linux/drivers/iio/proximity/irsd200.c
Waqar Hameed 3db3562bc6 iio: Add driver for Murata IRS-D200
Murata IRS-D200 is a PIR sensor for human detection. It has support for
raw data measurements and detection event notification.

Add a driver with support for triggered buffer and events. Map the
various settings to the `iio` framework, e.g. threshold values, sampling
frequency, filter frequencies etc.

Signed-off-by: Waqar Hameed <waqar.hameed@axis.com>
Link: https://lore.kernel.org/r/d218a1bc75402b5ebd6e12a563f7315f83fe966c.1689753076.git.waqar.hameed@axis.com
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2023-07-23 13:21:54 +01:00

959 lines
23 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Driver for Murata IRS-D200 PIR sensor.
*
* Copyright (C) 2023 Axis Communications AB
*/
#include <asm/unaligned.h>
#include <linux/bitfield.h>
#include <linux/gpio.h>
#include <linux/i2c.h>
#include <linux/module.h>
#include <linux/regmap.h>
#include <linux/iio/buffer.h>
#include <linux/iio/events.h>
#include <linux/iio/iio.h>
#include <linux/iio/trigger.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/triggered_buffer.h>
#include <linux/iio/types.h>
#define IRS_DRV_NAME "irsd200"
/* Registers. */
#define IRS_REG_OP 0x00 /* Operation mode. */
#define IRS_REG_DATA_LO 0x02 /* Sensor data LSB. */
#define IRS_REG_DATA_HI 0x03 /* Sensor data MSB. */
#define IRS_REG_STATUS 0x04 /* Interrupt status. */
#define IRS_REG_COUNT 0x05 /* Count of exceeding threshold. */
#define IRS_REG_DATA_RATE 0x06 /* Output data rate. */
#define IRS_REG_FILTER 0x07 /* High-pass and low-pass filter. */
#define IRS_REG_INTR 0x09 /* Interrupt mode. */
#define IRS_REG_NR_COUNT 0x0a /* Number of counts before interrupt. */
#define IRS_REG_THR_HI 0x0b /* Upper threshold. */
#define IRS_REG_THR_LO 0x0c /* Lower threshold. */
#define IRS_REG_TIMER_LO 0x0d /* Timer setting LSB. */
#define IRS_REG_TIMER_HI 0x0e /* Timer setting MSB. */
/* Interrupt status bits. */
#define IRS_INTR_DATA 0 /* Data update. */
#define IRS_INTR_TIMER 1 /* Timer expiration. */
#define IRS_INTR_COUNT_THR_AND 2 /* Count "AND" threshold. */
#define IRS_INTR_COUNT_THR_OR 3 /* Count "OR" threshold. */
/* Operation states. */
#define IRS_OP_ACTIVE 0x00
#define IRS_OP_SLEEP 0x01
/*
* Quantization scale value for threshold. Used for conversion from/to register
* value.
*/
#define IRS_THR_QUANT_SCALE 128
#define IRS_UPPER_COUNT(count) FIELD_GET(GENMASK(7, 4), count)
#define IRS_LOWER_COUNT(count) FIELD_GET(GENMASK(3, 0), count)
/* Index corresponds to the value of IRS_REG_DATA_RATE register. */
static const int irsd200_data_rates[] = {
50,
100,
};
/* Index corresponds to the (field) value of IRS_REG_FILTER register. */
static const unsigned int irsd200_lp_filter_freq[] = {
10,
7,
};
/*
* Index corresponds to the (field) value of IRS_REG_FILTER register. Note that
* this represents a fractional value (e.g the first value corresponds to 3 / 10
* = 0.3 Hz).
*/
static const unsigned int irsd200_hp_filter_freq[][2] = {
{ 3, 10 },
{ 5, 10 },
};
/* Register fields. */
enum irsd200_regfield {
/* Data interrupt. */
IRS_REGF_INTR_DATA,
/* Timer interrupt. */
IRS_REGF_INTR_TIMER,
/* AND count threshold interrupt. */
IRS_REGF_INTR_COUNT_THR_AND,
/* OR count threshold interrupt. */
IRS_REGF_INTR_COUNT_THR_OR,
/* Low-pass filter frequency. */
IRS_REGF_LP_FILTER,
/* High-pass filter frequency. */
IRS_REGF_HP_FILTER,
/* Sentinel value. */
IRS_REGF_MAX
};
static const struct reg_field irsd200_regfields[] = {
[IRS_REGF_INTR_DATA] =
REG_FIELD(IRS_REG_INTR, IRS_INTR_DATA, IRS_INTR_DATA),
[IRS_REGF_INTR_TIMER] =
REG_FIELD(IRS_REG_INTR, IRS_INTR_TIMER, IRS_INTR_TIMER),
[IRS_REGF_INTR_COUNT_THR_AND] = REG_FIELD(
IRS_REG_INTR, IRS_INTR_COUNT_THR_AND, IRS_INTR_COUNT_THR_AND),
[IRS_REGF_INTR_COUNT_THR_OR] = REG_FIELD(
IRS_REG_INTR, IRS_INTR_COUNT_THR_OR, IRS_INTR_COUNT_THR_OR),
[IRS_REGF_LP_FILTER] = REG_FIELD(IRS_REG_FILTER, 1, 1),
[IRS_REGF_HP_FILTER] = REG_FIELD(IRS_REG_FILTER, 0, 0),
};
static const struct regmap_config irsd200_regmap_config = {
.reg_bits = 8,
.val_bits = 8,
.max_register = IRS_REG_TIMER_HI,
};
struct irsd200_data {
struct regmap *regmap;
struct regmap_field *regfields[IRS_REGF_MAX];
struct device *dev;
};
static int irsd200_setup(struct irsd200_data *data)
{
unsigned int val;
int ret;
/* Disable all interrupt sources. */
ret = regmap_write(data->regmap, IRS_REG_INTR, 0);
if (ret) {
dev_err(data->dev, "Could not set interrupt sources (%d)\n",
ret);
return ret;
}
/* Set operation to active. */
ret = regmap_write(data->regmap, IRS_REG_OP, IRS_OP_ACTIVE);
if (ret) {
dev_err(data->dev, "Could not set operation mode (%d)\n", ret);
return ret;
}
/* Clear threshold count. */
ret = regmap_read(data->regmap, IRS_REG_COUNT, &val);
if (ret) {
dev_err(data->dev, "Could not clear threshold count (%d)\n",
ret);
return ret;
}
/* Clear status. */
ret = regmap_write(data->regmap, IRS_REG_STATUS, 0x0f);
if (ret) {
dev_err(data->dev, "Could not clear status (%d)\n", ret);
return ret;
}
return 0;
}
static int irsd200_read_threshold(struct irsd200_data *data,
enum iio_event_direction dir, int *val)
{
unsigned int regval;
unsigned int reg;
int scale;
int ret;
/* Set quantization scale. */
if (dir == IIO_EV_DIR_RISING) {
scale = IRS_THR_QUANT_SCALE;
reg = IRS_REG_THR_HI;
} else if (dir == IIO_EV_DIR_FALLING) {
scale = -IRS_THR_QUANT_SCALE;
reg = IRS_REG_THR_LO;
} else {
return -EINVAL;
}
ret = regmap_read(data->regmap, reg, &regval);
if (ret) {
dev_err(data->dev, "Could not read threshold (%d)\n", ret);
return ret;
}
*val = ((int)regval) * scale;
return 0;
}
static int irsd200_write_threshold(struct irsd200_data *data,
enum iio_event_direction dir, int val)
{
unsigned int regval;
unsigned int reg;
int scale;
int ret;
/* Set quantization scale. */
if (dir == IIO_EV_DIR_RISING) {
if (val < 0)
return -ERANGE;
scale = IRS_THR_QUANT_SCALE;
reg = IRS_REG_THR_HI;
} else if (dir == IIO_EV_DIR_FALLING) {
if (val > 0)
return -ERANGE;
scale = -IRS_THR_QUANT_SCALE;
reg = IRS_REG_THR_LO;
} else {
return -EINVAL;
}
regval = val / scale;
if (regval >= BIT(8))
return -ERANGE;
ret = regmap_write(data->regmap, reg, regval);
if (ret) {
dev_err(data->dev, "Could not write threshold (%d)\n", ret);
return ret;
}
return 0;
}
static int irsd200_read_data(struct irsd200_data *data, s16 *val)
{
__le16 buf;
int ret;
ret = regmap_bulk_read(data->regmap, IRS_REG_DATA_LO, &buf,
sizeof(buf));
if (ret) {
dev_err(data->dev, "Could not bulk read data (%d)\n", ret);
return ret;
}
*val = le16_to_cpu(buf);
return 0;
}
static int irsd200_read_data_rate(struct irsd200_data *data, int *val)
{
unsigned int regval;
int ret;
ret = regmap_read(data->regmap, IRS_REG_DATA_RATE, &regval);
if (ret) {
dev_err(data->dev, "Could not read data rate (%d)\n", ret);
return ret;
}
if (regval >= ARRAY_SIZE(irsd200_data_rates))
return -ERANGE;
*val = irsd200_data_rates[regval];
return 0;
}
static int irsd200_write_data_rate(struct irsd200_data *data, int val)
{
size_t idx;
int ret;
for (idx = 0; idx < ARRAY_SIZE(irsd200_data_rates); ++idx) {
if (irsd200_data_rates[idx] == val)
break;
}
if (idx == ARRAY_SIZE(irsd200_data_rates))
return -ERANGE;
ret = regmap_write(data->regmap, IRS_REG_DATA_RATE, idx);
if (ret) {
dev_err(data->dev, "Could not write data rate (%d)\n", ret);
return ret;
}
/*
* Data sheet says the device needs 3 seconds of settling time. The
* device operates normally during this period though. This is more of a
* "guarantee" than trying to prevent other user space reads/writes.
*/
ssleep(3);
return 0;
}
static int irsd200_read_timer(struct irsd200_data *data, int *val, int *val2)
{
__le16 buf;
int ret;
ret = regmap_bulk_read(data->regmap, IRS_REG_TIMER_LO, &buf,
sizeof(buf));
if (ret) {
dev_err(data->dev, "Could not bulk read timer (%d)\n", ret);
return ret;
}
ret = irsd200_read_data_rate(data, val2);
if (ret)
return ret;
*val = le16_to_cpu(buf);
return 0;
}
static int irsd200_write_timer(struct irsd200_data *data, int val, int val2)
{
unsigned int regval;
int data_rate;
__le16 buf;
int ret;
if (val < 0 || val2 < 0)
return -ERANGE;
ret = irsd200_read_data_rate(data, &data_rate);
if (ret)
return ret;
/* Quantize from seconds. */
regval = val * data_rate + (val2 * data_rate) / 1000000;
/* Value is 10 bits. */
if (regval >= BIT(10))
return -ERANGE;
buf = cpu_to_le16((u16)regval);
ret = regmap_bulk_write(data->regmap, IRS_REG_TIMER_LO, &buf,
sizeof(buf));
if (ret) {
dev_err(data->dev, "Could not bulk write timer (%d)\n", ret);
return ret;
}
return 0;
}
static int irsd200_read_nr_count(struct irsd200_data *data, int *val)
{
unsigned int regval;
int ret;
ret = regmap_read(data->regmap, IRS_REG_NR_COUNT, &regval);
if (ret) {
dev_err(data->dev, "Could not read nr count (%d)\n", ret);
return ret;
}
*val = regval;
return 0;
}
static int irsd200_write_nr_count(struct irsd200_data *data, int val)
{
unsigned int regval;
int ret;
/* A value of zero means that IRS_REG_STATUS is never set. */
if (val <= 0 || val >= 8)
return -ERANGE;
regval = val;
if (regval >= 2) {
/*
* According to the data sheet, timer must be also set in this
* case (i.e. be non-zero). Check and enforce that.
*/
ret = irsd200_read_timer(data, &val, &val);
if (ret)
return ret;
if (val == 0) {
dev_err(data->dev,
"Timer must be non-zero when nr count is %u\n",
regval);
return -EPERM;
}
}
ret = regmap_write(data->regmap, IRS_REG_NR_COUNT, regval);
if (ret) {
dev_err(data->dev, "Could not write nr count (%d)\n", ret);
return ret;
}
return 0;
}
static int irsd200_read_lp_filter(struct irsd200_data *data, int *val)
{
unsigned int regval;
int ret;
ret = regmap_field_read(data->regfields[IRS_REGF_LP_FILTER], &regval);
if (ret) {
dev_err(data->dev, "Could not read lp filter frequency (%d)\n",
ret);
return ret;
}
*val = irsd200_lp_filter_freq[regval];
return 0;
}
static int irsd200_write_lp_filter(struct irsd200_data *data, int val)
{
size_t idx;
int ret;
for (idx = 0; idx < ARRAY_SIZE(irsd200_lp_filter_freq); ++idx) {
if (irsd200_lp_filter_freq[idx] == val)
break;
}
if (idx == ARRAY_SIZE(irsd200_lp_filter_freq))
return -ERANGE;
ret = regmap_field_write(data->regfields[IRS_REGF_LP_FILTER], idx);
if (ret) {
dev_err(data->dev, "Could not write lp filter frequency (%d)\n",
ret);
return ret;
}
return 0;
}
static int irsd200_read_hp_filter(struct irsd200_data *data, int *val,
int *val2)
{
unsigned int regval;
int ret;
ret = regmap_field_read(data->regfields[IRS_REGF_HP_FILTER], &regval);
if (ret) {
dev_err(data->dev, "Could not read hp filter frequency (%d)\n",
ret);
return ret;
}
*val = irsd200_hp_filter_freq[regval][0];
*val2 = irsd200_hp_filter_freq[regval][1];
return 0;
}
static int irsd200_write_hp_filter(struct irsd200_data *data, int val, int val2)
{
size_t idx;
int ret;
/* Truncate fractional part to one digit. */
val2 /= 100000;
for (idx = 0; idx < ARRAY_SIZE(irsd200_hp_filter_freq); ++idx) {
if (irsd200_hp_filter_freq[idx][0] == val2)
break;
}
if (idx == ARRAY_SIZE(irsd200_hp_filter_freq) || val != 0)
return -ERANGE;
ret = regmap_field_write(data->regfields[IRS_REGF_HP_FILTER], idx);
if (ret) {
dev_err(data->dev, "Could not write hp filter frequency (%d)\n",
ret);
return ret;
}
return 0;
}
static int irsd200_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan, int *val,
int *val2, long mask)
{
struct irsd200_data *data = iio_priv(indio_dev);
int ret;
s16 buf;
switch (mask) {
case IIO_CHAN_INFO_RAW:
ret = irsd200_read_data(data, &buf);
if (ret)
return ret;
*val = buf;
return IIO_VAL_INT;
case IIO_CHAN_INFO_SAMP_FREQ:
ret = irsd200_read_data_rate(data, val);
if (ret)
return ret;
return IIO_VAL_INT;
case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
ret = irsd200_read_lp_filter(data, val);
if (ret)
return ret;
return IIO_VAL_INT;
case IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY:
ret = irsd200_read_hp_filter(data, val, val2);
if (ret)
return ret;
return IIO_VAL_FRACTIONAL;
default:
return -EINVAL;
}
}
static int irsd200_read_avail(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
const int **vals, int *type, int *length,
long mask)
{
switch (mask) {
case IIO_CHAN_INFO_SAMP_FREQ:
*vals = irsd200_data_rates;
*type = IIO_VAL_INT;
*length = ARRAY_SIZE(irsd200_data_rates);
return IIO_AVAIL_LIST;
case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
*vals = irsd200_lp_filter_freq;
*type = IIO_VAL_INT;
*length = ARRAY_SIZE(irsd200_lp_filter_freq);
return IIO_AVAIL_LIST;
case IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY:
*vals = (int *)irsd200_hp_filter_freq;
*type = IIO_VAL_FRACTIONAL;
*length = 2 * ARRAY_SIZE(irsd200_hp_filter_freq);
return IIO_AVAIL_LIST;
default:
return -EINVAL;
}
}
static int irsd200_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan, int val,
int val2, long mask)
{
struct irsd200_data *data = iio_priv(indio_dev);
switch (mask) {
case IIO_CHAN_INFO_SAMP_FREQ:
return irsd200_write_data_rate(data, val);
case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
return irsd200_write_lp_filter(data, val);
case IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY:
return irsd200_write_hp_filter(data, val, val2);
default:
return -EINVAL;
}
}
static int irsd200_read_event(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir,
enum iio_event_info info, int *val, int *val2)
{
struct irsd200_data *data = iio_priv(indio_dev);
int ret;
switch (info) {
case IIO_EV_INFO_VALUE:
ret = irsd200_read_threshold(data, dir, val);
if (ret)
return ret;
return IIO_VAL_INT;
case IIO_EV_INFO_RUNNING_PERIOD:
ret = irsd200_read_timer(data, val, val2);
if (ret)
return ret;
return IIO_VAL_FRACTIONAL;
case IIO_EV_INFO_RUNNING_COUNT:
ret = irsd200_read_nr_count(data, val);
if (ret)
return ret;
return IIO_VAL_INT;
default:
return -EINVAL;
}
}
static int irsd200_write_event(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir,
enum iio_event_info info, int val, int val2)
{
struct irsd200_data *data = iio_priv(indio_dev);
switch (info) {
case IIO_EV_INFO_VALUE:
return irsd200_write_threshold(data, dir, val);
case IIO_EV_INFO_RUNNING_PERIOD:
return irsd200_write_timer(data, val, val2);
case IIO_EV_INFO_RUNNING_COUNT:
return irsd200_write_nr_count(data, val);
default:
return -EINVAL;
}
}
static int irsd200_read_event_config(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir)
{
struct irsd200_data *data = iio_priv(indio_dev);
unsigned int val;
int ret;
switch (type) {
case IIO_EV_TYPE_THRESH:
ret = regmap_field_read(
data->regfields[IRS_REGF_INTR_COUNT_THR_OR], &val);
if (ret)
return ret;
return val;
default:
return -EINVAL;
}
}
static int irsd200_write_event_config(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir, int state)
{
struct irsd200_data *data = iio_priv(indio_dev);
unsigned int tmp;
int ret;
switch (type) {
case IIO_EV_TYPE_THRESH:
/* Clear the count register (by reading from it). */
ret = regmap_read(data->regmap, IRS_REG_COUNT, &tmp);
if (ret)
return ret;
return regmap_field_write(
data->regfields[IRS_REGF_INTR_COUNT_THR_OR], !!state);
default:
return -EINVAL;
}
}
static irqreturn_t irsd200_irq_thread(int irq, void *dev_id)
{
struct iio_dev *indio_dev = dev_id;
struct irsd200_data *data = iio_priv(indio_dev);
enum iio_event_direction dir;
unsigned int lower_count;
unsigned int upper_count;
unsigned int status = 0;
unsigned int source = 0;
unsigned int clear = 0;
unsigned int count = 0;
int ret;
ret = regmap_read(data->regmap, IRS_REG_INTR, &source);
if (ret) {
dev_err(data->dev, "Could not read interrupt source (%d)\n",
ret);
return IRQ_HANDLED;
}
ret = regmap_read(data->regmap, IRS_REG_STATUS, &status);
if (ret) {
dev_err(data->dev, "Could not acknowledge interrupt (%d)\n",
ret);
return IRQ_HANDLED;
}
if (status & BIT(IRS_INTR_DATA) && iio_buffer_enabled(indio_dev)) {
iio_trigger_poll_nested(indio_dev->trig);
clear |= BIT(IRS_INTR_DATA);
}
if (status & BIT(IRS_INTR_COUNT_THR_OR) &&
source & BIT(IRS_INTR_COUNT_THR_OR)) {
/*
* The register value resets to zero after reading. We therefore
* need to read once and manually extract the lower and upper
* count register fields.
*/
ret = regmap_read(data->regmap, IRS_REG_COUNT, &count);
if (ret)
dev_err(data->dev, "Could not read count (%d)\n", ret);
upper_count = IRS_UPPER_COUNT(count);
lower_count = IRS_LOWER_COUNT(count);
/*
* We only check the OR mode to be able to push events for
* rising and falling thresholds. AND mode is covered when both
* upper and lower count is non-zero, and is signaled with
* IIO_EV_DIR_EITHER.
*/
if (upper_count && !lower_count)
dir = IIO_EV_DIR_RISING;
else if (!upper_count && lower_count)
dir = IIO_EV_DIR_FALLING;
else
dir = IIO_EV_DIR_EITHER;
iio_push_event(indio_dev,
IIO_UNMOD_EVENT_CODE(IIO_PROXIMITY, 0,
IIO_EV_TYPE_THRESH, dir),
iio_get_time_ns(indio_dev));
/*
* The OR mode will always trigger when the AND mode does, but
* not vice versa. However, it seems like the AND bit needs to
* be cleared if data capture _and_ threshold count interrupts
* are desirable, even though it hasn't explicitly been selected
* (with IRS_REG_INTR). Either way, it doesn't hurt...
*/
clear |= BIT(IRS_INTR_COUNT_THR_OR) |
BIT(IRS_INTR_COUNT_THR_AND);
}
if (!clear)
return IRQ_NONE;
ret = regmap_write(data->regmap, IRS_REG_STATUS, clear);
if (ret)
dev_err(data->dev,
"Could not clear interrupt status (%d)\n", ret);
return IRQ_HANDLED;
}
static irqreturn_t irsd200_trigger_handler(int irq, void *pollf)
{
struct iio_dev *indio_dev = ((struct iio_poll_func *)pollf)->indio_dev;
struct irsd200_data *data = iio_priv(indio_dev);
s16 buf = 0;
int ret;
ret = irsd200_read_data(data, &buf);
if (ret)
goto end;
iio_push_to_buffers_with_timestamp(indio_dev, &buf,
iio_get_time_ns(indio_dev));
end:
iio_trigger_notify_done(indio_dev->trig);
return IRQ_HANDLED;
}
static int irsd200_set_trigger_state(struct iio_trigger *trig, bool state)
{
struct irsd200_data *data = iio_trigger_get_drvdata(trig);
int ret;
ret = regmap_field_write(data->regfields[IRS_REGF_INTR_DATA], state);
if (ret) {
dev_err(data->dev, "Could not %s data interrupt source (%d)\n",
state ? "enable" : "disable", ret);
}
return ret;
}
static const struct iio_info irsd200_info = {
.read_raw = irsd200_read_raw,
.read_avail = irsd200_read_avail,
.write_raw = irsd200_write_raw,
.read_event_value = irsd200_read_event,
.write_event_value = irsd200_write_event,
.read_event_config = irsd200_read_event_config,
.write_event_config = irsd200_write_event_config,
};
static const struct iio_trigger_ops irsd200_trigger_ops = {
.set_trigger_state = irsd200_set_trigger_state,
.validate_device = iio_trigger_validate_own_device,
};
static const struct iio_event_spec irsd200_event_spec[] = {
{
.type = IIO_EV_TYPE_THRESH,
.dir = IIO_EV_DIR_RISING,
.mask_separate = BIT(IIO_EV_INFO_VALUE),
},
{
.type = IIO_EV_TYPE_THRESH,
.dir = IIO_EV_DIR_FALLING,
.mask_separate = BIT(IIO_EV_INFO_VALUE),
},
{
.type = IIO_EV_TYPE_THRESH,
.dir = IIO_EV_DIR_EITHER,
.mask_separate =
BIT(IIO_EV_INFO_RUNNING_PERIOD) |
BIT(IIO_EV_INFO_RUNNING_COUNT) |
BIT(IIO_EV_INFO_ENABLE),
},
};
static const struct iio_chan_spec irsd200_channels[] = {
{
.type = IIO_PROXIMITY,
.info_mask_separate =
BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_SAMP_FREQ) |
BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY) |
BIT(IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY),
.info_mask_separate_available =
BIT(IIO_CHAN_INFO_SAMP_FREQ) |
BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY) |
BIT(IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY),
.event_spec = irsd200_event_spec,
.num_event_specs = ARRAY_SIZE(irsd200_event_spec),
.scan_type = {
.sign = 's',
.realbits = 16,
.storagebits = 16,
.endianness = IIO_CPU,
},
},
};
static int irsd200_probe(struct i2c_client *client)
{
struct iio_trigger *trigger;
struct irsd200_data *data;
struct iio_dev *indio_dev;
size_t i;
int ret;
indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
if (!indio_dev)
return dev_err_probe(&client->dev, -ENOMEM,
"Could not allocate iio device\n");
data = iio_priv(indio_dev);
data->dev = &client->dev;
data->regmap = devm_regmap_init_i2c(client, &irsd200_regmap_config);
if (IS_ERR(data->regmap))
return dev_err_probe(data->dev, PTR_ERR(data->regmap),
"Could not initialize regmap\n");
for (i = 0; i < IRS_REGF_MAX; ++i) {
data->regfields[i] = devm_regmap_field_alloc(
data->dev, data->regmap, irsd200_regfields[i]);
if (IS_ERR(data->regfields[i]))
return dev_err_probe(
data->dev, PTR_ERR(data->regfields[i]),
"Could not allocate register field %zu\n", i);
}
ret = devm_regulator_get_enable(data->dev, "vdd");
if (ret)
return dev_err_probe(
data->dev, ret,
"Could not get and enable regulator (%d)\n", ret);
ret = irsd200_setup(data);
if (ret)
return ret;
indio_dev->info = &irsd200_info;
indio_dev->name = IRS_DRV_NAME;
indio_dev->channels = irsd200_channels;
indio_dev->num_channels = ARRAY_SIZE(irsd200_channels);
indio_dev->modes = INDIO_DIRECT_MODE;
if (!client->irq)
return dev_err_probe(data->dev, -ENXIO, "No irq available\n");
ret = devm_iio_triggered_buffer_setup(data->dev, indio_dev, NULL,
irsd200_trigger_handler, NULL);
if (ret)
return dev_err_probe(
data->dev, ret,
"Could not setup iio triggered buffer (%d)\n", ret);
ret = devm_request_threaded_irq(data->dev, client->irq, NULL,
irsd200_irq_thread,
IRQF_TRIGGER_RISING | IRQF_ONESHOT,
NULL, indio_dev);
if (ret)
return dev_err_probe(data->dev, ret,
"Could not request irq (%d)\n", ret);
trigger = devm_iio_trigger_alloc(data->dev, "%s-dev%d", indio_dev->name,
iio_device_id(indio_dev));
if (!trigger)
return dev_err_probe(data->dev, -ENOMEM,
"Could not allocate iio trigger\n");
trigger->ops = &irsd200_trigger_ops;
iio_trigger_set_drvdata(trigger, data);
ret = devm_iio_trigger_register(data->dev, trigger);
if (ret)
return dev_err_probe(data->dev, ret,
"Could not register iio trigger (%d)\n",
ret);
ret = devm_iio_device_register(data->dev, indio_dev);
if (ret)
return dev_err_probe(data->dev, ret,
"Could not register iio device (%d)\n",
ret);
return 0;
}
static const struct of_device_id irsd200_of_match[] = {
{
.compatible = "murata,irsd200",
},
{}
};
MODULE_DEVICE_TABLE(of, irsd200_of_match);
static struct i2c_driver irsd200_driver = {
.driver = {
.name = IRS_DRV_NAME,
.of_match_table = irsd200_of_match,
},
.probe = irsd200_probe,
};
module_i2c_driver(irsd200_driver);
MODULE_AUTHOR("Waqar Hameed <waqar.hameed@axis.com>");
MODULE_DESCRIPTION("Murata IRS-D200 PIR sensor driver");
MODULE_LICENSE("GPL");