats->syncp);
peer_tq_xdp_xmit_err = stats->vs.peer_tq_xdp_xmit_err;
xdp_tx_err = stats->vs.xdp_tx_err;
packets = stats->vs.xdp_packets;
bytes = stats->vs.xdp_bytes;
drops = stats->vs.rx_drops;
} while (u64_stats_fetch_retry(&stats->syncp, start));
result->peer_tq_xdp_xmit_err += peer_tq_xdp_xmit_err;
result->xdp_tx_err += xdp_tx_err;
result->xdp_packets += packets;
result->xdp_bytes += bytes;
result->rx_drops += drops;
}
}
static void veth_get_stats64(struct net_device *dev,
struct rtnl_link_stats64 *tot)
{
struct veth_priv *priv = netdev_priv(dev);
struct net_device *peer;
struct veth_stats rx;
u64 packets, bytes;
tot->tx_dropped = veth_stats_tx(dev, &packets, &bytes);
tot->tx_bytes = bytes;
tot->tx_packets = packets;
veth_stats_rx(&rx, dev);
tot->tx_dropped += rx.xdp_tx_err;
tot->rx_dropped = rx.rx_drops + rx.peer_tq_xdp_xmit_err;
tot->rx_bytes = rx.xdp_bytes;
tot->rx_packets = rx.xdp_packets;
rcu_read_lock();
peer = rcu_dereference(priv->peer);
if (peer) {
veth_stats_tx(peer, &packets, &bytes);
tot->rx_bytes += bytes;
tot->rx_packets += packets;
veth_stats_rx(&rx, peer);
tot->tx_dropped += rx.peer_tq_xdp_xmit_err;
tot->rx_dropped += rx.xdp_tx_err;
tot->tx_bytes += rx.xdp_bytes;
tot->tx_packets += rx.xdp_packets;
}
rcu_read_unlock();
}
/* fake multicast ability */
static void veth_set_multicast_list(struct net_device *dev)
{
}
static int veth_select_rxq(struct net_device *dev)
{
return smp_processor_id() % dev->real_num_rx_queues;
}
static struct net_device *veth_peer_dev(struct net_device *dev)
{
struct veth_priv *priv = netdev_priv(dev);
/* Callers must be under RCU read side. */
return rcu_dereference(priv->peer);
}
static int veth_xdp_xmit(struct net_device *dev, int n,
struct xdp_frame **frames,
u32 flags, bool ndo_xmit)
{
struct veth_priv *rcv_priv, *priv = netdev_priv(dev);
int i, ret = -ENXIO, nxmit = 0;
struct net_device *rcv;
unsigned int max_len;
struct veth_rq *rq;
if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
return -EINVAL;
rcu_read_lock();
rcv = rcu_dereference(priv->peer);
if (unlikely(!rcv))
goto out;
rcv_priv = netdev_priv(rcv);
rq = &rcv_priv->rq[veth_select_rxq(rcv)];
/* The napi pointer is set if NAPI is enabled, which ensures that
* xdp_ring is initialized on receive side and the peer device is up.
*/
if (!rcu_access_pointer(rq->napi))
goto out;
max_len = rcv->mtu + rcv->hard_header_len + VLAN_HLEN;
spin_lock(&rq->xdp_ring.producer_lock);
for (i = 0; i < n; i++) {
struct xdp_frame *frame = frames[i];
void *ptr = veth_xdp_to_ptr(frame);
if (unlikely(xdp_get_frame_len(frame) > max_len ||
__ptr_ring_produce(&rq->xdp_ring, ptr)))
break;
nxmit++;
}
spin_unlock(&rq->xdp_ring.producer_lock);
if (flags & XDP_XMIT_FLUSH)
__veth_xdp_flush(rq);
ret = nxmit;
if (ndo_xmit) {
u64_stats_update_begin(&rq->stats.syncp);
rq->stats.vs.peer_tq_xdp_xmit += nxmit;
rq->stats.vs.peer_tq_xdp_xmit_err += n - nxmit;
u64_stats_update_end(&rq->stats.syncp);
}
out:
rcu_read_unlock();
return ret;
}
static int veth_ndo_xdp_xmit(struct net_device *dev, int n,
struct xdp_frame **frames, u32 flags)
{
int err;
err = veth_xdp_xmit(dev, n, frames, flags, true);
if (err < 0) {
struct veth_priv *priv = netdev_priv(dev);
atomic64_add(n, &priv->dropped);
}
return err;
}
static void veth_xdp_flush_bq(struct veth_rq *rq, struct veth_xdp_tx_bq *bq)
{
int sent, i, err = 0, drops;
sent = veth_xdp_xmit(rq->dev, bq->count, bq->q, 0, false);
if (sent < 0) {
err = sent;
sent = 0;
}
for (i = sent; unlikely(i < bq->count); i++)
xdp_return_frame(bq->q[i]);
drops = bq->count - sent;
trace_xdp_bulk_tx(rq->dev, sent, drops, err);
u64_stats_update_begin(&rq->stats.syncp);
rq->stats.vs.xdp_tx += sent;
rq->stats.vs.xdp_tx_err += drops;
u64_stats_update_end(&rq->stats.syncp);
bq->count = 0;
}
static void veth_xdp_flush(struct veth_rq *rq, struct veth_xdp_tx_bq *bq)
{
struct veth_priv *rcv_priv, *priv = netdev_priv(rq->dev);
struct net_device *rcv;
struct veth_rq *rcv_rq;
rcu_read_lock();
veth_xdp_flush_bq(rq, bq);
rcv = rcu_dereference(priv->peer);
if (unlikely(!rcv))
goto out;
rcv_priv = netdev_priv(rcv);
rcv_rq = &rcv_priv->rq[veth_select_rxq(rcv)];
/* xdp_ring is initialized on receive side? */
if (unlikely(!rcu_access_pointer(rcv_rq->xdp_prog)))
goto out;
__veth_xdp_flush(rcv_rq);
out:
rcu_read_unlock();
}
static int veth_xdp_tx(struct veth_rq *rq, struct xdp_buff *xdp,
struct veth_xdp_tx_bq *bq)
{
struct xdp_frame *frame = xdp_convert_buff_to_frame(xdp);
if (unlikely(!frame))
return -EOVERFLOW;
if (unlikely(bq->count == VETH_XDP_TX_BULK_SIZE))
veth_xdp_flush_bq(rq, bq);
bq->q[bq->count++] = frame;
return 0;
}
static struct xdp_frame *veth_xdp_rcv_one(struct veth_rq *rq,
struct xdp_frame *frame,
struct veth_xdp_tx_bq *bq,
struct veth_stats *stats)
{
struct xdp_frame orig_frame;
struct bpf_prog *xdp_prog;
rcu_read_lock();
xdp_prog = rcu_dereference(rq->xdp_prog);
if (likely(xdp_prog)) {
struct veth_xdp_buff vxbuf;
struct xdp_buff *xdp = &vxbuf.xdp;
u32 act;
xdp_convert_frame_to_buff(frame, xdp);
xdp->rxq = &rq->xdp_rxq;
vxbuf.skb = NULL;
act = bpf_prog_run_xdp(xdp_prog, xdp);
switch (act) {
case XDP_PASS:
if (xdp_update_frame_from_buff(xdp, frame))
goto err_xdp;
break;
case XDP_TX:
orig_frame = *frame;
xdp->rxq->mem = frame->mem;
if (unlikely(veth_xdp_tx(rq, xdp, bq) < 0)) {
trace_xdp_exception(rq->dev, xdp_prog, act);
frame = &orig_frame;
stats->rx_drops++;
goto err_xdp;
}
stats->xdp_tx++;
rcu_read_unlock();
goto xdp_xmit;
case XDP_REDIRECT:
orig_frame = *frame;
xdp->rxq->mem = frame->mem;
if (xdp_do_redirect(rq->dev, xdp, xdp_prog)) {
frame = &orig_frame;
stats->rx_drops++;
goto err_xdp;
}
stats->xdp_redirect++;
rcu_read_unlock();
goto xdp_xmit;
default:
bpf_warn_invalid_xdp_action(rq->dev, xdp_prog, act);
fallthrough;
case XDP_ABORTED:
trace_xdp_exception(rq->dev, xdp_prog, act);
fallthrough;
case XDP_DROP:
stats->xdp_drops++;
goto err_xdp;
}
}
rcu_read_unlock();
return frame;
err_xdp:
rcu_read_unlock();
xdp_return_frame(frame);
xdp_xmit:
return NULL;
}
/* frames array contains VETH_XDP_BATCH at most */
static void veth_xdp_rcv_bulk_skb(struct veth_rq *rq, void **frames,
int n_xdpf, struct veth_xdp_tx_bq *bq,
struct veth_stats *stats)
{
void *skbs[VETH_XDP_BATCH];
int i;
if (xdp_alloc_skb_bulk(skbs, n_xdpf,
GFP_ATOMIC | __GFP_ZERO) < 0) {
for (i = 0; i < n_xdpf; i++)
xdp_return_frame(frames[i]);
stats->rx_drops += n_xdpf;
return;
}
for (i = 0; i < n_xdpf; i++) {
struct sk_buff *skb = skbs[i];
skb = __xdp_build_skb_from_frame(frames[i], skb,
rq->dev);
if (!skb) {
xdp_return_frame(frames[i]);
stats->rx_drops++;
continue;
}
napi_gro_receive(&rq->xdp_napi, skb);
}
}
static void veth_xdp_get(struct xdp_buff *xdp)
{
struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
int i;
get_page(virt_to_page(xdp->data));
if (likely(!xdp_buff_has_frags(xdp)))
return;
for (i = 0; i < sinfo->nr_frags; i++)
__skb_frag_ref(&sinfo->frags[i]);
}
static int veth_convert_skb_to_xdp_buff(struct veth_rq *rq,
struct xdp_buff *xdp,
struct sk_buff **pskb)
{
struct sk_buff *skb = *pskb;
u32 frame_sz;
if (skb_shared(skb) || skb_head_is_locked(skb) ||
skb_shinfo(skb)->nr_frags ||
skb_headroom(skb) < XDP_PACKET_HEADROOM) {
u32 size, len, max_head_size, off;
struct sk_buff *nskb;
struct page *page;
int i, head_off;
/* We need a private copy of the skb and data buffers since
* the ebpf program can modify it. We segment the original skb
* into order-0 pages without linearize it.
*
* Make sure we have enough space for linear and paged area
*/
max_head_size = SKB_WITH_OVERHEAD(PAGE_SIZE -
VETH_XDP_HEADROOM);
if (skb->len > PAGE_SIZE * MAX_SKB_FRAGS + max_head_size)
goto drop;
/* Allocate skb head */
page = page_pool_dev_alloc_pages(rq->page_pool);
if (!page)
goto drop;
nskb = napi_build_skb(page_address(page), PAGE_SIZE);
if (!nskb) {
page_pool_put_full_page(rq->page_pool, page, true);
goto drop;
}
skb_reserve(nskb, VETH_XDP_HEADROOM);
skb_copy_header(nskb, skb);
skb_mark_for_recycle(nskb);
size = min_t(u32, skb->len, max_head_size);
if (skb_copy_bits(skb, 0, nskb->data, size)) {
consume_skb(nskb);
goto drop;
}
skb_put(nskb, size);
head_off = skb_headroom(nskb) - skb_headroom(skb);
skb_headers_offset_update(nskb, head_off);
/* Allocate paged area of new skb */
off = size;
len = skb->len - off;
for (i = 0; i < MAX_SKB_FRAGS && off < skb->len; i++) {
page = page_pool_dev_alloc_pages(rq->page_pool);
if (!page) {
consume_skb(nskb);
goto drop;
}
size = min_t(u32, len, PAGE_SIZE);
skb_add_rx_frag(nskb, i, page, 0, size, PAGE_SIZE);
if (skb_copy_bits(skb, off, page_address(page),
size)) {
consume_skb(nskb);
goto drop;
}
len -= size;
off += size;
}
consume_skb(skb);
skb = nskb;
}
/* SKB "head" area always have tailroom for skb_shared_info */
frame_sz = skb_end_pointer(skb) - skb->head;
frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
xdp_init_buff(xdp, frame_sz, &rq->xdp_rxq);
xdp_prepare_buff(xdp, skb->head, skb_headroom(skb),
skb_headlen(skb), true);
if (skb_is_nonlinear(skb)) {
skb_shinfo(skb)->xdp_frags_size = skb->data_len;
xdp_buff_set_frags_flag(xdp);
} else {
xdp_buff_clear_frags_flag(xdp);
}
*pskb = skb;
return 0;
drop:
consume_skb(skb);
*pskb = NULL;
return -ENOMEM;
}
static struct sk_buff *veth_xdp_rcv_skb(struct veth_rq *rq,
struct sk_buff *skb,
struct veth_xdp_tx_bq *bq,
struct veth_stats *stats)
{
void *orig_data, *orig_data_end;
struct bpf_prog *xdp_prog;
struct veth_xdp_buff vxbuf;
struct xdp_buff *xdp = &vxbuf.xdp;
u32 act, metalen;
int off;
skb_prepare_for_gro(skb);
rcu_read_lock();
xdp_prog = rcu_dereference(rq->xdp_prog);
if (unlikely(!xdp_prog)) {
rcu_read_unlock();
goto out;
}
__skb_push(skb, skb->data - skb_mac_header(skb));
if (veth_convert_skb_to_xdp_buff(rq, xdp, &skb))
goto drop;
vxbuf.skb = skb;
orig_data = xdp->data;
orig_data_end = xdp->data_end;
act = bpf_prog_run_xdp(xdp_prog, xdp);
switch (act) {
case XDP_PASS:
break;
case XDP_TX:
veth_xdp_get(xdp);
consume_skb(skb);
xdp->rxq->mem = rq->xdp_mem;
if (unlikely(veth_xdp_tx(rq, xdp, bq) < 0)) {
trace_xdp_exception(rq->dev, xdp_prog, act);
stats->rx_drops++;
goto err_xdp;
}
stats->xdp_tx++;
rcu_read_unlock();
goto xdp_xmit;
case XDP_REDIRECT:
veth_xdp_get(xdp);
consume_skb(skb);
xdp->rxq->mem = rq->xdp_mem;
if (xdp_do_redirect(rq->dev, xdp, xdp_prog)) {
stats->rx_drops++;
goto err_xdp;
}
stats->xdp_redirect++;
rcu_read_unlock();
goto xdp_xmit;
default:
bpf_warn_invalid_xdp_action(rq->dev, xdp_prog, act);
fallthrough;
case XDP_ABORTED:
trace_xdp_exception(rq->dev, xdp_prog, act);
fallthrough;
case XDP_DROP:
stats->xdp_drops++;
goto xdp_drop;
}
rcu_read_unlock();
/* check if bpf_xdp_adjust_head was used */
off = orig_data - xdp->data;
if (off > 0)
__skb_push(skb, off);
else if (off < 0)
__skb_pull(skb, -off);
skb_reset_mac_header(skb);
/* check if bpf_xdp_adjust_tail was used */
off = xdp->data_end - orig_data_end;
if (off != 0)
__skb_put(skb, off); /* positive on grow, negative on shrink */
/* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers
* (e.g. bpf_xdp_adjust_tail), we need to update data_len here.
*/
if (xdp_buff_has_frags(xdp))
skb->data_len = skb_shinfo(skb)->xdp_frags_size;
else
skb->data_len = 0;
skb->protocol = eth_type_trans(skb, rq->dev);
metalen = xdp->data - xdp->data_meta;
if (metalen)
skb_metadata_set(skb, metalen);
out:
return skb;
drop:
stats->rx_drops++;
xdp_drop:
rcu_read_unlock();
kfree_skb(skb);
return NULL;
err_xdp:
rcu_read_unlock();
xdp_return_buff(xdp);
xdp_xmit:
return NULL;
}
static int veth_xdp_rcv(struct veth_rq *rq, int budget,
struct veth_xdp_tx_bq *bq,
struct veth_stats *stats)
{
int i, done = 0, n_xdpf = 0;
void *xdpf[VETH_XDP_BATCH];
for (i = 0; i < budget; i++) {
void *ptr = __ptr_ring_consume(&rq->xdp_ring);
if (!ptr)
break;
if (veth_is_xdp_frame(ptr)) {
/* ndo_xdp_xmit */
struct xdp_frame *frame = veth_ptr_to_xdp(ptr);
stats->xdp_bytes += xdp_get_frame_len(frame);
frame = veth_xdp_rcv_one(rq, frame, bq, stats);
if (frame) {
/* XDP_PASS */
xdpf[n_xdpf++] = frame;
if (n_xdpf == VETH_XDP_BATCH) {
veth_xdp_rcv_bulk_skb(rq, xdpf, n_xdpf,
bq, stats);
n_xdpf = 0;
}
}
} else {
/* ndo_start_xmit */
struct sk_buff *skb = ptr;
stats->xdp_bytes += skb->len;
skb = veth_xdp_rcv_skb(rq, skb, bq, stats);
if (skb) {
if (skb_shared(skb) || skb_unclone(skb, GFP_ATOMIC))
netif_receive_skb(skb);
else
napi_gro_receive(&rq->xdp_napi, skb);
}
}
done++;
}
if (n_xdpf)
veth_xdp_rcv_bulk_skb(rq, xdpf, n_xdpf, bq, stats);
u64_stats_update_begin(&rq->stats.syncp);
rq->stats.vs.xdp_redirect += stats->xdp_redirect;
rq->stats.vs.xdp_bytes += stats->xdp_bytes;
rq->stats.vs.xdp_drops += stats->xdp_drops;
rq->stats.vs.rx_drops += stats->rx_drops;
rq->stats.vs.xdp_packets += done;
u64_stats_update_end(&rq->stats.syncp);
return done;
}
static int veth_poll(struct napi_struct *napi, int budget)
{
struct veth_rq *rq =
container_of(napi, struct veth_rq, xdp_napi);
struct veth_stats stats = {};
struct veth_xdp_tx_bq bq;
int done;
bq.count = 0;
xdp_set_return_frame_no_direct();
done = veth_xdp_rcv(rq, budget, &bq, &stats);
if (stats.xdp_redirect > 0)
xdp_do_flush();
if (done < budget && napi_complete_done(napi, done)) {
/* Write rx_notify_masked before reading ptr_ring */
smp_store_mb(rq->rx_notify_masked, false);
if (unlikely(!__ptr_ring_empty(&rq->xdp_ring))) {
if (napi_schedule_prep(&rq->xdp_napi)) {
WRITE_ONCE(rq->rx_notify_masked, true);
__napi_schedule(&rq->xdp_napi);
}
}
}
if (stats.xdp_tx > 0)
veth_xdp_flush(rq, &bq);
xdp_clear_return_frame_no_direct();
return done;
}
static int veth_create_page_pool(struct veth_rq *rq)
{
struct page_pool_params pp_params = {
.order = 0,
.pool_size = VETH_RING_SIZE,
.nid = NUMA_NO_NODE,
.dev = &rq->dev->dev,
};
rq->page_pool = page_pool_create(&pp_params);
if (IS_ERR(rq->page_pool)) {
int err = PTR_ERR(rq->page_pool);
rq->page_pool = NULL;
return err;
}
return 0;
}
static int __veth_napi_enable_range(struct net_device *dev, int start, int end)
{
struct veth_priv *priv = netdev_priv(dev);
int err, i;
for (i = start; i < end; i++) {
err = veth_create_page_pool(&priv->rq[i]);
if (err)
goto err_page_pool;
}
for (i = start; i < end; i++) {
struct veth_rq *rq = &priv->rq[i];
err = ptr_ring_init(&rq->xdp_ring, VETH_RING_SIZE, GFP_KERNEL);
if (err)
goto err_xdp_ring;
}
for (i = start; i < end; i++) {
struct veth_rq *rq = &priv->rq[i];
napi_enable(&rq->xdp_napi);
rcu_assign_pointer(priv->rq[i].napi, &priv->rq[i].xdp_napi);
}
return 0;
err_xdp_ring:
for (i--; i >= start; i--)
ptr_ring_cleanup(&priv->rq[i].xdp_ring, veth_ptr_free);
i = end;
err_page_pool:
for (i--; i >= start; i--) {
page_pool_destroy(priv->rq[i].page_pool);
priv->rq[i].page_pool = NULL;
}
return err;
}
static int __veth_napi_enable(struct net_device *dev)
{
return __veth_napi_enable_range(dev, 0, dev->real_num_rx_queues);
}
static void veth_napi_del_range(struct net_device *dev, int start, int end)
{
struct veth_priv *priv = netdev_priv(dev);
int i;
for (i = start; i < end; i++) {
struct veth_rq *rq = &priv->rq[i];
rcu_assign_pointer(priv->rq[i].napi, NULL);
napi_disable(&rq->xdp_napi);
__netif_napi_del(&rq->xdp_napi);
}
synchronize_net();
for (i = start; i < end; i++) {
struct veth_rq *rq = &priv->rq[i];
rq->rx_notify_masked = false;
ptr_ring_cleanup(&rq->xdp_ring, veth_ptr_free);
}
for (i = start; i < end; i++) {
page_pool_destroy(priv->rq[i].page_pool);
priv->rq[i].page_pool = NULL;
}
}
static void veth_napi_del(struct net_device *dev)
{
veth_napi_del_range(dev, 0, dev->real_num_rx_queues);
}
static bool veth_gro_requested(const struct net_device *dev)
{
return !!(dev->wanted_features & NETIF_F_GRO);
}
static int veth_enable_xdp_range(struct net_device *dev, int start, int end,
bool napi_already_on)
{
struct veth_priv *priv = netdev_priv(dev);
int err, i;
for (i = start; i < end; i++) {
struct veth_rq *rq = &priv->rq[i];
if (!napi_already_on)
netif_napi_add(dev, &rq->xdp_napi, veth_poll);
err = xdp_rxq_info_reg(&rq->xdp_rxq, dev, i, rq->xdp_napi.napi_id);
if (err < 0)
goto err_rxq_reg;
err = xdp_rxq_info_reg_mem_model(&rq->xdp_rxq,
MEM_TYPE_PAGE_SHARED,
NULL);
if (err < 0)
goto err_reg_mem;
/* Save original mem info as it can be overwritten */
rq->xdp_mem = rq->xdp_rxq.mem;
}
return 0;
err_reg_mem:
xdp_rxq_info_unreg(&priv->rq[i].xdp_rxq);
err_rxq_reg:
for (i--; i >= start; i--) {
struct veth_rq *rq = &priv->rq[i];
xdp_rxq_info_unreg(&rq->xdp_rxq);
if (!napi_already_on)
netif_napi_del(&rq->xdp_napi);
}
return err;
}
static void veth_disable_xdp_range(struct net_device *dev, int start, int end,
bool delete_napi)
{
struct veth_priv *priv = netdev_priv(dev);
int i;
for (i = start; i < end; i++) {
struct veth_rq *rq = &priv->rq[i];
rq->xdp_rxq.mem = rq->xdp_mem;
xdp_rxq_info_unreg(&rq->xdp_rxq);
if (delete_napi)
netif_napi_del(&rq->xdp_napi);
}
}
static int veth_enable_xdp(struct net_device *dev)
{
bool napi_already_on = veth_gro_requested(dev) && (dev->flags & IFF_UP);
struct veth_priv *priv = netdev_priv(dev);
int err, i;
if (!xdp_rxq_info_is_reg(&priv->rq[0].xdp_rxq)) {
err = veth_enable_xdp_range(dev, 0, dev->real_num_rx_queues, napi_already_on);
if (err)
return err;
if (!napi_already_on) {
err = __veth_napi_enable(dev);
if (err) {
veth_disable_xdp_range(dev, 0, dev->real_num_rx_queues, true);
return err;
}
if (!veth_gro_requested(dev)) {
/* user-space did not require GRO, but adding XDP
* is supposed to get GRO working
*/
dev->features |= NETIF_F_GRO;
netdev_features_change(dev);
}
}
}
for (i = 0; i < dev->real_num_rx_queues; i++) {
rcu_assign_pointer(priv->rq[i].xdp_prog, priv->_xdp_prog);
rcu_assign_pointer(priv->rq[i].napi, &priv->rq[i].xdp_napi);
}
return 0;
}
static void veth_disable_xdp(struct net_device *dev)
{
struct veth_priv *priv = netdev_priv(dev);
int i;
for (i = 0; i < dev->real_num_rx_queues; i++)
rcu_assign_pointer(priv->rq[i].xdp_prog, NULL);
if (!netif_running(dev) || !veth_gro_requested(dev)) {
veth_napi_del(dev);
/* if user-space did not require GRO, since adding XDP
* enabled it, clear it now
*/
if (!veth_gro_requested(dev) && netif_running(dev)) {
dev->features &= ~NETIF_F_GRO;
netdev_features_change(dev);
}
}
veth_disable_xdp_range(dev, 0, dev->real_num_rx_queues, false);
}
static int veth_napi_enable_range(struct net_device *dev, int start, int end)
{
struct veth_priv *priv = netdev_priv(dev);
int err, i;
for (i = start; i < end; i++) {
struct veth_rq *rq = &priv->rq[i];
netif_napi_add(dev, &rq->xdp_napi, veth_poll);
}
err = __veth_napi_enable_range(dev, start, end);
if (err) {
for (i = start; i < end; i++) {
struct veth_rq *rq = &priv->rq[i];
netif_napi_del(&rq->xdp_napi);
}
return err;
}
return err;
}
static int veth_napi_enable(struct net_device *dev)
{
return veth_napi_enable_range(dev, 0, dev->real_num_rx_queues);
}
static void veth_disable_range_safe(struct net_device *dev, int start, int end)
{
struct veth_priv *priv = netdev_priv(dev);
if (start >= end)
return;
if (priv->_xdp_prog) {
veth_napi_del_range(dev, start, end);
veth_disable_xdp_range(dev, start, end, false);
} else if (veth_gro_requested(dev)) {
veth_napi_del_range(dev, start, end);
}
}
static int veth_enable_range_safe(struct net_device *dev, int start, int end)
{
struct veth_priv *priv = netdev_priv(dev);
int err;
if (start >= end)
return 0;
if (priv->_xdp_prog) {
/* these channels are freshly initialized, napi is not on there even
* when GRO is requeste
*/
err = veth_enable_xdp_range(dev, start, end, false);
if (err)
return err;
err = __veth_napi_enable_range(dev, start, end);
if (err) {
/* on error always delete the newly added napis */
veth_disable_xdp_range(dev, start, end, true);
return err;
}
} else if (veth_gro_requested(dev)) {
return veth_napi_enable_range(dev, start, end);
}
return 0;
}
static void veth_set_xdp_features(struct net_device *dev)
{
struct veth_priv *priv = netdev_priv(dev);
struct net_device *peer;
peer = rtnl_dereference(priv->peer);
if (peer && peer->real_num_tx_queues <= dev->real_num_rx_queues) {
struct veth_priv *priv_peer = netdev_priv(peer);
xdp_features_t val = NETDEV_XDP_ACT_BASIC |
NETDEV_XDP_ACT_REDIRECT |
NETDEV_XDP_ACT_RX_SG;
if (priv_peer->_xdp_prog || veth_gro_requested(peer))
val |= NETDEV_XDP_ACT_NDO_XMIT |
NETDEV_XDP_ACT_NDO_XMIT_SG;
xdp_set_features_flag(dev, val);
} else {
xdp_clear_features_flag(dev);
}
}
static int veth_set_channels(struct net_device *dev,
struct ethtool_channels *ch)
{
struct veth_priv *priv = netdev_priv(dev);
unsigned int old_rx_count, new_rx_count;
struct veth_priv *peer_priv;
struct net_device *peer;
int err;
/* sanity check. Upper bounds are already enforced by the caller */
if (!ch->rx_count || !ch->tx_count)
return -EINVAL;
/* avoid braking XDP, if that is enabled */
peer = rtnl_dereference(priv->peer);
peer_priv = peer ? netdev_priv(peer) : NULL;
if (priv->_xdp_prog && peer && ch->rx_count < peer->real_num_tx_queues)
return -EINVAL;
if (peer && peer_priv && peer_priv->_xdp_prog && ch->tx_count > peer->real_num_rx_queues)
return -EINVAL;
old_rx_count = dev->real_num_rx_queues;
new_rx_count = ch->rx_count;
if (netif_running(dev)) {
/* turn device off */
netif_carrier_off(dev);
if (peer)
netif_carrier_off(peer);
/* try to allocate new resurces, as needed*/
err = veth_enable_range_safe(dev, old_rx_count, new_rx_count);
if (err)
goto out;
}
err = netif_set_real_num_rx_queues(dev, ch->rx_count);
if (err)
goto revert;
err = netif_set_real_num_tx_queues(dev, ch->tx_count);
if (err) {
int err2 = netif_set_real_num_rx_queues(dev, old_rx_count);
/* this error condition could happen only if rx and tx change
* in opposite directions (e.g. tx nr raises, rx nr decreases)
* and we can't do anything to fully restore the original
* status
*/
if (err2)
pr_warn("Can't restore rx queues config %d -> %d %d",
new_rx_count, old_rx_count, err2);
else
goto revert;
}
out:
if (netif_running(dev)) {
/* note that we need to swap the arguments WRT the enable part
* to identify the range we have to disable
*/
veth_disable_range_safe(dev, new_rx_count, old_rx_count);
netif_carrier_on(dev);
if (peer)
netif_carrier_on(peer);
}
/* update XDP supported features */
veth_set_xdp_features(dev);
if (peer)
veth_set_xdp_features(peer);
return err;
revert:
new_rx_count = old_rx_count;
old_rx_count = ch->rx_count;
goto out;
}
static int veth_open(struct net_device *dev)
{
struct veth_priv *priv = netdev_priv(dev);
struct net_device *peer = rtnl_dereference(priv->peer);
int err;
if (!peer)
return -ENOTCONN;
if (priv->_xdp_prog) {
err = veth_enable_xdp(dev);
if (err)
return err;
} else if (veth_gro_requested(dev)) {
err = veth_napi_enable(dev);
if (err)
return err;
}
if (peer->flags & IFF_UP) {
netif_carrier_on(dev);
netif_carrier_on(peer);
}
return 0;
}
static int veth_close(struct net_device *dev)
{
struct veth_priv *priv = netdev_priv(dev);
struct net_device *peer = rtnl_dereference(priv->peer);
netif_carrier_off(dev);
if (peer)
netif_carrier_off(peer);
if (priv->_xdp_prog)
veth_disable_xdp(dev);
else if (veth_gro_requested(dev))
veth_napi_del(dev);
return 0;
}
static int is_valid_veth_mtu(int mtu)
{
return mtu >= ETH_MIN_MTU && mtu <= ETH_MAX_MTU;
}
static int veth_alloc_queues(struct net_device *dev)
{
struct veth_priv *priv = netdev_priv(dev);
int i;
priv->rq = kcalloc(dev->num_rx_queues, sizeof(*priv->rq), GFP_KERNEL_ACCOUNT);
if (!priv->rq)
return -ENOMEM;
for (i = 0; i < dev->num_rx_queues; i++) {
priv->rq[i].dev = dev;
u64_stats_init(&priv->rq[i].stats.syncp);
}
return 0;
}
static void veth_free_queues(struct net_device *dev)
{
struct veth_priv *priv = netdev_priv(dev);
kfree(priv->rq);
}
static int veth_dev_init(struct net_device *dev)
{
int err;
dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
if (!dev->lstats)
return -ENOMEM;
err = veth_alloc_queues(dev);
if (err) {
free_percpu(dev->lstats);
return err;
}
return 0;
}
static void veth_dev_free(struct net_device *dev)
{
veth_free_queues(dev);
free_percpu(dev->lstats);
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void veth_poll_controller(struct net_device *dev)
{
/* veth only receives frames when its peer sends one
* Since it has nothing to do with disabling irqs, we are guaranteed
* never to have pending data when we poll for it so
* there is nothing to do here.
*
* We need this though so netpoll recognizes us as an interface that
* supports polling, which enables bridge devices in virt setups to
* still use netconsole
*/
}
#endif /* CONFIG_NET_POLL_CONTROLLER */
static int veth_get_iflink(const struct net_device *dev)
{
struct veth_priv *priv = netdev_priv(dev);
struct net_device *peer;
int iflink;
rcu_read_lock();
peer = rcu_dereference(priv->peer);
iflink = peer ? peer->ifindex : 0;
rcu_read_unlock();
return iflink;
}
static netdev_features_t veth_fix_features(struct net_device *dev,
netdev_features_t features)
{
struct veth_priv *priv = netdev_priv(dev);
struct net_device *peer;
peer = rtnl_dereference(priv->peer);
if (peer) {
struct veth_priv *peer_priv = netdev_priv(peer);
if (peer_priv->_xdp_prog)
features &= ~NETIF_F_GSO_SOFTWARE;
}
if (priv->_xdp_prog)
features |= NETIF_F_GRO;
return features;
}
static int veth_set_features(struct net_device *dev,
netdev_features_t features)
{
netdev_features_t changed = features ^ dev->features;
struct veth_priv *priv = netdev_priv(dev);
struct net_device *peer;
int err;
if (!(changed & NETIF_F_GRO) || !(dev->flags & IFF_UP) || priv->_xdp_prog)
return 0;
peer = rtnl_dereference(priv->peer);
if (features & NETIF_F_GRO) {
err = veth_napi_enable(dev);
if (err)
return err;
if (peer)
xdp_features_set_redirect_target(peer, true);
} else {
if (peer)
xdp_features_clear_redirect_target(peer);
veth_napi_del(dev);
}
return 0;
}
static void veth_set_rx_headroom(struct net_device *dev, int new_hr)
{
struct veth_priv *peer_priv, *priv = netdev_priv(dev);
struct net_device *peer;
if (new_hr < 0)
new_hr = 0;
rcu_read_lock();
peer = rcu_dereference(priv->peer);
if (unlikely(!peer))
goto out;
peer_priv = netdev_priv(peer);
priv->requested_headroom = new_hr;
new_hr = max(priv->requested_headroom, peer_priv->requested_headroom);
dev->needed_headroom = new_hr;
peer->needed_headroom = new_hr;
out:
rcu_read_unlock();
}
static int veth_xdp_set(struct net_device *dev, struct bpf_prog *prog,
struct netlink_ext_ack *extack)
{
struct veth_priv *priv = netdev_priv(dev);
struct bpf_prog *old_prog;
struct net_device *peer;
unsigned int max_mtu;
int err;
old_prog = priv->_xdp_prog;
priv->_xdp_prog = prog;
peer = rtnl_dereference(priv->peer);
if (prog) {
if (!peer) {
NL_SET_ERR_MSG_MOD(extack, "Cannot set XDP when peer is detached");
err = -ENOTCONN;
goto err;
}
max_mtu = SKB_WITH_OVERHEAD(PAGE_SIZE - VETH_XDP_HEADROOM) -
peer->hard_header_len;
/* Allow increasing the max_mtu if the program supports
* XDP fragments.
*/
if (prog->aux->xdp_has_frags)
max_mtu += PAGE_SIZE * MAX_SKB_FRAGS;
if (peer->mtu > max_mtu) {
NL_SET_ERR_MSG_MOD(extack, "Peer MTU is too large to set XDP");
err = -ERANGE;
goto err;
}
if (dev->real_num_rx_queues < peer->real_num_tx_queues) {
NL_SET_ERR_MSG_MOD(extack, "XDP expects number of rx queues not less than peer tx queues");
err = -ENOSPC;
goto err;
}
if (dev->flags & IFF_UP) {
err = veth_enable_xdp(dev);
if (err) {
NL_SET_ERR_MSG_MOD(extack, "Setup for XDP failed");
goto err;
}
}
if (!old_prog) {
peer->hw_features &= ~NETIF_F_GSO_SOFTWARE;
peer->max_mtu = max_mtu;
}
xdp_features_set_redirect_target(peer, true);
}
if (old_prog) {
if (!prog) {
if (peer && !veth_gro_requested(dev))
xdp_features_clear_redirect_target(peer);
if (dev->flags & IFF_UP)
veth_disable_xdp(dev);
if (peer) {
peer->hw_features |= NETIF_F_GSO_SOFTWARE;
peer->max_mtu = ETH_MAX_MTU;
}
}
bpf_prog_put(old_prog);
}
if ((!!old_prog ^ !!prog) && peer)
netdev_update_features(peer);
return 0;
err:
priv->_xdp_prog = old_prog;
return err;
}
static int veth_xdp(struct net_device *dev, struct netdev_bpf *xdp)
{
switch (xdp->command) {
case XDP_SETUP_PROG:
return veth_xdp_set(dev, xdp->prog, xdp->extack);
default:
return -EINVAL;
}
}
static int veth_xdp_rx_timestamp(const struct xdp_md *ctx, u64 *timestamp)
{
struct veth_xdp_buff *_ctx = (void *)ctx;
if (!_ctx->skb)
return -ENODATA;
*timestamp = skb_hwtstamps(_ctx->skb)->hwtstamp;
return 0;
}
static int veth_xdp_rx_hash(const struct xdp_md *ctx, u32 *hash,
enum xdp_rss_hash_type *rss_type)
{
struct veth_xdp_buff *_ctx = (void *)ctx;
struct sk_buff *skb = _ctx->skb;
if (!skb)
return -ENODATA;
*hash = skb_get_hash(skb);
*rss_type = skb->l4_hash ? XDP_RSS_TYPE_L4_ANY : XDP_RSS_TYPE_NONE;
return 0;
}
static const struct net_device_ops veth_netdev_ops = {
.ndo_init = veth_dev_init,
.ndo_open = veth_open,
.ndo_stop = veth_close,
.ndo_start_xmit = veth_xmit,
.ndo_get_stats64 = veth_get_stats64,
.ndo_set_rx_mode = veth_set_multicast_list,
.ndo_set_mac_address = eth_mac_addr,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = veth_poll_controller,
#endif
.ndo_get_iflink = veth_get_iflink,
.ndo_fix_features = veth_fix_features,
.ndo_set_features = veth_set_features,
.ndo_features_check = passthru_features_check,
.ndo_set_rx_headroom = veth_set_rx_headroom,
.ndo_bpf = veth_xdp,
.ndo_xdp_xmit = veth_ndo_xdp_xmit,
.ndo_get_peer_dev = veth_peer_dev,
};
static const struct xdp_metadata_ops veth_xdp_metadata_ops = {
.xmo_rx_timestamp = veth_xdp_rx_timestamp,
.xmo_rx_hash = veth_xdp_rx_hash,
};
#define VETH_FEATURES (NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HW_CSUM | \
NETIF_F_RXCSUM | NETIF_F_SCTP_CRC | NETIF_F_HIGHDMA | \
NETIF_F_GSO_SOFTWARE | NETIF_F_GSO_ENCAP_ALL | \
NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX | \
NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_STAG_RX )
static void veth_setup(struct net_device *dev)
{
ether_setup(dev);
dev->priv_flags &= ~IFF_TX_SKB_SHARING;
dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
dev->priv_flags |= IFF_NO_QUEUE;
dev->priv_flags |= IFF_PHONY_HEADROOM;
dev->netdev_ops = &veth_netdev_ops;
dev->xdp_metadata_ops = &veth_xdp_metadata_ops;
dev->ethtool_ops = &veth_ethtool_ops;
dev->features |= NETIF_F_LLTX;
dev->features |= VETH_FEATURES;
dev->vlan_features = dev->features &
~(NETIF_F_HW_VLAN_CTAG_TX |
NETIF_F_HW_VLAN_STAG_TX |
NETIF_F_HW_VLAN_CTAG_RX |
NETIF_F_HW_VLAN_STAG_RX);
dev->needs_free_netdev = true;
dev->priv_destructor = veth_dev_free;
dev->max_mtu = ETH_MAX_MTU;
dev->hw_features = VETH_FEATURES;
dev->hw_enc_features = VETH_FEATURES;
dev->mpls_features = NETIF_F_HW_CSUM | NETIF_F_GSO_SOFTWARE;
netif_set_tso_max_size(dev, GSO_MAX_SIZE);
}
/*
* netlink interface
*/
static int veth_validate(struct nlattr *tb[], struct nlattr *data[],
struct netlink_ext_ack *extack)
{
if (tb[IFLA_ADDRESS]) {
if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN)
return -EINVAL;
if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS])))
return -EADDRNOTAVAIL;
}
if (tb[IFLA_MTU]) {
if (!is_valid_veth_mtu(nla_get_u32(tb[IFLA_MTU])))
return -EINVAL;
}
return 0;
}
static struct rtnl_link_ops veth_link_ops;
static void veth_disable_gro(struct net_device *dev)
{
dev->features &= ~NETIF_F_GRO;
dev->wanted_features &= ~NETIF_F_GRO;
netdev_update_features(dev);
}
static int veth_init_queues(struct net_device *dev, struct nlattr *tb[])
{
int err;
if (!tb[IFLA_NUM_TX_QUEUES] && dev->num_tx_queues > 1) {
err = netif_set_real_num_tx_queues(dev, 1);
if (err)
return err;
}
if (!tb[IFLA_NUM_RX_QUEUES] && dev->num_rx_queues > 1) {
err = netif_set_real_num_rx_queues(dev, 1);
if (err)
return err;
}
return 0;
}
static int veth_newlink(struct net *src_net, struct net_device *dev,
struct nlattr *tb[], struct nlattr *data[],
struct netlink_ext_ack *extack)
{
int err;
struct net_device *peer;
struct veth_priv *priv;
char ifname[IFNAMSIZ];
struct nlattr *peer_tb[IFLA_MAX + 1], **tbp;
unsigned char name_assign_type;
struct ifinfomsg *ifmp;
struct net *net;
/*
* create and register peer first
*/
if (data != NULL && data[VETH_INFO_PEER] != NULL) {
struct nlattr *nla_peer;
nla_peer = data[VETH_INFO_PEER];
ifmp = nla_data(nla_peer);
err = rtnl_nla_parse_ifinfomsg(peer_tb, nla_peer, extack);
if (err < 0)
return err;
err = veth_validate(peer_tb, NULL, extack);
if (err < 0)
return err;
tbp = peer_tb;
} else {
ifmp = NULL;
tbp = tb;
}
if (ifmp && tbp[IFLA_IFNAME]) {
nla_strscpy(ifname, tbp[IFLA_IFNAME], IFNAMSIZ);
name_assign_type = NET_NAME_USER;
} else {
snprintf(ifname, IFNAMSIZ, DRV_NAME "%%d");
name_assign_type = NET_NAME_ENUM;
}
net = rtnl_link_get_net(src_net, tbp);
if (IS_ERR(net))
return PTR_ERR(net);
peer = rtnl_create_link(net, ifname, name_assign_type,
&veth_link_ops, tbp, extack);
if (IS_ERR(peer)) {
put_net(net);
return PTR_ERR(peer);
}
if (!ifmp || !tbp[IFLA_ADDRESS])
eth_hw_addr_random(peer);
if (ifmp && (dev->ifindex != 0))
peer->ifindex = ifmp->ifi_index;
netif_inherit_tso_max(peer, dev);
err = register_netdevice(peer);
put_net(net);
net = NULL;
if (err < 0)
goto err_register_peer;
/* keep GRO disabled by default to be consistent with the established
* veth behavior
*/
veth_disable_gro(peer);
netif_carrier_off(peer);
err = rtnl_configure_link(peer, ifmp, 0, NULL);
if (err < 0)
goto err_configure_peer;
/*
* register dev last
*
* note, that since we've registered new device the dev's name
* should be re-allocated
*/
if (tb[IFLA_ADDRESS] == NULL)
eth_hw_addr_random(dev);
if (tb[IFLA_IFNAME])
nla_strscpy(dev->name, tb[IFLA_IFNAME], IFNAMSIZ);
else
snprintf(dev->name, IFNAMSIZ, DRV_NAME "%%d");
err = register_netdevice(dev);
if (err < 0)
goto err_register_dev;
netif_carrier_off(dev);
/*
* tie the deviced together
*/
priv = netdev_priv(dev);
rcu_assign_pointer(priv->peer, peer);
err = veth_init_queues(dev, tb);
if (err)
goto err_queues;
priv = netdev_priv(peer);
rcu_assign_pointer(priv->peer, dev);
err = veth_init_queues(peer, tb);
if (err)
goto err_queues;
veth_disable_gro(dev);
/* update XDP supported features */
veth_set_xdp_features(dev);
veth_set_xdp_features(peer);
return 0;
err_queues:
unregister_netdevice(dev);
err_register_dev:
/* nothing to do */
err_configure_peer:
unregister_netdevice(peer);
return err;
err_register_peer:
free_netdev(peer);
return err;
}
static void veth_dellink(struct net_device *dev, struct list_head *head)
{
struct veth_priv *priv;
struct net_device *peer;
priv = netdev_priv(dev);
peer = rtnl_dereference(priv->peer);
/* Note : dellink() is called from default_device_exit_batch(),
* before a rcu_synchronize() point. The devices are guaranteed
* not being freed before one RCU grace period.
*/
RCU_INIT_POINTER(priv->peer, NULL);
unregister_netdevice_queue(dev, head);
if (peer) {
priv = netdev_priv(peer);
RCU_INIT_POINTER(priv->peer, NULL);
unregister_netdevice_queue(peer, head);
}
}
static const struct nla_policy veth_policy[VETH_INFO_MAX + 1] = {
[VETH_INFO_PEER] = { .len = sizeof(struct ifinfomsg) },
};
static struct net *veth_get_link_net(const struct net_device *dev)
{
struct veth_priv *priv = netdev_priv(dev);
struct net_device *peer = rtnl_dereference(priv->peer);
return peer ? dev_net(peer) : dev_net(dev);
}
static unsigned int veth_get_num_queues(void)
{
/* enforce the same queue limit as rtnl_create_link */
int queues = num_possible_cpus();
if (queues > 4096)
queues = 4096;
return queues;
}
static struct rtnl_link_ops veth_link_ops = {
.kind = DRV_NAME,
.priv_size = sizeof(struct veth_priv),
.setup = veth_setup,
.validate = veth_validate,
.newlink = veth_newlink,
.dellink = veth_dellink,
.policy = veth_policy,
.maxtype = VETH_INFO_MAX,
.get_link_net = veth_get_link_net,
.get_num_tx_queues = veth_get_num_queues,
.get_num_rx_queues = veth_get_num_queues,
};
/*
* init/fini
*/
static __init int veth_init(void)
{
return rtnl_link_register(&veth_link_ops);
}
static __exit void veth_exit(void)
{
rtnl_link_unregister(&veth_link_ops);
}
module_init(veth_init);
module_exit(veth_exit);
MODULE_DESCRIPTION("Virtual Ethernet Tunnel");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS_RTNL_LINK(DRV_NAME);