linux/fs/bcachefs/btree_gc.c
Kent Overstreet a4805d6672 bcachefs: Scan for old btree nodes if necessary on mount
We dropped support for !BTREE_NODE_NEW_EXTENT_OVERWRITE but it turned
out there were people who still had filesystems with btree nodes in that
format in the wild. This adds a new compat feature that indicates we've
scanned for and rewritten nodes in the old format, and does that scan at
mount time if the option isn't set.

Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
2023-10-22 17:08:54 -04:00

1635 lines
40 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
* Copyright (C) 2014 Datera Inc.
*/
#include "bcachefs.h"
#include "alloc_background.h"
#include "alloc_foreground.h"
#include "bkey_methods.h"
#include "bkey_buf.h"
#include "btree_locking.h"
#include "btree_update_interior.h"
#include "btree_io.h"
#include "btree_gc.h"
#include "buckets.h"
#include "clock.h"
#include "debug.h"
#include "ec.h"
#include "error.h"
#include "extents.h"
#include "journal.h"
#include "keylist.h"
#include "move.h"
#include "recovery.h"
#include "replicas.h"
#include "super-io.h"
#include "trace.h"
#include <linux/slab.h>
#include <linux/bitops.h>
#include <linux/freezer.h>
#include <linux/kthread.h>
#include <linux/preempt.h>
#include <linux/rcupdate.h>
#include <linux/sched/task.h>
static inline void __gc_pos_set(struct bch_fs *c, struct gc_pos new_pos)
{
preempt_disable();
write_seqcount_begin(&c->gc_pos_lock);
c->gc_pos = new_pos;
write_seqcount_end(&c->gc_pos_lock);
preempt_enable();
}
static inline void gc_pos_set(struct bch_fs *c, struct gc_pos new_pos)
{
BUG_ON(gc_pos_cmp(new_pos, c->gc_pos) <= 0);
__gc_pos_set(c, new_pos);
}
/*
* Missing: if an interior btree node is empty, we need to do something -
* perhaps just kill it
*/
static int bch2_gc_check_topology(struct bch_fs *c,
struct btree *b,
struct bkey_buf *prev,
struct bkey_buf cur,
bool is_last)
{
struct bpos node_start = b->data->min_key;
struct bpos node_end = b->data->max_key;
struct bpos expected_start = bkey_deleted(&prev->k->k)
? node_start
: bkey_successor(prev->k->k.p);
char buf1[200], buf2[200];
bool update_min = false;
bool update_max = false;
int ret = 0;
if (cur.k->k.type == KEY_TYPE_btree_ptr_v2) {
struct bkey_i_btree_ptr_v2 *bp = bkey_i_to_btree_ptr_v2(cur.k);
if (bkey_deleted(&prev->k->k))
scnprintf(buf1, sizeof(buf1), "start of node: %llu:%llu",
node_start.inode,
node_start.offset);
else
bch2_bkey_val_to_text(&PBUF(buf1), c, bkey_i_to_s_c(prev->k));
if (fsck_err_on(bkey_cmp(expected_start, bp->v.min_key), c,
"btree node with incorrect min_key at btree %s level %u:\n"
" prev %s\n"
" cur %s",
bch2_btree_ids[b->c.btree_id], b->c.level,
buf1,
(bch2_bkey_val_to_text(&PBUF(buf2), c, bkey_i_to_s_c(cur.k)), buf2)))
update_min = true;
}
if (fsck_err_on(is_last &&
bkey_cmp(cur.k->k.p, node_end), c,
"btree node with incorrect max_key at btree %s level %u:\n"
" %s\n"
" expected %s",
bch2_btree_ids[b->c.btree_id], b->c.level,
(bch2_bkey_val_to_text(&PBUF(buf1), c, bkey_i_to_s_c(cur.k)), buf1),
(bch2_bpos_to_text(&PBUF(buf2), node_end), buf2)))
update_max = true;
bch2_bkey_buf_copy(prev, c, cur.k);
if (update_min || update_max) {
struct bkey_i *new;
struct bkey_i_btree_ptr_v2 *bp = NULL;
struct btree *n;
if (update_max) {
ret = bch2_journal_key_delete(c, b->c.btree_id,
b->c.level, cur.k->k.p);
if (ret)
return ret;
}
new = kmalloc(bkey_bytes(&cur.k->k), GFP_KERNEL);
if (!new) {
bch_err(c, "%s: error allocating new key", __func__);
return -ENOMEM;
}
bkey_copy(new, cur.k);
if (new->k.type == KEY_TYPE_btree_ptr_v2)
bp = bkey_i_to_btree_ptr_v2(new);
if (update_min)
bp->v.min_key = expected_start;
if (update_max)
new->k.p = node_end;
if (bp)
SET_BTREE_PTR_RANGE_UPDATED(&bp->v, true);
ret = bch2_journal_key_insert(c, b->c.btree_id, b->c.level, new);
if (ret) {
kfree(new);
return ret;
}
n = bch2_btree_node_get_noiter(c, cur.k, b->c.btree_id,
b->c.level - 1, true);
if (n) {
mutex_lock(&c->btree_cache.lock);
bch2_btree_node_hash_remove(&c->btree_cache, n);
bkey_copy(&n->key, new);
if (update_min)
n->data->min_key = expected_start;
if (update_max)
n->data->max_key = node_end;
ret = __bch2_btree_node_hash_insert(&c->btree_cache, n);
BUG_ON(ret);
mutex_unlock(&c->btree_cache.lock);
six_unlock_read(&n->c.lock);
}
}
fsck_err:
return ret;
}
static int bch2_check_fix_ptrs(struct bch_fs *c, enum btree_id btree_id,
unsigned level, bool is_root,
struct bkey_s_c *k)
{
struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(*k);
const union bch_extent_entry *entry;
struct extent_ptr_decoded p;
bool do_update = false;
int ret = 0;
bkey_for_each_ptr_decode(k->k, ptrs, p, entry) {
struct bch_dev *ca = bch_dev_bkey_exists(c, p.ptr.dev);
struct bucket *g = PTR_BUCKET(ca, &p.ptr, true);
struct bucket *g2 = PTR_BUCKET(ca, &p.ptr, false);
if (fsck_err_on(!g->gen_valid, c,
"bucket %u:%zu data type %s ptr gen %u missing in alloc btree",
p.ptr.dev, PTR_BUCKET_NR(ca, &p.ptr),
bch2_data_types[ptr_data_type(k->k, &p.ptr)],
p.ptr.gen)) {
if (!p.ptr.cached) {
g2->_mark.gen = g->_mark.gen = p.ptr.gen;
g2->gen_valid = g->gen_valid = true;
set_bit(BCH_FS_NEED_ALLOC_WRITE, &c->flags);
} else {
do_update = true;
}
}
if (fsck_err_on(gen_cmp(p.ptr.gen, g->mark.gen) > 0, c,
"bucket %u:%zu data type %s ptr gen in the future: %u > %u",
p.ptr.dev, PTR_BUCKET_NR(ca, &p.ptr),
bch2_data_types[ptr_data_type(k->k, &p.ptr)],
p.ptr.gen, g->mark.gen)) {
if (!p.ptr.cached) {
g2->_mark.gen = g->_mark.gen = p.ptr.gen;
g2->gen_valid = g->gen_valid = true;
g2->_mark.data_type = 0;
g2->_mark.dirty_sectors = 0;
g2->_mark.cached_sectors = 0;
set_bit(BCH_FS_NEED_ANOTHER_GC, &c->flags);
set_bit(BCH_FS_NEED_ALLOC_WRITE, &c->flags);
} else {
do_update = true;
}
}
if (fsck_err_on(!p.ptr.cached &&
gen_cmp(p.ptr.gen, g->mark.gen) < 0, c,
"bucket %u:%zu data type %s stale dirty ptr: %u < %u",
p.ptr.dev, PTR_BUCKET_NR(ca, &p.ptr),
bch2_data_types[ptr_data_type(k->k, &p.ptr)],
p.ptr.gen, g->mark.gen))
do_update = true;
if (p.has_ec) {
struct stripe *m = genradix_ptr(&c->stripes[true], p.ec.idx);
if (fsck_err_on(!m || !m->alive, c,
"pointer to nonexistent stripe %llu",
(u64) p.ec.idx))
do_update = true;
}
}
if (do_update) {
struct bkey_ptrs ptrs;
union bch_extent_entry *entry;
struct bch_extent_ptr *ptr;
struct bkey_i *new;
if (is_root) {
bch_err(c, "cannot update btree roots yet");
return -EINVAL;
}
new = kmalloc(bkey_bytes(k->k), GFP_KERNEL);
if (!new) {
bch_err(c, "%s: error allocating new key", __func__);
return -ENOMEM;
}
bkey_reassemble(new, *k);
bch2_bkey_drop_ptrs(bkey_i_to_s(new), ptr, ({
struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev);
struct bucket *g = PTR_BUCKET(ca, ptr, true);
(ptr->cached &&
(!g->gen_valid || gen_cmp(ptr->gen, g->mark.gen) > 0)) ||
(!ptr->cached &&
gen_cmp(ptr->gen, g->mark.gen) < 0);
}));
again:
ptrs = bch2_bkey_ptrs(bkey_i_to_s(new));
bkey_extent_entry_for_each(ptrs, entry) {
if (extent_entry_type(entry) == BCH_EXTENT_ENTRY_stripe_ptr) {
struct stripe *m = genradix_ptr(&c->stripes[true],
entry->stripe_ptr.idx);
if (!m || !m->alive) {
bch2_bkey_extent_entry_drop(new, entry);
goto again;
}
}
}
ret = bch2_journal_key_insert(c, btree_id, level, new);
if (ret)
kfree(new);
else
*k = bkey_i_to_s_c(new);
}
fsck_err:
return ret;
}
/* marking of btree keys/nodes: */
static int bch2_gc_mark_key(struct bch_fs *c, enum btree_id btree_id,
unsigned level, bool is_root,
struct bkey_s_c k,
u8 *max_stale, bool initial)
{
struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
const struct bch_extent_ptr *ptr;
unsigned flags =
BTREE_TRIGGER_GC|
(initial ? BTREE_TRIGGER_NOATOMIC : 0);
int ret = 0;
if (initial) {
BUG_ON(bch2_journal_seq_verify &&
k.k->version.lo > journal_cur_seq(&c->journal));
if (fsck_err_on(k.k->version.lo > atomic64_read(&c->key_version), c,
"key version number higher than recorded: %llu > %llu",
k.k->version.lo,
atomic64_read(&c->key_version)))
atomic64_set(&c->key_version, k.k->version.lo);
if (test_bit(BCH_FS_REBUILD_REPLICAS, &c->flags) ||
fsck_err_on(!bch2_bkey_replicas_marked(c, k), c,
"superblock not marked as containing replicas (type %u)",
k.k->type)) {
ret = bch2_mark_bkey_replicas(c, k);
if (ret) {
bch_err(c, "error marking bkey replicas: %i", ret);
goto err;
}
}
ret = bch2_check_fix_ptrs(c, btree_id, level, is_root, &k);
}
bkey_for_each_ptr(ptrs, ptr) {
struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev);
struct bucket *g = PTR_BUCKET(ca, ptr, true);
if (gen_after(g->oldest_gen, ptr->gen))
g->oldest_gen = ptr->gen;
*max_stale = max(*max_stale, ptr_stale(ca, ptr));
}
bch2_mark_key(c, k, 0, k.k->size, NULL, 0, flags);
fsck_err:
err:
if (ret)
bch_err(c, "%s: ret %i", __func__, ret);
return ret;
}
static int btree_gc_mark_node(struct bch_fs *c, struct btree *b, u8 *max_stale,
bool initial)
{
struct btree_node_iter iter;
struct bkey unpacked;
struct bkey_s_c k;
struct bkey_buf prev, cur;
int ret = 0;
*max_stale = 0;
if (!btree_node_type_needs_gc(btree_node_type(b)))
return 0;
bch2_btree_node_iter_init_from_start(&iter, b);
bch2_bkey_buf_init(&prev);
bch2_bkey_buf_init(&cur);
bkey_init(&prev.k->k);
while ((k = bch2_btree_node_iter_peek_unpack(&iter, b, &unpacked)).k) {
bch2_bkey_debugcheck(c, b, k);
ret = bch2_gc_mark_key(c, b->c.btree_id, b->c.level, false,
k, max_stale, initial);
if (ret)
break;
bch2_btree_node_iter_advance(&iter, b);
if (b->c.level) {
bch2_bkey_buf_reassemble(&cur, c, k);
ret = bch2_gc_check_topology(c, b, &prev, cur,
bch2_btree_node_iter_end(&iter));
if (ret)
break;
}
}
bch2_bkey_buf_exit(&cur, c);
bch2_bkey_buf_exit(&prev, c);
return ret;
}
static int bch2_gc_btree(struct bch_fs *c, enum btree_id btree_id,
bool initial)
{
struct btree_trans trans;
struct btree_iter *iter;
struct btree *b;
unsigned depth = bch2_expensive_debug_checks ? 0
: !btree_node_type_needs_gc(btree_id) ? 1
: 0;
u8 max_stale = 0;
int ret = 0;
bch2_trans_init(&trans, c, 0, 0);
gc_pos_set(c, gc_pos_btree(btree_id, POS_MIN, 0));
__for_each_btree_node(&trans, iter, btree_id, POS_MIN,
0, depth, BTREE_ITER_PREFETCH, b) {
bch2_verify_btree_nr_keys(b);
gc_pos_set(c, gc_pos_btree_node(b));
ret = btree_gc_mark_node(c, b, &max_stale, initial);
if (ret)
break;
if (!initial) {
if (max_stale > 64)
bch2_btree_node_rewrite(c, iter,
b->data->keys.seq,
BTREE_INSERT_NOWAIT|
BTREE_INSERT_GC_LOCK_HELD);
else if (!bch2_btree_gc_rewrite_disabled &&
(bch2_btree_gc_always_rewrite || max_stale > 16))
bch2_btree_node_rewrite(c, iter,
b->data->keys.seq,
BTREE_INSERT_NOWAIT|
BTREE_INSERT_GC_LOCK_HELD);
}
bch2_trans_cond_resched(&trans);
}
ret = bch2_trans_exit(&trans) ?: ret;
if (ret)
return ret;
mutex_lock(&c->btree_root_lock);
b = c->btree_roots[btree_id].b;
if (!btree_node_fake(b))
ret = bch2_gc_mark_key(c, b->c.btree_id, b->c.level, true,
bkey_i_to_s_c(&b->key),
&max_stale, initial);
gc_pos_set(c, gc_pos_btree_root(b->c.btree_id));
mutex_unlock(&c->btree_root_lock);
return ret;
}
static int bch2_gc_btree_init_recurse(struct bch_fs *c, struct btree *b,
unsigned target_depth)
{
struct btree_and_journal_iter iter;
struct bkey_s_c k;
struct bkey_buf cur, prev;
u8 max_stale = 0;
int ret = 0;
bch2_btree_and_journal_iter_init_node_iter(&iter, c, b);
bch2_bkey_buf_init(&prev);
bch2_bkey_buf_init(&cur);
bkey_init(&prev.k->k);
while ((k = bch2_btree_and_journal_iter_peek(&iter)).k) {
bch2_bkey_debugcheck(c, b, k);
BUG_ON(bkey_cmp(k.k->p, b->data->min_key) < 0);
BUG_ON(bkey_cmp(k.k->p, b->data->max_key) > 0);
ret = bch2_gc_mark_key(c, b->c.btree_id, b->c.level, false,
k, &max_stale, true);
if (ret) {
bch_err(c, "%s: error %i from bch2_gc_mark_key", __func__, ret);
break;
}
if (b->c.level) {
bch2_bkey_buf_reassemble(&cur, c, k);
k = bkey_i_to_s_c(cur.k);
bch2_btree_and_journal_iter_advance(&iter);
ret = bch2_gc_check_topology(c, b,
&prev, cur,
!bch2_btree_and_journal_iter_peek(&iter).k);
if (ret)
break;
} else {
bch2_btree_and_journal_iter_advance(&iter);
}
}
if (b->c.level > target_depth) {
bch2_btree_and_journal_iter_exit(&iter);
bch2_btree_and_journal_iter_init_node_iter(&iter, c, b);
while ((k = bch2_btree_and_journal_iter_peek(&iter)).k) {
struct btree *child;
bch2_bkey_buf_reassemble(&cur, c, k);
bch2_btree_and_journal_iter_advance(&iter);
child = bch2_btree_node_get_noiter(c, cur.k,
b->c.btree_id, b->c.level - 1,
false);
ret = PTR_ERR_OR_ZERO(child);
if (fsck_err_on(ret == -EIO, c,
"unreadable btree node")) {
ret = bch2_journal_key_delete(c, b->c.btree_id,
b->c.level, cur.k->k.p);
if (ret)
return ret;
set_bit(BCH_FS_NEED_ANOTHER_GC, &c->flags);
continue;
}
if (ret) {
bch_err(c, "%s: error %i getting btree node",
__func__, ret);
break;
}
ret = bch2_gc_btree_init_recurse(c, child,
target_depth);
six_unlock_read(&child->c.lock);
if (ret)
break;
}
}
fsck_err:
bch2_bkey_buf_exit(&cur, c);
bch2_bkey_buf_exit(&prev, c);
bch2_btree_and_journal_iter_exit(&iter);
return ret;
}
static int bch2_gc_btree_init(struct bch_fs *c,
enum btree_id btree_id)
{
struct btree *b;
unsigned target_depth = bch2_expensive_debug_checks ? 0
: !btree_node_type_needs_gc(btree_id) ? 1
: 0;
u8 max_stale = 0;
int ret = 0;
b = c->btree_roots[btree_id].b;
if (btree_node_fake(b))
return 0;
six_lock_read(&b->c.lock, NULL, NULL);
if (fsck_err_on(bkey_cmp(b->data->min_key, POS_MIN), c,
"btree root with incorrect min_key: %llu:%llu",
b->data->min_key.inode,
b->data->min_key.offset)) {
BUG();
}
if (fsck_err_on(bkey_cmp(b->data->max_key, POS_MAX), c,
"btree root with incorrect min_key: %llu:%llu",
b->data->max_key.inode,
b->data->max_key.offset)) {
BUG();
}
if (b->c.level >= target_depth)
ret = bch2_gc_btree_init_recurse(c, b, target_depth);
if (!ret)
ret = bch2_gc_mark_key(c, b->c.btree_id, b->c.level, true,
bkey_i_to_s_c(&b->key),
&max_stale, true);
fsck_err:
six_unlock_read(&b->c.lock);
if (ret)
bch_err(c, "%s: ret %i", __func__, ret);
return ret;
}
static inline int btree_id_gc_phase_cmp(enum btree_id l, enum btree_id r)
{
return (int) btree_id_to_gc_phase(l) -
(int) btree_id_to_gc_phase(r);
}
static int bch2_gc_btrees(struct bch_fs *c, bool initial)
{
enum btree_id ids[BTREE_ID_NR];
unsigned i;
for (i = 0; i < BTREE_ID_NR; i++)
ids[i] = i;
bubble_sort(ids, BTREE_ID_NR, btree_id_gc_phase_cmp);
for (i = 0; i < BTREE_ID_NR; i++) {
enum btree_id id = ids[i];
int ret = initial
? bch2_gc_btree_init(c, id)
: bch2_gc_btree(c, id, initial);
if (ret) {
bch_err(c, "%s: ret %i", __func__, ret);
return ret;
}
}
return 0;
}
static void mark_metadata_sectors(struct bch_fs *c, struct bch_dev *ca,
u64 start, u64 end,
enum bch_data_type type,
unsigned flags)
{
u64 b = sector_to_bucket(ca, start);
do {
unsigned sectors =
min_t(u64, bucket_to_sector(ca, b + 1), end) - start;
bch2_mark_metadata_bucket(c, ca, b, type, sectors,
gc_phase(GC_PHASE_SB), flags);
b++;
start += sectors;
} while (start < end);
}
void bch2_mark_dev_superblock(struct bch_fs *c, struct bch_dev *ca,
unsigned flags)
{
struct bch_sb_layout *layout = &ca->disk_sb.sb->layout;
unsigned i;
u64 b;
/*
* This conditional is kind of gross, but we may be called from the
* device add path, before the new device has actually been added to the
* running filesystem:
*/
if (c) {
lockdep_assert_held(&c->sb_lock);
percpu_down_read(&c->mark_lock);
}
for (i = 0; i < layout->nr_superblocks; i++) {
u64 offset = le64_to_cpu(layout->sb_offset[i]);
if (offset == BCH_SB_SECTOR)
mark_metadata_sectors(c, ca, 0, BCH_SB_SECTOR,
BCH_DATA_sb, flags);
mark_metadata_sectors(c, ca, offset,
offset + (1 << layout->sb_max_size_bits),
BCH_DATA_sb, flags);
}
for (i = 0; i < ca->journal.nr; i++) {
b = ca->journal.buckets[i];
bch2_mark_metadata_bucket(c, ca, b, BCH_DATA_journal,
ca->mi.bucket_size,
gc_phase(GC_PHASE_SB), flags);
}
if (c)
percpu_up_read(&c->mark_lock);
}
static void bch2_mark_superblocks(struct bch_fs *c)
{
struct bch_dev *ca;
unsigned i;
mutex_lock(&c->sb_lock);
gc_pos_set(c, gc_phase(GC_PHASE_SB));
for_each_online_member(ca, c, i)
bch2_mark_dev_superblock(c, ca, BTREE_TRIGGER_GC);
mutex_unlock(&c->sb_lock);
}
#if 0
/* Also see bch2_pending_btree_node_free_insert_done() */
static void bch2_mark_pending_btree_node_frees(struct bch_fs *c)
{
struct btree_update *as;
struct pending_btree_node_free *d;
mutex_lock(&c->btree_interior_update_lock);
gc_pos_set(c, gc_phase(GC_PHASE_PENDING_DELETE));
for_each_pending_btree_node_free(c, as, d)
if (d->index_update_done)
bch2_mark_key(c, bkey_i_to_s_c(&d->key),
0, 0, NULL, 0,
BTREE_TRIGGER_GC);
mutex_unlock(&c->btree_interior_update_lock);
}
#endif
static void bch2_mark_allocator_buckets(struct bch_fs *c)
{
struct bch_dev *ca;
struct open_bucket *ob;
size_t i, j, iter;
unsigned ci;
percpu_down_read(&c->mark_lock);
spin_lock(&c->freelist_lock);
gc_pos_set(c, gc_pos_alloc(c, NULL));
for_each_member_device(ca, c, ci) {
fifo_for_each_entry(i, &ca->free_inc, iter)
bch2_mark_alloc_bucket(c, ca, i, true,
gc_pos_alloc(c, NULL),
BTREE_TRIGGER_GC);
for (j = 0; j < RESERVE_NR; j++)
fifo_for_each_entry(i, &ca->free[j], iter)
bch2_mark_alloc_bucket(c, ca, i, true,
gc_pos_alloc(c, NULL),
BTREE_TRIGGER_GC);
}
spin_unlock(&c->freelist_lock);
for (ob = c->open_buckets;
ob < c->open_buckets + ARRAY_SIZE(c->open_buckets);
ob++) {
spin_lock(&ob->lock);
if (ob->valid) {
gc_pos_set(c, gc_pos_alloc(c, ob));
ca = bch_dev_bkey_exists(c, ob->ptr.dev);
bch2_mark_alloc_bucket(c, ca, PTR_BUCKET_NR(ca, &ob->ptr), true,
gc_pos_alloc(c, ob),
BTREE_TRIGGER_GC);
}
spin_unlock(&ob->lock);
}
percpu_up_read(&c->mark_lock);
}
static void bch2_gc_free(struct bch_fs *c)
{
struct bch_dev *ca;
unsigned i;
genradix_free(&c->stripes[1]);
for_each_member_device(ca, c, i) {
kvpfree(rcu_dereference_protected(ca->buckets[1], 1),
sizeof(struct bucket_array) +
ca->mi.nbuckets * sizeof(struct bucket));
ca->buckets[1] = NULL;
free_percpu(ca->usage_gc);
ca->usage_gc = NULL;
}
free_percpu(c->usage_gc);
c->usage_gc = NULL;
}
static int bch2_gc_done(struct bch_fs *c,
bool initial)
{
struct bch_dev *ca;
bool verify = (!initial ||
(c->sb.compat & (1ULL << BCH_COMPAT_FEAT_ALLOC_INFO)));
unsigned i, dev;
int ret = 0;
#define copy_field(_f, _msg, ...) \
if (dst->_f != src->_f) { \
if (verify) \
fsck_err(c, _msg ": got %llu, should be %llu" \
, ##__VA_ARGS__, dst->_f, src->_f); \
dst->_f = src->_f; \
set_bit(BCH_FS_NEED_ALLOC_WRITE, &c->flags); \
}
#define copy_stripe_field(_f, _msg, ...) \
if (dst->_f != src->_f) { \
if (verify) \
fsck_err(c, "stripe %zu has wrong "_msg \
": got %u, should be %u", \
iter.pos, ##__VA_ARGS__, \
dst->_f, src->_f); \
dst->_f = src->_f; \
set_bit(BCH_FS_NEED_ALLOC_WRITE, &c->flags); \
}
#define copy_bucket_field(_f) \
if (dst->b[b].mark._f != src->b[b].mark._f) { \
if (verify) \
fsck_err(c, "bucket %u:%zu gen %u data type %s has wrong " #_f \
": got %u, should be %u", i, b, \
dst->b[b].mark.gen, \
bch2_data_types[dst->b[b].mark.data_type],\
dst->b[b].mark._f, src->b[b].mark._f); \
dst->b[b]._mark._f = src->b[b].mark._f; \
set_bit(BCH_FS_NEED_ALLOC_WRITE, &c->flags); \
}
#define copy_dev_field(_f, _msg, ...) \
copy_field(_f, "dev %u has wrong " _msg, i, ##__VA_ARGS__)
#define copy_fs_field(_f, _msg, ...) \
copy_field(_f, "fs has wrong " _msg, ##__VA_ARGS__)
{
struct genradix_iter iter = genradix_iter_init(&c->stripes[1], 0);
struct stripe *dst, *src;
while ((src = genradix_iter_peek(&iter, &c->stripes[1]))) {
dst = genradix_ptr_alloc(&c->stripes[0], iter.pos, GFP_KERNEL);
if (dst->alive != src->alive ||
dst->sectors != src->sectors ||
dst->algorithm != src->algorithm ||
dst->nr_blocks != src->nr_blocks ||
dst->nr_redundant != src->nr_redundant) {
bch_err(c, "unexpected stripe inconsistency at bch2_gc_done, confused");
ret = -EINVAL;
goto fsck_err;
}
for (i = 0; i < ARRAY_SIZE(dst->block_sectors); i++)
copy_stripe_field(block_sectors[i],
"block_sectors[%u]", i);
dst->blocks_nonempty = 0;
for (i = 0; i < dst->nr_blocks; i++)
dst->blocks_nonempty += dst->block_sectors[i] != 0;
genradix_iter_advance(&iter, &c->stripes[1]);
}
}
for (i = 0; i < ARRAY_SIZE(c->usage); i++)
bch2_fs_usage_acc_to_base(c, i);
for_each_member_device(ca, c, dev) {
struct bucket_array *dst = __bucket_array(ca, 0);
struct bucket_array *src = __bucket_array(ca, 1);
size_t b;
for (b = 0; b < src->nbuckets; b++) {
copy_bucket_field(gen);
copy_bucket_field(data_type);
copy_bucket_field(owned_by_allocator);
copy_bucket_field(stripe);
copy_bucket_field(dirty_sectors);
copy_bucket_field(cached_sectors);
dst->b[b].oldest_gen = src->b[b].oldest_gen;
}
{
struct bch_dev_usage *dst = ca->usage_base;
struct bch_dev_usage *src = (void *)
bch2_acc_percpu_u64s((void *) ca->usage_gc,
dev_usage_u64s());
copy_dev_field(buckets_ec, "buckets_ec");
copy_dev_field(buckets_unavailable, "buckets_unavailable");
for (i = 0; i < BCH_DATA_NR; i++) {
copy_dev_field(d[i].buckets, "%s buckets", bch2_data_types[i]);
copy_dev_field(d[i].sectors, "%s sectors", bch2_data_types[i]);
copy_dev_field(d[i].fragmented, "%s fragmented", bch2_data_types[i]);
}
}
};
{
unsigned nr = fs_usage_u64s(c);
struct bch_fs_usage *dst = c->usage_base;
struct bch_fs_usage *src = (void *)
bch2_acc_percpu_u64s((void *) c->usage_gc, nr);
copy_fs_field(hidden, "hidden");
copy_fs_field(btree, "btree");
copy_fs_field(data, "data");
copy_fs_field(cached, "cached");
copy_fs_field(reserved, "reserved");
copy_fs_field(nr_inodes,"nr_inodes");
for (i = 0; i < BCH_REPLICAS_MAX; i++)
copy_fs_field(persistent_reserved[i],
"persistent_reserved[%i]", i);
for (i = 0; i < c->replicas.nr; i++) {
struct bch_replicas_entry *e =
cpu_replicas_entry(&c->replicas, i);
char buf[80];
bch2_replicas_entry_to_text(&PBUF(buf), e);
copy_fs_field(replicas[i], "%s", buf);
}
}
#undef copy_fs_field
#undef copy_dev_field
#undef copy_bucket_field
#undef copy_stripe_field
#undef copy_field
fsck_err:
if (ret)
bch_err(c, "%s: ret %i", __func__, ret);
return ret;
}
static int bch2_gc_start(struct bch_fs *c)
{
struct bch_dev *ca;
unsigned i;
int ret;
BUG_ON(c->usage_gc);
c->usage_gc = __alloc_percpu_gfp(fs_usage_u64s(c) * sizeof(u64),
sizeof(u64), GFP_KERNEL);
if (!c->usage_gc) {
bch_err(c, "error allocating c->usage_gc");
return -ENOMEM;
}
for_each_member_device(ca, c, i) {
BUG_ON(ca->buckets[1]);
BUG_ON(ca->usage_gc);
ca->buckets[1] = kvpmalloc(sizeof(struct bucket_array) +
ca->mi.nbuckets * sizeof(struct bucket),
GFP_KERNEL|__GFP_ZERO);
if (!ca->buckets[1]) {
percpu_ref_put(&ca->ref);
bch_err(c, "error allocating ca->buckets[gc]");
return -ENOMEM;
}
ca->usage_gc = alloc_percpu(struct bch_dev_usage);
if (!ca->usage_gc) {
bch_err(c, "error allocating ca->usage_gc");
percpu_ref_put(&ca->ref);
return -ENOMEM;
}
}
ret = bch2_ec_mem_alloc(c, true);
if (ret) {
bch_err(c, "error allocating ec gc mem");
return ret;
}
percpu_down_write(&c->mark_lock);
/*
* indicate to stripe code that we need to allocate for the gc stripes
* radix tree, too
*/
gc_pos_set(c, gc_phase(GC_PHASE_START));
for_each_member_device(ca, c, i) {
struct bucket_array *dst = __bucket_array(ca, 1);
struct bucket_array *src = __bucket_array(ca, 0);
size_t b;
dst->first_bucket = src->first_bucket;
dst->nbuckets = src->nbuckets;
for (b = 0; b < src->nbuckets; b++) {
struct bucket *d = &dst->b[b];
struct bucket *s = &src->b[b];
d->_mark.gen = dst->b[b].oldest_gen = s->mark.gen;
d->gen_valid = s->gen_valid;
}
};
percpu_up_write(&c->mark_lock);
return 0;
}
/**
* bch2_gc - walk _all_ references to buckets, and recompute them:
*
* Order matters here:
* - Concurrent GC relies on the fact that we have a total ordering for
* everything that GC walks - see gc_will_visit_node(),
* gc_will_visit_root()
*
* - also, references move around in the course of index updates and
* various other crap: everything needs to agree on the ordering
* references are allowed to move around in - e.g., we're allowed to
* start with a reference owned by an open_bucket (the allocator) and
* move it to the btree, but not the reverse.
*
* This is necessary to ensure that gc doesn't miss references that
* move around - if references move backwards in the ordering GC
* uses, GC could skip past them
*/
int bch2_gc(struct bch_fs *c, bool initial)
{
struct bch_dev *ca;
u64 start_time = local_clock();
unsigned i, iter = 0;
int ret;
lockdep_assert_held(&c->state_lock);
trace_gc_start(c);
down_write(&c->gc_lock);
/* flush interior btree updates: */
closure_wait_event(&c->btree_interior_update_wait,
!bch2_btree_interior_updates_nr_pending(c));
again:
ret = bch2_gc_start(c);
if (ret)
goto out;
bch2_mark_superblocks(c);
ret = bch2_gc_btrees(c, initial);
if (ret)
goto out;
#if 0
bch2_mark_pending_btree_node_frees(c);
#endif
bch2_mark_allocator_buckets(c);
c->gc_count++;
if (test_bit(BCH_FS_NEED_ANOTHER_GC, &c->flags) ||
(!iter && bch2_test_restart_gc)) {
/*
* XXX: make sure gens we fixed got saved
*/
if (iter++ <= 2) {
bch_info(c, "Second GC pass needed, restarting:");
clear_bit(BCH_FS_NEED_ANOTHER_GC, &c->flags);
__gc_pos_set(c, gc_phase(GC_PHASE_NOT_RUNNING));
percpu_down_write(&c->mark_lock);
bch2_gc_free(c);
percpu_up_write(&c->mark_lock);
/* flush fsck errors, reset counters */
bch2_flush_fsck_errs(c);
goto again;
}
bch_info(c, "Unable to fix bucket gens, looping");
ret = -EINVAL;
}
out:
if (!ret) {
bch2_journal_block(&c->journal);
percpu_down_write(&c->mark_lock);
ret = bch2_gc_done(c, initial);
bch2_journal_unblock(&c->journal);
} else {
percpu_down_write(&c->mark_lock);
}
/* Indicates that gc is no longer in progress: */
__gc_pos_set(c, gc_phase(GC_PHASE_NOT_RUNNING));
bch2_gc_free(c);
percpu_up_write(&c->mark_lock);
up_write(&c->gc_lock);
trace_gc_end(c);
bch2_time_stats_update(&c->times[BCH_TIME_btree_gc], start_time);
/*
* Wake up allocator in case it was waiting for buckets
* because of not being able to inc gens
*/
for_each_member_device(ca, c, i)
bch2_wake_allocator(ca);
/*
* At startup, allocations can happen directly instead of via the
* allocator thread - issue wakeup in case they blocked on gc_lock:
*/
closure_wake_up(&c->freelist_wait);
return ret;
}
static bool gc_btree_gens_key(struct bch_fs *c, struct bkey_s_c k)
{
struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
const struct bch_extent_ptr *ptr;
percpu_down_read(&c->mark_lock);
bkey_for_each_ptr(ptrs, ptr) {
struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev);
struct bucket *g = PTR_BUCKET(ca, ptr, false);
if (gen_after(g->mark.gen, ptr->gen) > 16) {
percpu_up_read(&c->mark_lock);
return true;
}
}
bkey_for_each_ptr(ptrs, ptr) {
struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev);
struct bucket *g = PTR_BUCKET(ca, ptr, false);
if (gen_after(g->gc_gen, ptr->gen))
g->gc_gen = ptr->gen;
}
percpu_up_read(&c->mark_lock);
return false;
}
/*
* For recalculating oldest gen, we only need to walk keys in leaf nodes; btree
* node pointers currently never have cached pointers that can become stale:
*/
static int bch2_gc_btree_gens(struct bch_fs *c, enum btree_id btree_id)
{
struct btree_trans trans;
struct btree_iter *iter;
struct bkey_s_c k;
struct bkey_buf sk;
int ret = 0;
bch2_bkey_buf_init(&sk);
bch2_trans_init(&trans, c, 0, 0);
iter = bch2_trans_get_iter(&trans, btree_id, POS_MIN,
BTREE_ITER_PREFETCH);
while ((k = bch2_btree_iter_peek(iter)).k &&
!(ret = bkey_err(k))) {
if (gc_btree_gens_key(c, k)) {
bch2_bkey_buf_reassemble(&sk, c, k);
bch2_extent_normalize(c, bkey_i_to_s(sk.k));
bch2_btree_iter_set_pos(iter, bkey_start_pos(&sk.k->k));
bch2_trans_update(&trans, iter, sk.k, 0);
ret = bch2_trans_commit(&trans, NULL, NULL,
BTREE_INSERT_NOFAIL);
if (ret == -EINTR)
continue;
if (ret) {
break;
}
}
bch2_btree_iter_next(iter);
}
bch2_trans_exit(&trans);
bch2_bkey_buf_exit(&sk, c);
return ret;
}
int bch2_gc_gens(struct bch_fs *c)
{
struct bch_dev *ca;
struct bucket_array *buckets;
struct bucket *g;
unsigned i;
int ret;
/*
* Ideally we would be using state_lock and not gc_lock here, but that
* introduces a deadlock in the RO path - we currently take the state
* lock at the start of going RO, thus the gc thread may get stuck:
*/
down_read(&c->gc_lock);
for_each_member_device(ca, c, i) {
down_read(&ca->bucket_lock);
buckets = bucket_array(ca);
for_each_bucket(g, buckets)
g->gc_gen = g->mark.gen;
up_read(&ca->bucket_lock);
}
for (i = 0; i < BTREE_ID_NR; i++)
if (btree_node_type_needs_gc(i)) {
ret = bch2_gc_btree_gens(c, i);
if (ret) {
bch_err(c, "error recalculating oldest_gen: %i", ret);
goto err;
}
}
for_each_member_device(ca, c, i) {
down_read(&ca->bucket_lock);
buckets = bucket_array(ca);
for_each_bucket(g, buckets)
g->oldest_gen = g->gc_gen;
up_read(&ca->bucket_lock);
}
c->gc_count++;
err:
up_read(&c->gc_lock);
return ret;
}
/* Btree coalescing */
static void recalc_packed_keys(struct btree *b)
{
struct bset *i = btree_bset_first(b);
struct bkey_packed *k;
memset(&b->nr, 0, sizeof(b->nr));
BUG_ON(b->nsets != 1);
vstruct_for_each(i, k)
btree_keys_account_key_add(&b->nr, 0, k);
}
static void bch2_coalesce_nodes(struct bch_fs *c, struct btree_iter *iter,
struct btree *old_nodes[GC_MERGE_NODES])
{
struct btree *parent = btree_node_parent(iter, old_nodes[0]);
unsigned i, nr_old_nodes, nr_new_nodes, u64s = 0;
unsigned blocks = btree_blocks(c) * 2 / 3;
struct btree *new_nodes[GC_MERGE_NODES];
struct btree_update *as;
struct keylist keylist;
struct bkey_format_state format_state;
struct bkey_format new_format;
memset(new_nodes, 0, sizeof(new_nodes));
bch2_keylist_init(&keylist, NULL);
/* Count keys that are not deleted */
for (i = 0; i < GC_MERGE_NODES && old_nodes[i]; i++)
u64s += old_nodes[i]->nr.live_u64s;
nr_old_nodes = nr_new_nodes = i;
/* Check if all keys in @old_nodes could fit in one fewer node */
if (nr_old_nodes <= 1 ||
__vstruct_blocks(struct btree_node, c->block_bits,
DIV_ROUND_UP(u64s, nr_old_nodes - 1)) > blocks)
return;
/* Find a format that all keys in @old_nodes can pack into */
bch2_bkey_format_init(&format_state);
for (i = 0; i < nr_old_nodes; i++)
__bch2_btree_calc_format(&format_state, old_nodes[i]);
new_format = bch2_bkey_format_done(&format_state);
/* Check if repacking would make any nodes too big to fit */
for (i = 0; i < nr_old_nodes; i++)
if (!bch2_btree_node_format_fits(c, old_nodes[i], &new_format)) {
trace_btree_gc_coalesce_fail(c,
BTREE_GC_COALESCE_FAIL_FORMAT_FITS);
return;
}
if (bch2_keylist_realloc(&keylist, NULL, 0,
BKEY_BTREE_PTR_U64s_MAX * nr_old_nodes)) {
trace_btree_gc_coalesce_fail(c,
BTREE_GC_COALESCE_FAIL_KEYLIST_REALLOC);
return;
}
as = bch2_btree_update_start(iter->trans, iter->btree_id,
btree_update_reserve_required(c, parent) + nr_old_nodes,
BTREE_INSERT_NOFAIL|
BTREE_INSERT_USE_RESERVE,
NULL);
if (IS_ERR(as)) {
trace_btree_gc_coalesce_fail(c,
BTREE_GC_COALESCE_FAIL_RESERVE_GET);
bch2_keylist_free(&keylist, NULL);
return;
}
trace_btree_gc_coalesce(c, old_nodes[0]);
for (i = 0; i < nr_old_nodes; i++)
bch2_btree_interior_update_will_free_node(as, old_nodes[i]);
/* Repack everything with @new_format and sort down to one bset */
for (i = 0; i < nr_old_nodes; i++)
new_nodes[i] =
__bch2_btree_node_alloc_replacement(as, old_nodes[i],
new_format);
/*
* Conceptually we concatenate the nodes together and slice them
* up at different boundaries.
*/
for (i = nr_new_nodes - 1; i > 0; --i) {
struct btree *n1 = new_nodes[i];
struct btree *n2 = new_nodes[i - 1];
struct bset *s1 = btree_bset_first(n1);
struct bset *s2 = btree_bset_first(n2);
struct bkey_packed *k, *last = NULL;
/* Calculate how many keys from @n2 we could fit inside @n1 */
u64s = 0;
for (k = s2->start;
k < vstruct_last(s2) &&
vstruct_blocks_plus(n1->data, c->block_bits,
u64s + k->u64s) <= blocks;
k = bkey_next_skip_noops(k, vstruct_last(s2))) {
last = k;
u64s += k->u64s;
}
if (u64s == le16_to_cpu(s2->u64s)) {
/* n2 fits entirely in n1 */
n1->key.k.p = n1->data->max_key = n2->data->max_key;
memcpy_u64s(vstruct_last(s1),
s2->start,
le16_to_cpu(s2->u64s));
le16_add_cpu(&s1->u64s, le16_to_cpu(s2->u64s));
set_btree_bset_end(n1, n1->set);
six_unlock_write(&n2->c.lock);
bch2_btree_node_free_never_inserted(c, n2);
six_unlock_intent(&n2->c.lock);
memmove(new_nodes + i - 1,
new_nodes + i,
sizeof(new_nodes[0]) * (nr_new_nodes - i));
new_nodes[--nr_new_nodes] = NULL;
} else if (u64s) {
/* move part of n2 into n1 */
n1->key.k.p = n1->data->max_key =
bkey_unpack_pos(n1, last);
n2->data->min_key = bkey_successor(n1->data->max_key);
memcpy_u64s(vstruct_last(s1),
s2->start, u64s);
le16_add_cpu(&s1->u64s, u64s);
memmove(s2->start,
vstruct_idx(s2, u64s),
(le16_to_cpu(s2->u64s) - u64s) * sizeof(u64));
s2->u64s = cpu_to_le16(le16_to_cpu(s2->u64s) - u64s);
set_btree_bset_end(n1, n1->set);
set_btree_bset_end(n2, n2->set);
}
}
for (i = 0; i < nr_new_nodes; i++) {
struct btree *n = new_nodes[i];
recalc_packed_keys(n);
btree_node_reset_sib_u64s(n);
bch2_btree_build_aux_trees(n);
bch2_btree_update_add_new_node(as, n);
six_unlock_write(&n->c.lock);
bch2_btree_node_write(c, n, SIX_LOCK_intent);
}
/*
* The keys for the old nodes get deleted. We don't want to insert keys
* that compare equal to the keys for the new nodes we'll also be
* inserting - we can't because keys on a keylist must be strictly
* greater than the previous keys, and we also don't need to since the
* key for the new node will serve the same purpose (overwriting the key
* for the old node).
*/
for (i = 0; i < nr_old_nodes; i++) {
struct bkey_i delete;
unsigned j;
for (j = 0; j < nr_new_nodes; j++)
if (!bkey_cmp(old_nodes[i]->key.k.p,
new_nodes[j]->key.k.p))
goto next;
bkey_init(&delete.k);
delete.k.p = old_nodes[i]->key.k.p;
bch2_keylist_add_in_order(&keylist, &delete);
next:
i = i;
}
/*
* Keys for the new nodes get inserted: bch2_btree_insert_keys() only
* does the lookup once and thus expects the keys to be in sorted order
* so we have to make sure the new keys are correctly ordered with
* respect to the deleted keys added in the previous loop
*/
for (i = 0; i < nr_new_nodes; i++)
bch2_keylist_add_in_order(&keylist, &new_nodes[i]->key);
/* Insert the newly coalesced nodes */
bch2_btree_insert_node(as, parent, iter, &keylist, 0);
BUG_ON(!bch2_keylist_empty(&keylist));
BUG_ON(iter->l[old_nodes[0]->c.level].b != old_nodes[0]);
bch2_btree_iter_node_replace(iter, new_nodes[0]);
for (i = 0; i < nr_new_nodes; i++)
bch2_btree_update_get_open_buckets(as, new_nodes[i]);
/* Free the old nodes and update our sliding window */
for (i = 0; i < nr_old_nodes; i++) {
bch2_btree_node_free_inmem(c, old_nodes[i], iter);
/*
* the index update might have triggered a split, in which case
* the nodes we coalesced - the new nodes we just created -
* might not be sibling nodes anymore - don't add them to the
* sliding window (except the first):
*/
if (!i) {
old_nodes[i] = new_nodes[i];
} else {
old_nodes[i] = NULL;
}
}
for (i = 0; i < nr_new_nodes; i++)
six_unlock_intent(&new_nodes[i]->c.lock);
bch2_btree_update_done(as);
bch2_keylist_free(&keylist, NULL);
}
static int bch2_coalesce_btree(struct bch_fs *c, enum btree_id btree_id)
{
struct btree_trans trans;
struct btree_iter *iter;
struct btree *b;
bool kthread = (current->flags & PF_KTHREAD) != 0;
unsigned i;
/* Sliding window of adjacent btree nodes */
struct btree *merge[GC_MERGE_NODES];
u32 lock_seq[GC_MERGE_NODES];
bch2_trans_init(&trans, c, 0, 0);
/*
* XXX: We don't have a good way of positively matching on sibling nodes
* that have the same parent - this code works by handling the cases
* where they might not have the same parent, and is thus fragile. Ugh.
*
* Perhaps redo this to use multiple linked iterators?
*/
memset(merge, 0, sizeof(merge));
__for_each_btree_node(&trans, iter, btree_id, POS_MIN,
BTREE_MAX_DEPTH, 0,
BTREE_ITER_PREFETCH, b) {
memmove(merge + 1, merge,
sizeof(merge) - sizeof(merge[0]));
memmove(lock_seq + 1, lock_seq,
sizeof(lock_seq) - sizeof(lock_seq[0]));
merge[0] = b;
for (i = 1; i < GC_MERGE_NODES; i++) {
if (!merge[i] ||
!six_relock_intent(&merge[i]->c.lock, lock_seq[i]))
break;
if (merge[i]->c.level != merge[0]->c.level) {
six_unlock_intent(&merge[i]->c.lock);
break;
}
}
memset(merge + i, 0, (GC_MERGE_NODES - i) * sizeof(merge[0]));
bch2_coalesce_nodes(c, iter, merge);
for (i = 1; i < GC_MERGE_NODES && merge[i]; i++) {
lock_seq[i] = merge[i]->c.lock.state.seq;
six_unlock_intent(&merge[i]->c.lock);
}
lock_seq[0] = merge[0]->c.lock.state.seq;
if (kthread && kthread_should_stop()) {
bch2_trans_exit(&trans);
return -ESHUTDOWN;
}
bch2_trans_cond_resched(&trans);
/*
* If the parent node wasn't relocked, it might have been split
* and the nodes in our sliding window might not have the same
* parent anymore - blow away the sliding window:
*/
if (btree_iter_node(iter, iter->level + 1) &&
!btree_node_intent_locked(iter, iter->level + 1))
memset(merge + 1, 0,
(GC_MERGE_NODES - 1) * sizeof(merge[0]));
}
return bch2_trans_exit(&trans);
}
/**
* bch_coalesce - coalesce adjacent nodes with low occupancy
*/
void bch2_coalesce(struct bch_fs *c)
{
enum btree_id id;
down_read(&c->gc_lock);
trace_gc_coalesce_start(c);
for (id = 0; id < BTREE_ID_NR; id++) {
int ret = c->btree_roots[id].b
? bch2_coalesce_btree(c, id)
: 0;
if (ret) {
if (ret != -ESHUTDOWN)
bch_err(c, "btree coalescing failed: %d", ret);
return;
}
}
trace_gc_coalesce_end(c);
up_read(&c->gc_lock);
}
static int bch2_gc_thread(void *arg)
{
struct bch_fs *c = arg;
struct io_clock *clock = &c->io_clock[WRITE];
unsigned long last = atomic64_read(&clock->now);
unsigned last_kick = atomic_read(&c->kick_gc);
int ret;
set_freezable();
while (1) {
while (1) {
set_current_state(TASK_INTERRUPTIBLE);
if (kthread_should_stop()) {
__set_current_state(TASK_RUNNING);
return 0;
}
if (atomic_read(&c->kick_gc) != last_kick)
break;
if (c->btree_gc_periodic) {
unsigned long next = last + c->capacity / 16;
if (atomic64_read(&clock->now) >= next)
break;
bch2_io_clock_schedule_timeout(clock, next);
} else {
schedule();
}
try_to_freeze();
}
__set_current_state(TASK_RUNNING);
last = atomic64_read(&clock->now);
last_kick = atomic_read(&c->kick_gc);
/*
* Full gc is currently incompatible with btree key cache:
*/
#if 0
ret = bch2_gc(c, false, false);
#else
ret = bch2_gc_gens(c);
#endif
if (ret < 0)
bch_err(c, "btree gc failed: %i", ret);
debug_check_no_locks_held();
}
return 0;
}
void bch2_gc_thread_stop(struct bch_fs *c)
{
struct task_struct *p;
p = c->gc_thread;
c->gc_thread = NULL;
if (p) {
kthread_stop(p);
put_task_struct(p);
}
}
int bch2_gc_thread_start(struct bch_fs *c)
{
struct task_struct *p;
if (c->gc_thread)
return 0;
p = kthread_create(bch2_gc_thread, c, "bch-gc/%s", c->name);
if (IS_ERR(p)) {
bch_err(c, "error creating gc thread: %li", PTR_ERR(p));
return PTR_ERR(p);
}
get_task_struct(p);
c->gc_thread = p;
wake_up_process(p);
return 0;
}