linux/mm/mprotect.c
David Hildenbrand 6c287605fd mm: remember exclusively mapped anonymous pages with PG_anon_exclusive
Let's mark exclusively mapped anonymous pages with PG_anon_exclusive as
exclusive, and use that information to make GUP pins reliable and stay
consistent with the page mapped into the page table even if the page table
entry gets write-protected.

With that information at hand, we can extend our COW logic to always reuse
anonymous pages that are exclusive.  For anonymous pages that might be
shared, the existing logic applies.

As already documented, PG_anon_exclusive is usually only expressive in
combination with a page table entry.  Especially PTE vs.  PMD-mapped
anonymous pages require more thought, some examples: due to mremap() we
can easily have a single compound page PTE-mapped into multiple page
tables exclusively in a single process -- multiple page table locks apply.
Further, due to MADV_WIPEONFORK we might not necessarily write-protect
all PTEs, and only some subpages might be pinned.  Long story short: once
PTE-mapped, we have to track information about exclusivity per sub-page,
but until then, we can just track it for the compound page in the head
page and not having to update a whole bunch of subpages all of the time
for a simple PMD mapping of a THP.

For simplicity, this commit mostly talks about "anonymous pages", while
it's for THP actually "the part of an anonymous folio referenced via a
page table entry".

To not spill PG_anon_exclusive code all over the mm code-base, we let the
anon rmap code to handle all PG_anon_exclusive logic it can easily handle.

If a writable, present page table entry points at an anonymous (sub)page,
that (sub)page must be PG_anon_exclusive.  If GUP wants to take a reliably
pin (FOLL_PIN) on an anonymous page references via a present page table
entry, it must only pin if PG_anon_exclusive is set for the mapped
(sub)page.

This commit doesn't adjust GUP, so this is only implicitly handled for
FOLL_WRITE, follow-up commits will teach GUP to also respect it for
FOLL_PIN without FOLL_WRITE, to make all GUP pins of anonymous pages fully
reliable.

Whenever an anonymous page is to be shared (fork(), KSM), or when
temporarily unmapping an anonymous page (swap, migration), the relevant
PG_anon_exclusive bit has to be cleared to mark the anonymous page
possibly shared.  Clearing will fail if there are GUP pins on the page:

* For fork(), this means having to copy the page and not being able to
  share it.  fork() protects against concurrent GUP using the PT lock and
  the src_mm->write_protect_seq.

* For KSM, this means sharing will fail.  For swap this means, unmapping
  will fail, For migration this means, migration will fail early.  All
  three cases protect against concurrent GUP using the PT lock and a
  proper clear/invalidate+flush of the relevant page table entry.

This fixes memory corruptions reported for FOLL_PIN | FOLL_WRITE, when a
pinned page gets mapped R/O and the successive write fault ends up
replacing the page instead of reusing it.  It improves the situation for
O_DIRECT/vmsplice/...  that still use FOLL_GET instead of FOLL_PIN, if
fork() is *not* involved, however swapout and fork() are still
problematic.  Properly using FOLL_PIN instead of FOLL_GET for these GUP
users will fix the issue for them.

I. Details about basic handling

I.1. Fresh anonymous pages

page_add_new_anon_rmap() and hugepage_add_new_anon_rmap() will mark the
given page exclusive via __page_set_anon_rmap(exclusive=1).  As that is
the mechanism fresh anonymous pages come into life (besides migration code
where we copy the page->mapping), all fresh anonymous pages will start out
as exclusive.

I.2. COW reuse handling of anonymous pages

When a COW handler stumbles over a (sub)page that's marked exclusive, it
simply reuses it.  Otherwise, the handler tries harder under page lock to
detect if the (sub)page is exclusive and can be reused.  If exclusive,
page_move_anon_rmap() will mark the given (sub)page exclusive.

Note that hugetlb code does not yet check for PageAnonExclusive(), as it
still uses the old COW logic that is prone to the COW security issue
because hugetlb code cannot really tolerate unnecessary/wrong COW as huge
pages are a scarce resource.

I.3. Migration handling

try_to_migrate() has to try marking an exclusive anonymous page shared via
page_try_share_anon_rmap().  If it fails because there are GUP pins on the
page, unmap fails.  migrate_vma_collect_pmd() and
__split_huge_pmd_locked() are handled similarly.

Writable migration entries implicitly point at shared anonymous pages. 
For readable migration entries that information is stored via a new
"readable-exclusive" migration entry, specific to anonymous pages.

When restoring a migration entry in remove_migration_pte(), information
about exlusivity is detected via the migration entry type, and
RMAP_EXCLUSIVE is set accordingly for
page_add_anon_rmap()/hugepage_add_anon_rmap() to restore that information.

I.4. Swapout handling

try_to_unmap() has to try marking the mapped page possibly shared via
page_try_share_anon_rmap().  If it fails because there are GUP pins on the
page, unmap fails.  For now, information about exclusivity is lost.  In
the future, we might want to remember that information in the swap entry
in some cases, however, it requires more thought, care, and a way to store
that information in swap entries.

I.5. Swapin handling

do_swap_page() will never stumble over exclusive anonymous pages in the
swap cache, as try_to_migrate() prohibits that.  do_swap_page() always has
to detect manually if an anonymous page is exclusive and has to set
RMAP_EXCLUSIVE for page_add_anon_rmap() accordingly.

I.6. THP handling

__split_huge_pmd_locked() has to move the information about exclusivity
from the PMD to the PTEs.

a) In case we have a readable-exclusive PMD migration entry, simply
   insert readable-exclusive PTE migration entries.

b) In case we have a present PMD entry and we don't want to freeze
   ("convert to migration entries"), simply forward PG_anon_exclusive to
   all sub-pages, no need to temporarily clear the bit.

c) In case we have a present PMD entry and want to freeze, handle it
   similar to try_to_migrate(): try marking the page shared first.  In
   case we fail, we ignore the "freeze" instruction and simply split
   ordinarily.  try_to_migrate() will properly fail because the THP is
   still mapped via PTEs.

When splitting a compound anonymous folio (THP), the information about
exclusivity is implicitly handled via the migration entries: no need to
replicate PG_anon_exclusive manually.

I.7.  fork() handling fork() handling is relatively easy, because
PG_anon_exclusive is only expressive for some page table entry types.

a) Present anonymous pages

page_try_dup_anon_rmap() will mark the given subpage shared -- which will
fail if the page is pinned.  If it failed, we have to copy (or PTE-map a
PMD to handle it on the PTE level).

Note that device exclusive entries are just a pointer at a PageAnon()
page.  fork() will first convert a device exclusive entry to a present
page table and handle it just like present anonymous pages.

b) Device private entry

Device private entries point at PageAnon() pages that cannot be mapped
directly and, therefore, cannot get pinned.

page_try_dup_anon_rmap() will mark the given subpage shared, which cannot
fail because they cannot get pinned.

c) HW poison entries

PG_anon_exclusive will remain untouched and is stale -- the page table
entry is just a placeholder after all.

d) Migration entries

Writable and readable-exclusive entries are converted to readable entries:
possibly shared.

I.8. mprotect() handling

mprotect() only has to properly handle the new readable-exclusive
migration entry:

When write-protecting a migration entry that points at an anonymous page,
remember the information about exclusivity via the "readable-exclusive"
migration entry type.

II. Migration and GUP-fast

Whenever replacing a present page table entry that maps an exclusive
anonymous page by a migration entry, we have to mark the page possibly
shared and synchronize against GUP-fast by a proper clear/invalidate+flush
to make the following scenario impossible:

1. try_to_migrate() places a migration entry after checking for GUP pins
   and marks the page possibly shared.

2. GUP-fast pins the page due to lack of synchronization

3. fork() converts the "writable/readable-exclusive" migration entry into a
   readable migration entry

4. Migration fails due to the GUP pin (failing to freeze the refcount)

5. Migration entries are restored. PG_anon_exclusive is lost

-> We have a pinned page that is not marked exclusive anymore.

Note that we move information about exclusivity from the page to the
migration entry as it otherwise highly overcomplicates fork() and
PTE-mapping a THP.

III. Swapout and GUP-fast

Whenever replacing a present page table entry that maps an exclusive
anonymous page by a swap entry, we have to mark the page possibly shared
and synchronize against GUP-fast by a proper clear/invalidate+flush to
make the following scenario impossible:

1. try_to_unmap() places a swap entry after checking for GUP pins and
   clears exclusivity information on the page.

2. GUP-fast pins the page due to lack of synchronization.

-> We have a pinned page that is not marked exclusive anymore.

If we'd ever store information about exclusivity in the swap entry,
similar to migration handling, the same considerations as in II would
apply.  This is future work.

Link: https://lkml.kernel.org/r/20220428083441.37290-13-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Don Dutile <ddutile@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jann Horn <jannh@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Khalid Aziz <khalid.aziz@oracle.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Liang Zhang <zhangliang5@huawei.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Nadav Amit <namit@vmware.com>
Cc: Oded Gabbay <oded.gabbay@gmail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Pedro Demarchi Gomes <pedrodemargomes@gmail.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-05-09 18:20:44 -07:00

737 lines
18 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* mm/mprotect.c
*
* (C) Copyright 1994 Linus Torvalds
* (C) Copyright 2002 Christoph Hellwig
*
* Address space accounting code <alan@lxorguk.ukuu.org.uk>
* (C) Copyright 2002 Red Hat Inc, All Rights Reserved
*/
#include <linux/pagewalk.h>
#include <linux/hugetlb.h>
#include <linux/shm.h>
#include <linux/mman.h>
#include <linux/fs.h>
#include <linux/highmem.h>
#include <linux/security.h>
#include <linux/mempolicy.h>
#include <linux/personality.h>
#include <linux/syscalls.h>
#include <linux/swap.h>
#include <linux/swapops.h>
#include <linux/mmu_notifier.h>
#include <linux/migrate.h>
#include <linux/perf_event.h>
#include <linux/pkeys.h>
#include <linux/ksm.h>
#include <linux/uaccess.h>
#include <linux/mm_inline.h>
#include <linux/pgtable.h>
#include <linux/sched/sysctl.h>
#include <asm/cacheflush.h>
#include <asm/mmu_context.h>
#include <asm/tlbflush.h>
#include "internal.h"
static unsigned long change_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
unsigned long addr, unsigned long end, pgprot_t newprot,
unsigned long cp_flags)
{
pte_t *pte, oldpte;
spinlock_t *ptl;
unsigned long pages = 0;
int target_node = NUMA_NO_NODE;
bool dirty_accountable = cp_flags & MM_CP_DIRTY_ACCT;
bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
/*
* Can be called with only the mmap_lock for reading by
* prot_numa so we must check the pmd isn't constantly
* changing from under us from pmd_none to pmd_trans_huge
* and/or the other way around.
*/
if (pmd_trans_unstable(pmd))
return 0;
/*
* The pmd points to a regular pte so the pmd can't change
* from under us even if the mmap_lock is only hold for
* reading.
*/
pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
/* Get target node for single threaded private VMAs */
if (prot_numa && !(vma->vm_flags & VM_SHARED) &&
atomic_read(&vma->vm_mm->mm_users) == 1)
target_node = numa_node_id();
flush_tlb_batched_pending(vma->vm_mm);
arch_enter_lazy_mmu_mode();
do {
oldpte = *pte;
if (pte_present(oldpte)) {
pte_t ptent;
bool preserve_write = prot_numa && pte_write(oldpte);
/*
* Avoid trapping faults against the zero or KSM
* pages. See similar comment in change_huge_pmd.
*/
if (prot_numa) {
struct page *page;
int nid;
/* Avoid TLB flush if possible */
if (pte_protnone(oldpte))
continue;
page = vm_normal_page(vma, addr, oldpte);
if (!page || PageKsm(page))
continue;
/* Also skip shared copy-on-write pages */
if (is_cow_mapping(vma->vm_flags) &&
page_count(page) != 1)
continue;
/*
* While migration can move some dirty pages,
* it cannot move them all from MIGRATE_ASYNC
* context.
*/
if (page_is_file_lru(page) && PageDirty(page))
continue;
/*
* Don't mess with PTEs if page is already on the node
* a single-threaded process is running on.
*/
nid = page_to_nid(page);
if (target_node == nid)
continue;
/*
* Skip scanning top tier node if normal numa
* balancing is disabled
*/
if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
node_is_toptier(nid))
continue;
}
oldpte = ptep_modify_prot_start(vma, addr, pte);
ptent = pte_modify(oldpte, newprot);
if (preserve_write)
ptent = pte_mk_savedwrite(ptent);
if (uffd_wp) {
ptent = pte_wrprotect(ptent);
ptent = pte_mkuffd_wp(ptent);
} else if (uffd_wp_resolve) {
/*
* Leave the write bit to be handled
* by PF interrupt handler, then
* things like COW could be properly
* handled.
*/
ptent = pte_clear_uffd_wp(ptent);
}
/* Avoid taking write faults for known dirty pages */
if (dirty_accountable && pte_dirty(ptent) &&
(pte_soft_dirty(ptent) ||
!(vma->vm_flags & VM_SOFTDIRTY))) {
ptent = pte_mkwrite(ptent);
}
ptep_modify_prot_commit(vma, addr, pte, oldpte, ptent);
pages++;
} else if (is_swap_pte(oldpte)) {
swp_entry_t entry = pte_to_swp_entry(oldpte);
struct page *page = pfn_swap_entry_to_page(entry);
pte_t newpte;
if (is_writable_migration_entry(entry)) {
/*
* A protection check is difficult so
* just be safe and disable write
*/
if (PageAnon(page))
entry = make_readable_exclusive_migration_entry(
swp_offset(entry));
else
entry = make_readable_migration_entry(swp_offset(entry));
newpte = swp_entry_to_pte(entry);
if (pte_swp_soft_dirty(oldpte))
newpte = pte_swp_mksoft_dirty(newpte);
if (pte_swp_uffd_wp(oldpte))
newpte = pte_swp_mkuffd_wp(newpte);
} else if (is_writable_device_private_entry(entry)) {
/*
* We do not preserve soft-dirtiness. See
* copy_one_pte() for explanation.
*/
entry = make_readable_device_private_entry(
swp_offset(entry));
newpte = swp_entry_to_pte(entry);
if (pte_swp_uffd_wp(oldpte))
newpte = pte_swp_mkuffd_wp(newpte);
} else if (is_writable_device_exclusive_entry(entry)) {
entry = make_readable_device_exclusive_entry(
swp_offset(entry));
newpte = swp_entry_to_pte(entry);
if (pte_swp_soft_dirty(oldpte))
newpte = pte_swp_mksoft_dirty(newpte);
if (pte_swp_uffd_wp(oldpte))
newpte = pte_swp_mkuffd_wp(newpte);
} else {
newpte = oldpte;
}
if (uffd_wp)
newpte = pte_swp_mkuffd_wp(newpte);
else if (uffd_wp_resolve)
newpte = pte_swp_clear_uffd_wp(newpte);
if (!pte_same(oldpte, newpte)) {
set_pte_at(vma->vm_mm, addr, pte, newpte);
pages++;
}
}
} while (pte++, addr += PAGE_SIZE, addr != end);
arch_leave_lazy_mmu_mode();
pte_unmap_unlock(pte - 1, ptl);
return pages;
}
/*
* Used when setting automatic NUMA hinting protection where it is
* critical that a numa hinting PMD is not confused with a bad PMD.
*/
static inline int pmd_none_or_clear_bad_unless_trans_huge(pmd_t *pmd)
{
pmd_t pmdval = pmd_read_atomic(pmd);
/* See pmd_none_or_trans_huge_or_clear_bad for info on barrier */
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
barrier();
#endif
if (pmd_none(pmdval))
return 1;
if (pmd_trans_huge(pmdval))
return 0;
if (unlikely(pmd_bad(pmdval))) {
pmd_clear_bad(pmd);
return 1;
}
return 0;
}
static inline unsigned long change_pmd_range(struct vm_area_struct *vma,
pud_t *pud, unsigned long addr, unsigned long end,
pgprot_t newprot, unsigned long cp_flags)
{
pmd_t *pmd;
unsigned long next;
unsigned long pages = 0;
unsigned long nr_huge_updates = 0;
struct mmu_notifier_range range;
range.start = 0;
pmd = pmd_offset(pud, addr);
do {
unsigned long this_pages;
next = pmd_addr_end(addr, end);
/*
* Automatic NUMA balancing walks the tables with mmap_lock
* held for read. It's possible a parallel update to occur
* between pmd_trans_huge() and a pmd_none_or_clear_bad()
* check leading to a false positive and clearing.
* Hence, it's necessary to atomically read the PMD value
* for all the checks.
*/
if (!is_swap_pmd(*pmd) && !pmd_devmap(*pmd) &&
pmd_none_or_clear_bad_unless_trans_huge(pmd))
goto next;
/* invoke the mmu notifier if the pmd is populated */
if (!range.start) {
mmu_notifier_range_init(&range,
MMU_NOTIFY_PROTECTION_VMA, 0,
vma, vma->vm_mm, addr, end);
mmu_notifier_invalidate_range_start(&range);
}
if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
if (next - addr != HPAGE_PMD_SIZE) {
__split_huge_pmd(vma, pmd, addr, false, NULL);
} else {
int nr_ptes = change_huge_pmd(vma, pmd, addr,
newprot, cp_flags);
if (nr_ptes) {
if (nr_ptes == HPAGE_PMD_NR) {
pages += HPAGE_PMD_NR;
nr_huge_updates++;
}
/* huge pmd was handled */
goto next;
}
}
/* fall through, the trans huge pmd just split */
}
this_pages = change_pte_range(vma, pmd, addr, next, newprot,
cp_flags);
pages += this_pages;
next:
cond_resched();
} while (pmd++, addr = next, addr != end);
if (range.start)
mmu_notifier_invalidate_range_end(&range);
if (nr_huge_updates)
count_vm_numa_events(NUMA_HUGE_PTE_UPDATES, nr_huge_updates);
return pages;
}
static inline unsigned long change_pud_range(struct vm_area_struct *vma,
p4d_t *p4d, unsigned long addr, unsigned long end,
pgprot_t newprot, unsigned long cp_flags)
{
pud_t *pud;
unsigned long next;
unsigned long pages = 0;
pud = pud_offset(p4d, addr);
do {
next = pud_addr_end(addr, end);
if (pud_none_or_clear_bad(pud))
continue;
pages += change_pmd_range(vma, pud, addr, next, newprot,
cp_flags);
} while (pud++, addr = next, addr != end);
return pages;
}
static inline unsigned long change_p4d_range(struct vm_area_struct *vma,
pgd_t *pgd, unsigned long addr, unsigned long end,
pgprot_t newprot, unsigned long cp_flags)
{
p4d_t *p4d;
unsigned long next;
unsigned long pages = 0;
p4d = p4d_offset(pgd, addr);
do {
next = p4d_addr_end(addr, end);
if (p4d_none_or_clear_bad(p4d))
continue;
pages += change_pud_range(vma, p4d, addr, next, newprot,
cp_flags);
} while (p4d++, addr = next, addr != end);
return pages;
}
static unsigned long change_protection_range(struct vm_area_struct *vma,
unsigned long addr, unsigned long end, pgprot_t newprot,
unsigned long cp_flags)
{
struct mm_struct *mm = vma->vm_mm;
pgd_t *pgd;
unsigned long next;
unsigned long start = addr;
unsigned long pages = 0;
BUG_ON(addr >= end);
pgd = pgd_offset(mm, addr);
flush_cache_range(vma, addr, end);
inc_tlb_flush_pending(mm);
do {
next = pgd_addr_end(addr, end);
if (pgd_none_or_clear_bad(pgd))
continue;
pages += change_p4d_range(vma, pgd, addr, next, newprot,
cp_flags);
} while (pgd++, addr = next, addr != end);
/* Only flush the TLB if we actually modified any entries: */
if (pages)
flush_tlb_range(vma, start, end);
dec_tlb_flush_pending(mm);
return pages;
}
unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
unsigned long end, pgprot_t newprot,
unsigned long cp_flags)
{
unsigned long pages;
BUG_ON((cp_flags & MM_CP_UFFD_WP_ALL) == MM_CP_UFFD_WP_ALL);
if (is_vm_hugetlb_page(vma))
pages = hugetlb_change_protection(vma, start, end, newprot);
else
pages = change_protection_range(vma, start, end, newprot,
cp_flags);
return pages;
}
static int prot_none_pte_entry(pte_t *pte, unsigned long addr,
unsigned long next, struct mm_walk *walk)
{
return pfn_modify_allowed(pte_pfn(*pte), *(pgprot_t *)(walk->private)) ?
0 : -EACCES;
}
static int prot_none_hugetlb_entry(pte_t *pte, unsigned long hmask,
unsigned long addr, unsigned long next,
struct mm_walk *walk)
{
return pfn_modify_allowed(pte_pfn(*pte), *(pgprot_t *)(walk->private)) ?
0 : -EACCES;
}
static int prot_none_test(unsigned long addr, unsigned long next,
struct mm_walk *walk)
{
return 0;
}
static const struct mm_walk_ops prot_none_walk_ops = {
.pte_entry = prot_none_pte_entry,
.hugetlb_entry = prot_none_hugetlb_entry,
.test_walk = prot_none_test,
};
int
mprotect_fixup(struct vm_area_struct *vma, struct vm_area_struct **pprev,
unsigned long start, unsigned long end, unsigned long newflags)
{
struct mm_struct *mm = vma->vm_mm;
unsigned long oldflags = vma->vm_flags;
long nrpages = (end - start) >> PAGE_SHIFT;
unsigned long charged = 0;
pgoff_t pgoff;
int error;
int dirty_accountable = 0;
if (newflags == oldflags) {
*pprev = vma;
return 0;
}
/*
* Do PROT_NONE PFN permission checks here when we can still
* bail out without undoing a lot of state. This is a rather
* uncommon case, so doesn't need to be very optimized.
*/
if (arch_has_pfn_modify_check() &&
(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
(newflags & VM_ACCESS_FLAGS) == 0) {
pgprot_t new_pgprot = vm_get_page_prot(newflags);
error = walk_page_range(current->mm, start, end,
&prot_none_walk_ops, &new_pgprot);
if (error)
return error;
}
/*
* If we make a private mapping writable we increase our commit;
* but (without finer accounting) cannot reduce our commit if we
* make it unwritable again. hugetlb mapping were accounted for
* even if read-only so there is no need to account for them here
*/
if (newflags & VM_WRITE) {
/* Check space limits when area turns into data. */
if (!may_expand_vm(mm, newflags, nrpages) &&
may_expand_vm(mm, oldflags, nrpages))
return -ENOMEM;
if (!(oldflags & (VM_ACCOUNT|VM_WRITE|VM_HUGETLB|
VM_SHARED|VM_NORESERVE))) {
charged = nrpages;
if (security_vm_enough_memory_mm(mm, charged))
return -ENOMEM;
newflags |= VM_ACCOUNT;
}
}
/*
* First try to merge with previous and/or next vma.
*/
pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
*pprev = vma_merge(mm, *pprev, start, end, newflags,
vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
vma->vm_userfaultfd_ctx, anon_vma_name(vma));
if (*pprev) {
vma = *pprev;
VM_WARN_ON((vma->vm_flags ^ newflags) & ~VM_SOFTDIRTY);
goto success;
}
*pprev = vma;
if (start != vma->vm_start) {
error = split_vma(mm, vma, start, 1);
if (error)
goto fail;
}
if (end != vma->vm_end) {
error = split_vma(mm, vma, end, 0);
if (error)
goto fail;
}
success:
/*
* vm_flags and vm_page_prot are protected by the mmap_lock
* held in write mode.
*/
vma->vm_flags = newflags;
dirty_accountable = vma_wants_writenotify(vma, vma->vm_page_prot);
vma_set_page_prot(vma);
change_protection(vma, start, end, vma->vm_page_prot,
dirty_accountable ? MM_CP_DIRTY_ACCT : 0);
/*
* Private VM_LOCKED VMA becoming writable: trigger COW to avoid major
* fault on access.
*/
if ((oldflags & (VM_WRITE | VM_SHARED | VM_LOCKED)) == VM_LOCKED &&
(newflags & VM_WRITE)) {
populate_vma_page_range(vma, start, end, NULL);
}
vm_stat_account(mm, oldflags, -nrpages);
vm_stat_account(mm, newflags, nrpages);
perf_event_mmap(vma);
return 0;
fail:
vm_unacct_memory(charged);
return error;
}
/*
* pkey==-1 when doing a legacy mprotect()
*/
static int do_mprotect_pkey(unsigned long start, size_t len,
unsigned long prot, int pkey)
{
unsigned long nstart, end, tmp, reqprot;
struct vm_area_struct *vma, *prev;
int error = -EINVAL;
const int grows = prot & (PROT_GROWSDOWN|PROT_GROWSUP);
const bool rier = (current->personality & READ_IMPLIES_EXEC) &&
(prot & PROT_READ);
start = untagged_addr(start);
prot &= ~(PROT_GROWSDOWN|PROT_GROWSUP);
if (grows == (PROT_GROWSDOWN|PROT_GROWSUP)) /* can't be both */
return -EINVAL;
if (start & ~PAGE_MASK)
return -EINVAL;
if (!len)
return 0;
len = PAGE_ALIGN(len);
end = start + len;
if (end <= start)
return -ENOMEM;
if (!arch_validate_prot(prot, start))
return -EINVAL;
reqprot = prot;
if (mmap_write_lock_killable(current->mm))
return -EINTR;
/*
* If userspace did not allocate the pkey, do not let
* them use it here.
*/
error = -EINVAL;
if ((pkey != -1) && !mm_pkey_is_allocated(current->mm, pkey))
goto out;
vma = find_vma(current->mm, start);
error = -ENOMEM;
if (!vma)
goto out;
if (unlikely(grows & PROT_GROWSDOWN)) {
if (vma->vm_start >= end)
goto out;
start = vma->vm_start;
error = -EINVAL;
if (!(vma->vm_flags & VM_GROWSDOWN))
goto out;
} else {
if (vma->vm_start > start)
goto out;
if (unlikely(grows & PROT_GROWSUP)) {
end = vma->vm_end;
error = -EINVAL;
if (!(vma->vm_flags & VM_GROWSUP))
goto out;
}
}
if (start > vma->vm_start)
prev = vma;
else
prev = vma->vm_prev;
for (nstart = start ; ; ) {
unsigned long mask_off_old_flags;
unsigned long newflags;
int new_vma_pkey;
/* Here we know that vma->vm_start <= nstart < vma->vm_end. */
/* Does the application expect PROT_READ to imply PROT_EXEC */
if (rier && (vma->vm_flags & VM_MAYEXEC))
prot |= PROT_EXEC;
/*
* Each mprotect() call explicitly passes r/w/x permissions.
* If a permission is not passed to mprotect(), it must be
* cleared from the VMA.
*/
mask_off_old_flags = VM_READ | VM_WRITE | VM_EXEC |
VM_FLAGS_CLEAR;
new_vma_pkey = arch_override_mprotect_pkey(vma, prot, pkey);
newflags = calc_vm_prot_bits(prot, new_vma_pkey);
newflags |= (vma->vm_flags & ~mask_off_old_flags);
/* newflags >> 4 shift VM_MAY% in place of VM_% */
if ((newflags & ~(newflags >> 4)) & VM_ACCESS_FLAGS) {
error = -EACCES;
goto out;
}
/* Allow architectures to sanity-check the new flags */
if (!arch_validate_flags(newflags)) {
error = -EINVAL;
goto out;
}
error = security_file_mprotect(vma, reqprot, prot);
if (error)
goto out;
tmp = vma->vm_end;
if (tmp > end)
tmp = end;
if (vma->vm_ops && vma->vm_ops->mprotect) {
error = vma->vm_ops->mprotect(vma, nstart, tmp, newflags);
if (error)
goto out;
}
error = mprotect_fixup(vma, &prev, nstart, tmp, newflags);
if (error)
goto out;
nstart = tmp;
if (nstart < prev->vm_end)
nstart = prev->vm_end;
if (nstart >= end)
goto out;
vma = prev->vm_next;
if (!vma || vma->vm_start != nstart) {
error = -ENOMEM;
goto out;
}
prot = reqprot;
}
out:
mmap_write_unlock(current->mm);
return error;
}
SYSCALL_DEFINE3(mprotect, unsigned long, start, size_t, len,
unsigned long, prot)
{
return do_mprotect_pkey(start, len, prot, -1);
}
#ifdef CONFIG_ARCH_HAS_PKEYS
SYSCALL_DEFINE4(pkey_mprotect, unsigned long, start, size_t, len,
unsigned long, prot, int, pkey)
{
return do_mprotect_pkey(start, len, prot, pkey);
}
SYSCALL_DEFINE2(pkey_alloc, unsigned long, flags, unsigned long, init_val)
{
int pkey;
int ret;
/* No flags supported yet. */
if (flags)
return -EINVAL;
/* check for unsupported init values */
if (init_val & ~PKEY_ACCESS_MASK)
return -EINVAL;
mmap_write_lock(current->mm);
pkey = mm_pkey_alloc(current->mm);
ret = -ENOSPC;
if (pkey == -1)
goto out;
ret = arch_set_user_pkey_access(current, pkey, init_val);
if (ret) {
mm_pkey_free(current->mm, pkey);
goto out;
}
ret = pkey;
out:
mmap_write_unlock(current->mm);
return ret;
}
SYSCALL_DEFINE1(pkey_free, int, pkey)
{
int ret;
mmap_write_lock(current->mm);
ret = mm_pkey_free(current->mm, pkey);
mmap_write_unlock(current->mm);
/*
* We could provide warnings or errors if any VMA still
* has the pkey set here.
*/
return ret;
}
#endif /* CONFIG_ARCH_HAS_PKEYS */