To boost throughput on devices with internal queueing and in scenarios where device idling is not strictly needed, bfq immediately starts serving a new bfq_queue if the in-service bfq_queue remains without pending I/O, even if new I/O may arrive soon for the latter queue. Then, if such I/O actually arrives soon, bfq preempts the new in-service bfq_queue so as to give the previous queue a chance to go on being served (in case the previous queue should actually be the one to be served, according to its timestamps). However, the in-service bfq_queue, say Q, may also be without further budget when it remains also pending I/O. Since bfq changes budgets dynamically to fit the needs of bfq_queues, this happens more often than one may expect. If this happens, then there is no point in trying to go on serving Q when new I/O arrives for it soon: Q would be expired immediately after being selected for service. This would only cause useless overhead. This commit avoids such a useless selection. Signed-off-by: Paolo Valente <paolo.valente@linaro.org> Signed-off-by: Jens Axboe <axboe@kernel.dk>
Linux kernel ============ There are several guides for kernel developers and users. These guides can be rendered in a number of formats, like HTML and PDF. Please read Documentation/admin-guide/README.rst first. In order to build the documentation, use ``make htmldocs`` or ``make pdfdocs``. The formatted documentation can also be read online at: https://www.kernel.org/doc/html/latest/ There are various text files in the Documentation/ subdirectory, several of them using the Restructured Text markup notation. Please read the Documentation/process/changes.rst file, as it contains the requirements for building and running the kernel, and information about the problems which may result by upgrading your kernel.
Description
Languages
C
97.6%
Assembly
1%
Shell
0.5%
Python
0.3%
Makefile
0.3%