linux/drivers/remoteproc/omap_remoteproc.c
Suman Anna 232ba6ca00 remoteproc/omap: Report device exceptions and trigger recovery
The OMAP remote processors send a special mailbox message
(RP_MBOX_CRASH) when they crash and detect an internal device
exception.

Add support to the mailbox handling function upon detection of
this special message to report this crash to the remoteproc core.
The remoteproc core can trigger a recovery using the prevailing
recovery mechanism, already in use for MMU Fault recovery.

Co-developed-by: Subramaniam Chanderashekarapuram <subramaniam.ca@ti.com>
Signed-off-by: Subramaniam Chanderashekarapuram <subramaniam.ca@ti.com>
Signed-off-by: Suman Anna <s-anna@ti.com>
Signed-off-by: Tero Kristo <t-kristo@ti.com>
Reviewed-by: Bjorn Andersson <bjorn.andersson@linaro.org>
Reviewed-by: Andrew F. Davis <afd@ti.com>
Acked-by: Mathieu Poirier <mathieu.poirier@linaro.org>
Link: https://lore.kernel.org/r/20200324110035.29907-14-t-kristo@ti.com
Signed-off-by: Bjorn Andersson <bjorn.andersson@linaro.org>
2020-03-25 22:29:50 -07:00

1256 lines
32 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* OMAP Remote Processor driver
*
* Copyright (C) 2011-2020 Texas Instruments Incorporated - http://www.ti.com/
* Copyright (C) 2011 Google, Inc.
*
* Ohad Ben-Cohen <ohad@wizery.com>
* Brian Swetland <swetland@google.com>
* Fernando Guzman Lugo <fernando.lugo@ti.com>
* Mark Grosen <mgrosen@ti.com>
* Suman Anna <s-anna@ti.com>
* Hari Kanigeri <h-kanigeri2@ti.com>
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/clk.h>
#include <linux/clk/ti.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/of_device.h>
#include <linux/of_reserved_mem.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/dma-mapping.h>
#include <linux/remoteproc.h>
#include <linux/mailbox_client.h>
#include <linux/omap-iommu.h>
#include <linux/omap-mailbox.h>
#include <linux/regmap.h>
#include <linux/mfd/syscon.h>
#include <linux/reset.h>
#include <clocksource/timer-ti-dm.h>
#include <linux/platform_data/dmtimer-omap.h>
#include "omap_remoteproc.h"
#include "remoteproc_internal.h"
/* default auto-suspend delay (ms) */
#define DEFAULT_AUTOSUSPEND_DELAY 10000
/**
* struct omap_rproc_boot_data - boot data structure for the DSP omap rprocs
* @syscon: regmap handle for the system control configuration module
* @boot_reg: boot register offset within the @syscon regmap
* @boot_reg_shift: bit-field shift required for the boot address value in
* @boot_reg
*/
struct omap_rproc_boot_data {
struct regmap *syscon;
unsigned int boot_reg;
unsigned int boot_reg_shift;
};
/**
* struct omap_rproc_mem - internal memory structure
* @cpu_addr: MPU virtual address of the memory region
* @bus_addr: bus address used to access the memory region
* @dev_addr: device address of the memory region from DSP view
* @size: size of the memory region
*/
struct omap_rproc_mem {
void __iomem *cpu_addr;
phys_addr_t bus_addr;
u32 dev_addr;
size_t size;
};
/**
* struct omap_rproc_timer - data structure for a timer used by a omap rproc
* @odt: timer pointer
* @timer_ops: OMAP dmtimer ops for @odt timer
*/
struct omap_rproc_timer {
struct omap_dm_timer *odt;
const struct omap_dm_timer_ops *timer_ops;
};
/**
* struct omap_rproc - omap remote processor state
* @mbox: mailbox channel handle
* @client: mailbox client to request the mailbox channel
* @boot_data: boot data structure for setting processor boot address
* @mem: internal memory regions data
* @num_mems: number of internal memory regions
* @num_timers: number of rproc timer(s)
* @timers: timer(s) info used by rproc
* @autosuspend_delay: auto-suspend delay value to be used for runtime pm
* @need_resume: if true a resume is needed in the system resume callback
* @rproc: rproc handle
* @reset: reset handle
* @pm_comp: completion primitive to sync for suspend response
* @fck: functional clock for the remoteproc
* @suspend_acked: state machine flag to store the suspend request ack
*/
struct omap_rproc {
struct mbox_chan *mbox;
struct mbox_client client;
struct omap_rproc_boot_data *boot_data;
struct omap_rproc_mem *mem;
int num_mems;
int num_timers;
struct omap_rproc_timer *timers;
int autosuspend_delay;
bool need_resume;
struct rproc *rproc;
struct reset_control *reset;
struct completion pm_comp;
struct clk *fck;
bool suspend_acked;
};
/**
* struct omap_rproc_mem_data - memory definitions for an omap remote processor
* @name: name for this memory entry
* @dev_addr: device address for the memory entry
*/
struct omap_rproc_mem_data {
const char *name;
const u32 dev_addr;
};
/**
* struct omap_rproc_dev_data - device data for the omap remote processor
* @device_name: device name of the remote processor
* @mems: memory definitions for this remote processor
*/
struct omap_rproc_dev_data {
const char *device_name;
const struct omap_rproc_mem_data *mems;
};
/**
* omap_rproc_request_timer() - request a timer for a remoteproc
* @dev: device requesting the timer
* @np: device node pointer to the desired timer
* @timer: handle to a struct omap_rproc_timer to return the timer handle
*
* This helper function is used primarily to request a timer associated with
* a remoteproc. The returned handle is stored in the .odt field of the
* @timer structure passed in, and is used to invoke other timer specific
* ops (like starting a timer either during device initialization or during
* a resume operation, or for stopping/freeing a timer).
*
* Return: 0 on success, otherwise an appropriate failure
*/
static int omap_rproc_request_timer(struct device *dev, struct device_node *np,
struct omap_rproc_timer *timer)
{
int ret;
timer->odt = timer->timer_ops->request_by_node(np);
if (!timer->odt) {
dev_err(dev, "request for timer node %p failed\n", np);
return -EBUSY;
}
ret = timer->timer_ops->set_source(timer->odt, OMAP_TIMER_SRC_SYS_CLK);
if (ret) {
dev_err(dev, "error setting OMAP_TIMER_SRC_SYS_CLK as source for timer node %p\n",
np);
timer->timer_ops->free(timer->odt);
return ret;
}
/* clean counter, remoteproc code will set the value */
timer->timer_ops->set_load(timer->odt, 0, 0);
return 0;
}
/**
* omap_rproc_start_timer() - start a timer for a remoteproc
* @timer: handle to a OMAP rproc timer
*
* This helper function is used to start a timer associated with a remoteproc,
* obtained using the request_timer ops. The helper function needs to be
* invoked by the driver to start the timer (during device initialization)
* or to just resume the timer.
*
* Return: 0 on success, otherwise a failure as returned by DMTimer ops
*/
static inline int omap_rproc_start_timer(struct omap_rproc_timer *timer)
{
return timer->timer_ops->start(timer->odt);
}
/**
* omap_rproc_stop_timer() - stop a timer for a remoteproc
* @timer: handle to a OMAP rproc timer
*
* This helper function is used to disable a timer associated with a
* remoteproc, and needs to be called either during a device shutdown
* or suspend operation. The separate helper function allows the driver
* to just stop a timer without having to release the timer during a
* suspend operation.
*
* Return: 0 on success, otherwise a failure as returned by DMTimer ops
*/
static inline int omap_rproc_stop_timer(struct omap_rproc_timer *timer)
{
return timer->timer_ops->stop(timer->odt);
}
/**
* omap_rproc_release_timer() - release a timer for a remoteproc
* @timer: handle to a OMAP rproc timer
*
* This helper function is used primarily to release a timer associated
* with a remoteproc. The dmtimer will be available for other clients to
* use once released.
*
* Return: 0 on success, otherwise a failure as returned by DMTimer ops
*/
static inline int omap_rproc_release_timer(struct omap_rproc_timer *timer)
{
return timer->timer_ops->free(timer->odt);
}
/**
* omap_rproc_enable_timers() - enable the timers for a remoteproc
* @rproc: handle of a remote processor
* @configure: boolean flag used to acquire and configure the timer handle
*
* This function is used primarily to enable the timers associated with
* a remoteproc. The configure flag is provided to allow the driver to
* to either acquire and start a timer (during device initialization) or
* to just start a timer (during a resume operation).
*
* Return: 0 on success, otherwise an appropriate failure
*/
static int omap_rproc_enable_timers(struct rproc *rproc, bool configure)
{
int i;
int ret = 0;
struct platform_device *tpdev;
struct dmtimer_platform_data *tpdata;
const struct omap_dm_timer_ops *timer_ops;
struct omap_rproc *oproc = rproc->priv;
struct omap_rproc_timer *timers = oproc->timers;
struct device *dev = rproc->dev.parent;
struct device_node *np = NULL;
if (!oproc->num_timers)
return 0;
if (!configure)
goto start_timers;
for (i = 0; i < oproc->num_timers; i++) {
np = of_parse_phandle(dev->of_node, "ti,timers", i);
if (!np) {
ret = -ENXIO;
dev_err(dev, "device node lookup for timer at index %d failed: %d\n",
i, ret);
goto free_timers;
}
tpdev = of_find_device_by_node(np);
if (!tpdev) {
ret = -ENODEV;
dev_err(dev, "could not get timer platform device\n");
goto put_node;
}
tpdata = dev_get_platdata(&tpdev->dev);
put_device(&tpdev->dev);
if (!tpdata) {
ret = -EINVAL;
dev_err(dev, "dmtimer pdata structure NULL\n");
goto put_node;
}
timer_ops = tpdata->timer_ops;
if (!timer_ops || !timer_ops->request_by_node ||
!timer_ops->set_source || !timer_ops->set_load ||
!timer_ops->free || !timer_ops->start ||
!timer_ops->stop) {
ret = -EINVAL;
dev_err(dev, "device does not have required timer ops\n");
goto put_node;
}
timers[i].timer_ops = timer_ops;
ret = omap_rproc_request_timer(dev, np, &timers[i]);
if (ret) {
dev_err(dev, "request for timer %p failed: %d\n", np,
ret);
goto put_node;
}
of_node_put(np);
}
start_timers:
for (i = 0; i < oproc->num_timers; i++) {
ret = omap_rproc_start_timer(&timers[i]);
if (ret) {
dev_err(dev, "start timer %p failed failed: %d\n", np,
ret);
break;
}
}
if (ret) {
while (i >= 0) {
omap_rproc_stop_timer(&timers[i]);
i--;
}
goto put_node;
}
return 0;
put_node:
if (configure)
of_node_put(np);
free_timers:
while (i--) {
omap_rproc_release_timer(&timers[i]);
timers[i].odt = NULL;
timers[i].timer_ops = NULL;
}
return ret;
}
/**
* omap_rproc_disable_timers() - disable the timers for a remoteproc
* @rproc: handle of a remote processor
* @configure: boolean flag used to release the timer handle
*
* This function is used primarily to disable the timers associated with
* a remoteproc. The configure flag is provided to allow the driver to
* to either stop and release a timer (during device shutdown) or to just
* stop a timer (during a suspend operation).
*
* Return: 0 on success or no timers
*/
static int omap_rproc_disable_timers(struct rproc *rproc, bool configure)
{
int i;
struct omap_rproc *oproc = rproc->priv;
struct omap_rproc_timer *timers = oproc->timers;
if (!oproc->num_timers)
return 0;
for (i = 0; i < oproc->num_timers; i++) {
omap_rproc_stop_timer(&timers[i]);
if (configure) {
omap_rproc_release_timer(&timers[i]);
timers[i].odt = NULL;
timers[i].timer_ops = NULL;
}
}
return 0;
}
/**
* omap_rproc_mbox_callback() - inbound mailbox message handler
* @client: mailbox client pointer used for requesting the mailbox channel
* @data: mailbox payload
*
* This handler is invoked by omap's mailbox driver whenever a mailbox
* message is received. Usually, the mailbox payload simply contains
* the index of the virtqueue that is kicked by the remote processor,
* and we let remoteproc core handle it.
*
* In addition to virtqueue indices, we also have some out-of-band values
* that indicates different events. Those values are deliberately very
* big so they don't coincide with virtqueue indices.
*/
static void omap_rproc_mbox_callback(struct mbox_client *client, void *data)
{
struct omap_rproc *oproc = container_of(client, struct omap_rproc,
client);
struct device *dev = oproc->rproc->dev.parent;
const char *name = oproc->rproc->name;
u32 msg = (u32)data;
dev_dbg(dev, "mbox msg: 0x%x\n", msg);
switch (msg) {
case RP_MBOX_CRASH:
/*
* remoteproc detected an exception, notify the rproc core.
* The remoteproc core will handle the recovery.
*/
dev_err(dev, "omap rproc %s crashed\n", name);
rproc_report_crash(oproc->rproc, RPROC_FATAL_ERROR);
break;
case RP_MBOX_ECHO_REPLY:
dev_info(dev, "received echo reply from %s\n", name);
break;
case RP_MBOX_SUSPEND_ACK:
/* Fall through */
case RP_MBOX_SUSPEND_CANCEL:
oproc->suspend_acked = msg == RP_MBOX_SUSPEND_ACK;
complete(&oproc->pm_comp);
break;
default:
if (msg >= RP_MBOX_READY && msg < RP_MBOX_END_MSG)
return;
if (msg > oproc->rproc->max_notifyid) {
dev_dbg(dev, "dropping unknown message 0x%x", msg);
return;
}
/* msg contains the index of the triggered vring */
if (rproc_vq_interrupt(oproc->rproc, msg) == IRQ_NONE)
dev_dbg(dev, "no message was found in vqid %d\n", msg);
}
}
/* kick a virtqueue */
static void omap_rproc_kick(struct rproc *rproc, int vqid)
{
struct omap_rproc *oproc = rproc->priv;
struct device *dev = rproc->dev.parent;
int ret;
/* wake up the rproc before kicking it */
ret = pm_runtime_get_sync(dev);
if (WARN_ON(ret < 0)) {
dev_err(dev, "pm_runtime_get_sync() failed during kick, ret = %d\n",
ret);
pm_runtime_put_noidle(dev);
return;
}
/* send the index of the triggered virtqueue in the mailbox payload */
ret = mbox_send_message(oproc->mbox, (void *)vqid);
if (ret < 0)
dev_err(dev, "failed to send mailbox message, status = %d\n",
ret);
pm_runtime_mark_last_busy(dev);
pm_runtime_put_autosuspend(dev);
}
/**
* omap_rproc_write_dsp_boot_addr() - set boot address for DSP remote processor
* @rproc: handle of a remote processor
*
* Set boot address for a supported DSP remote processor.
*
* Return: 0 on success, or -EINVAL if boot address is not aligned properly
*/
static int omap_rproc_write_dsp_boot_addr(struct rproc *rproc)
{
struct device *dev = rproc->dev.parent;
struct omap_rproc *oproc = rproc->priv;
struct omap_rproc_boot_data *bdata = oproc->boot_data;
u32 offset = bdata->boot_reg;
u32 value;
u32 mask;
if (rproc->bootaddr & (SZ_1K - 1)) {
dev_err(dev, "invalid boot address 0x%llx, must be aligned on a 1KB boundary\n",
rproc->bootaddr);
return -EINVAL;
}
value = rproc->bootaddr >> bdata->boot_reg_shift;
mask = ~(SZ_1K - 1) >> bdata->boot_reg_shift;
return regmap_update_bits(bdata->syscon, offset, mask, value);
}
/*
* Power up the remote processor.
*
* This function will be invoked only after the firmware for this rproc
* was loaded, parsed successfully, and all of its resource requirements
* were met.
*/
static int omap_rproc_start(struct rproc *rproc)
{
struct omap_rproc *oproc = rproc->priv;
struct device *dev = rproc->dev.parent;
int ret;
struct mbox_client *client = &oproc->client;
if (oproc->boot_data) {
ret = omap_rproc_write_dsp_boot_addr(rproc);
if (ret)
return ret;
}
client->dev = dev;
client->tx_done = NULL;
client->rx_callback = omap_rproc_mbox_callback;
client->tx_block = false;
client->knows_txdone = false;
oproc->mbox = mbox_request_channel(client, 0);
if (IS_ERR(oproc->mbox)) {
ret = -EBUSY;
dev_err(dev, "mbox_request_channel failed: %ld\n",
PTR_ERR(oproc->mbox));
return ret;
}
/*
* Ping the remote processor. this is only for sanity-sake;
* there is no functional effect whatsoever.
*
* Note that the reply will _not_ arrive immediately: this message
* will wait in the mailbox fifo until the remote processor is booted.
*/
ret = mbox_send_message(oproc->mbox, (void *)RP_MBOX_ECHO_REQUEST);
if (ret < 0) {
dev_err(dev, "mbox_send_message failed: %d\n", ret);
goto put_mbox;
}
ret = omap_rproc_enable_timers(rproc, true);
if (ret) {
dev_err(dev, "omap_rproc_enable_timers failed: %d\n", ret);
goto put_mbox;
}
ret = reset_control_deassert(oproc->reset);
if (ret) {
dev_err(dev, "reset control deassert failed: %d\n", ret);
goto disable_timers;
}
/*
* remote processor is up, so update the runtime pm status and
* enable the auto-suspend. The device usage count is incremented
* manually for balancing it for auto-suspend
*/
pm_runtime_set_active(dev);
pm_runtime_use_autosuspend(dev);
pm_runtime_get_noresume(dev);
pm_runtime_enable(dev);
pm_runtime_mark_last_busy(dev);
pm_runtime_put_autosuspend(dev);
return 0;
disable_timers:
omap_rproc_disable_timers(rproc, true);
put_mbox:
mbox_free_channel(oproc->mbox);
return ret;
}
/* power off the remote processor */
static int omap_rproc_stop(struct rproc *rproc)
{
struct device *dev = rproc->dev.parent;
struct omap_rproc *oproc = rproc->priv;
int ret;
/*
* cancel any possible scheduled runtime suspend by incrementing
* the device usage count, and resuming the device. The remoteproc
* also needs to be woken up if suspended, to avoid the remoteproc
* OS to continue to remember any context that it has saved, and
* avoid potential issues in misindentifying a subsequent device
* reboot as a power restore boot
*/
ret = pm_runtime_get_sync(dev);
if (ret < 0) {
pm_runtime_put_noidle(dev);
return ret;
}
ret = reset_control_assert(oproc->reset);
if (ret)
goto out;
ret = omap_rproc_disable_timers(rproc, true);
if (ret)
goto enable_device;
mbox_free_channel(oproc->mbox);
/*
* update the runtime pm states and status now that the remoteproc
* has stopped
*/
pm_runtime_disable(dev);
pm_runtime_dont_use_autosuspend(dev);
pm_runtime_put_noidle(dev);
pm_runtime_set_suspended(dev);
return 0;
enable_device:
reset_control_deassert(oproc->reset);
out:
/* schedule the next auto-suspend */
pm_runtime_mark_last_busy(dev);
pm_runtime_put_autosuspend(dev);
return ret;
}
/**
* omap_rproc_da_to_va() - internal memory translation helper
* @rproc: remote processor to apply the address translation for
* @da: device address to translate
* @len: length of the memory buffer
*
* Custom function implementing the rproc .da_to_va ops to provide address
* translation (device address to kernel virtual address) for internal RAMs
* present in a DSP or IPU device). The translated addresses can be used
* either by the remoteproc core for loading, or by any rpmsg bus drivers.
*
* Return: translated virtual address in kernel memory space on success,
* or NULL on failure.
*/
static void *omap_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len)
{
struct omap_rproc *oproc = rproc->priv;
int i;
u32 offset;
if (len <= 0)
return NULL;
if (!oproc->num_mems)
return NULL;
for (i = 0; i < oproc->num_mems; i++) {
if (da >= oproc->mem[i].dev_addr && da + len <=
oproc->mem[i].dev_addr + oproc->mem[i].size) {
offset = da - oproc->mem[i].dev_addr;
/* __force to make sparse happy with type conversion */
return (__force void *)(oproc->mem[i].cpu_addr +
offset);
}
}
return NULL;
}
static const struct rproc_ops omap_rproc_ops = {
.start = omap_rproc_start,
.stop = omap_rproc_stop,
.kick = omap_rproc_kick,
.da_to_va = omap_rproc_da_to_va,
};
#ifdef CONFIG_PM
static bool _is_rproc_in_standby(struct omap_rproc *oproc)
{
return ti_clk_is_in_standby(oproc->fck);
}
/* 1 sec is long enough time to let the remoteproc side suspend the device */
#define DEF_SUSPEND_TIMEOUT 1000
static int _omap_rproc_suspend(struct rproc *rproc, bool auto_suspend)
{
struct device *dev = rproc->dev.parent;
struct omap_rproc *oproc = rproc->priv;
unsigned long to = msecs_to_jiffies(DEF_SUSPEND_TIMEOUT);
unsigned long ta = jiffies + to;
u32 suspend_msg = auto_suspend ?
RP_MBOX_SUSPEND_AUTO : RP_MBOX_SUSPEND_SYSTEM;
int ret;
reinit_completion(&oproc->pm_comp);
oproc->suspend_acked = false;
ret = mbox_send_message(oproc->mbox, (void *)suspend_msg);
if (ret < 0) {
dev_err(dev, "PM mbox_send_message failed: %d\n", ret);
return ret;
}
ret = wait_for_completion_timeout(&oproc->pm_comp, to);
if (!oproc->suspend_acked)
return -EBUSY;
/*
* The remoteproc side is returning the ACK message before saving the
* context, because the context saving is performed within a SYS/BIOS
* function, and it cannot have any inter-dependencies against the IPC
* layer. Also, as the SYS/BIOS needs to preserve properly the processor
* register set, sending this ACK or signalling the completion of the
* context save through a shared memory variable can never be the
* absolute last thing to be executed on the remoteproc side, and the
* MPU cannot use the ACK message as a sync point to put the remoteproc
* into reset. The only way to ensure that the remote processor has
* completed saving the context is to check that the module has reached
* STANDBY state (after saving the context, the SYS/BIOS executes the
* appropriate target-specific WFI instruction causing the module to
* enter STANDBY).
*/
while (!_is_rproc_in_standby(oproc)) {
if (time_after(jiffies, ta))
return -ETIME;
schedule();
}
ret = reset_control_assert(oproc->reset);
if (ret) {
dev_err(dev, "reset assert during suspend failed %d\n", ret);
return ret;
}
ret = omap_rproc_disable_timers(rproc, false);
if (ret) {
dev_err(dev, "disabling timers during suspend failed %d\n",
ret);
goto enable_device;
}
/*
* IOMMUs would have to be disabled specifically for runtime suspend.
* They are handled automatically through System PM callbacks for
* regular system suspend
*/
if (auto_suspend) {
ret = omap_iommu_domain_deactivate(rproc->domain);
if (ret) {
dev_err(dev, "iommu domain deactivate failed %d\n",
ret);
goto enable_timers;
}
}
return 0;
enable_timers:
/* ignore errors on re-enabling code */
omap_rproc_enable_timers(rproc, false);
enable_device:
reset_control_deassert(oproc->reset);
return ret;
}
static int _omap_rproc_resume(struct rproc *rproc, bool auto_suspend)
{
struct device *dev = rproc->dev.parent;
struct omap_rproc *oproc = rproc->priv;
int ret;
/*
* IOMMUs would have to be enabled specifically for runtime resume.
* They would have been already enabled automatically through System
* PM callbacks for regular system resume
*/
if (auto_suspend) {
ret = omap_iommu_domain_activate(rproc->domain);
if (ret) {
dev_err(dev, "omap_iommu activate failed %d\n", ret);
goto out;
}
}
/* boot address could be lost after suspend, so restore it */
if (oproc->boot_data) {
ret = omap_rproc_write_dsp_boot_addr(rproc);
if (ret) {
dev_err(dev, "boot address restore failed %d\n", ret);
goto suspend_iommu;
}
}
ret = omap_rproc_enable_timers(rproc, false);
if (ret) {
dev_err(dev, "enabling timers during resume failed %d\n", ret);
goto suspend_iommu;
}
ret = reset_control_deassert(oproc->reset);
if (ret) {
dev_err(dev, "reset deassert during resume failed %d\n", ret);
goto disable_timers;
}
return 0;
disable_timers:
omap_rproc_disable_timers(rproc, false);
suspend_iommu:
if (auto_suspend)
omap_iommu_domain_deactivate(rproc->domain);
out:
return ret;
}
static int __maybe_unused omap_rproc_suspend(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct rproc *rproc = platform_get_drvdata(pdev);
struct omap_rproc *oproc = rproc->priv;
int ret = 0;
mutex_lock(&rproc->lock);
if (rproc->state == RPROC_OFFLINE)
goto out;
if (rproc->state == RPROC_SUSPENDED)
goto out;
if (rproc->state != RPROC_RUNNING) {
ret = -EBUSY;
goto out;
}
ret = _omap_rproc_suspend(rproc, false);
if (ret) {
dev_err(dev, "suspend failed %d\n", ret);
goto out;
}
/*
* remoteproc is running at the time of system suspend, so remember
* it so as to wake it up during system resume
*/
oproc->need_resume = true;
rproc->state = RPROC_SUSPENDED;
out:
mutex_unlock(&rproc->lock);
return ret;
}
static int __maybe_unused omap_rproc_resume(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct rproc *rproc = platform_get_drvdata(pdev);
struct omap_rproc *oproc = rproc->priv;
int ret = 0;
mutex_lock(&rproc->lock);
if (rproc->state == RPROC_OFFLINE)
goto out;
if (rproc->state != RPROC_SUSPENDED) {
ret = -EBUSY;
goto out;
}
/*
* remoteproc was auto-suspended at the time of system suspend,
* so no need to wake-up the processor (leave it in suspended
* state, will be woken up during a subsequent runtime_resume)
*/
if (!oproc->need_resume)
goto out;
ret = _omap_rproc_resume(rproc, false);
if (ret) {
dev_err(dev, "resume failed %d\n", ret);
goto out;
}
oproc->need_resume = false;
rproc->state = RPROC_RUNNING;
pm_runtime_mark_last_busy(dev);
out:
mutex_unlock(&rproc->lock);
return ret;
}
static int omap_rproc_runtime_suspend(struct device *dev)
{
struct rproc *rproc = dev_get_drvdata(dev);
struct omap_rproc *oproc = rproc->priv;
int ret;
mutex_lock(&rproc->lock);
if (rproc->state == RPROC_CRASHED) {
dev_dbg(dev, "rproc cannot be runtime suspended when crashed!\n");
ret = -EBUSY;
goto out;
}
if (WARN_ON(rproc->state != RPROC_RUNNING)) {
dev_err(dev, "rproc cannot be runtime suspended when not running!\n");
ret = -EBUSY;
goto out;
}
/*
* do not even attempt suspend if the remote processor is not
* idled for runtime auto-suspend
*/
if (!_is_rproc_in_standby(oproc)) {
ret = -EBUSY;
goto abort;
}
ret = _omap_rproc_suspend(rproc, true);
if (ret)
goto abort;
rproc->state = RPROC_SUSPENDED;
mutex_unlock(&rproc->lock);
return 0;
abort:
pm_runtime_mark_last_busy(dev);
out:
mutex_unlock(&rproc->lock);
return ret;
}
static int omap_rproc_runtime_resume(struct device *dev)
{
struct rproc *rproc = dev_get_drvdata(dev);
int ret;
mutex_lock(&rproc->lock);
if (WARN_ON(rproc->state != RPROC_SUSPENDED)) {
dev_err(dev, "rproc cannot be runtime resumed if not suspended! state=%d\n",
rproc->state);
ret = -EBUSY;
goto out;
}
ret = _omap_rproc_resume(rproc, true);
if (ret) {
dev_err(dev, "runtime resume failed %d\n", ret);
goto out;
}
rproc->state = RPROC_RUNNING;
out:
mutex_unlock(&rproc->lock);
return ret;
}
#endif /* CONFIG_PM */
static const struct omap_rproc_mem_data ipu_mems[] = {
{ .name = "l2ram", .dev_addr = 0x20000000 },
{ },
};
static const struct omap_rproc_mem_data dra7_dsp_mems[] = {
{ .name = "l2ram", .dev_addr = 0x800000 },
{ .name = "l1pram", .dev_addr = 0xe00000 },
{ .name = "l1dram", .dev_addr = 0xf00000 },
{ },
};
static const struct omap_rproc_dev_data omap4_dsp_dev_data = {
.device_name = "dsp",
};
static const struct omap_rproc_dev_data omap4_ipu_dev_data = {
.device_name = "ipu",
.mems = ipu_mems,
};
static const struct omap_rproc_dev_data omap5_dsp_dev_data = {
.device_name = "dsp",
};
static const struct omap_rproc_dev_data omap5_ipu_dev_data = {
.device_name = "ipu",
.mems = ipu_mems,
};
static const struct omap_rproc_dev_data dra7_dsp_dev_data = {
.device_name = "dsp",
.mems = dra7_dsp_mems,
};
static const struct omap_rproc_dev_data dra7_ipu_dev_data = {
.device_name = "ipu",
.mems = ipu_mems,
};
static const struct of_device_id omap_rproc_of_match[] = {
{
.compatible = "ti,omap4-dsp",
.data = &omap4_dsp_dev_data,
},
{
.compatible = "ti,omap4-ipu",
.data = &omap4_ipu_dev_data,
},
{
.compatible = "ti,omap5-dsp",
.data = &omap5_dsp_dev_data,
},
{
.compatible = "ti,omap5-ipu",
.data = &omap5_ipu_dev_data,
},
{
.compatible = "ti,dra7-dsp",
.data = &dra7_dsp_dev_data,
},
{
.compatible = "ti,dra7-ipu",
.data = &dra7_ipu_dev_data,
},
{
/* end */
},
};
MODULE_DEVICE_TABLE(of, omap_rproc_of_match);
static const char *omap_rproc_get_firmware(struct platform_device *pdev)
{
const char *fw_name;
int ret;
ret = of_property_read_string(pdev->dev.of_node, "firmware-name",
&fw_name);
if (ret)
return ERR_PTR(ret);
return fw_name;
}
static int omap_rproc_get_boot_data(struct platform_device *pdev,
struct rproc *rproc)
{
struct device_node *np = pdev->dev.of_node;
struct omap_rproc *oproc = rproc->priv;
const struct omap_rproc_dev_data *data;
int ret;
data = of_device_get_match_data(&pdev->dev);
if (!data)
return -ENODEV;
if (!of_property_read_bool(np, "ti,bootreg"))
return 0;
oproc->boot_data = devm_kzalloc(&pdev->dev, sizeof(*oproc->boot_data),
GFP_KERNEL);
if (!oproc->boot_data)
return -ENOMEM;
oproc->boot_data->syscon =
syscon_regmap_lookup_by_phandle(np, "ti,bootreg");
if (IS_ERR(oproc->boot_data->syscon)) {
ret = PTR_ERR(oproc->boot_data->syscon);
return ret;
}
if (of_property_read_u32_index(np, "ti,bootreg", 1,
&oproc->boot_data->boot_reg)) {
dev_err(&pdev->dev, "couldn't get the boot register\n");
return -EINVAL;
}
of_property_read_u32_index(np, "ti,bootreg", 2,
&oproc->boot_data->boot_reg_shift);
return 0;
}
static int omap_rproc_of_get_internal_memories(struct platform_device *pdev,
struct rproc *rproc)
{
struct omap_rproc *oproc = rproc->priv;
struct device *dev = &pdev->dev;
const struct omap_rproc_dev_data *data;
struct resource *res;
int num_mems;
int i;
data = of_device_get_match_data(dev);
if (!data)
return -ENODEV;
if (!data->mems)
return 0;
num_mems = of_property_count_elems_of_size(dev->of_node, "reg",
sizeof(u32)) / 2;
oproc->mem = devm_kcalloc(dev, num_mems, sizeof(*oproc->mem),
GFP_KERNEL);
if (!oproc->mem)
return -ENOMEM;
for (i = 0; data->mems[i].name; i++) {
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
data->mems[i].name);
if (!res) {
dev_err(dev, "no memory defined for %s\n",
data->mems[i].name);
return -ENOMEM;
}
oproc->mem[i].cpu_addr = devm_ioremap_resource(dev, res);
if (IS_ERR(oproc->mem[i].cpu_addr)) {
dev_err(dev, "failed to parse and map %s memory\n",
data->mems[i].name);
return PTR_ERR(oproc->mem[i].cpu_addr);
}
oproc->mem[i].bus_addr = res->start;
oproc->mem[i].dev_addr = data->mems[i].dev_addr;
oproc->mem[i].size = resource_size(res);
dev_dbg(dev, "memory %8s: bus addr %pa size 0x%x va %pK da 0x%x\n",
data->mems[i].name, &oproc->mem[i].bus_addr,
oproc->mem[i].size, oproc->mem[i].cpu_addr,
oproc->mem[i].dev_addr);
}
oproc->num_mems = num_mems;
return 0;
}
static int omap_rproc_of_get_timers(struct platform_device *pdev,
struct rproc *rproc)
{
struct device_node *np = pdev->dev.of_node;
struct omap_rproc *oproc = rproc->priv;
struct device *dev = &pdev->dev;
/*
* Timer nodes are directly used in client nodes as phandles, so
* retrieve the count using appropriate size
*/
oproc->num_timers = of_count_phandle_with_args(np, "ti,timers", NULL);
if (oproc->num_timers <= 0) {
dev_dbg(dev, "device does not have timers, status = %d\n",
oproc->num_timers);
oproc->num_timers = 0;
}
if (oproc->num_timers) {
oproc->timers = devm_kcalloc(dev, oproc->num_timers,
sizeof(*oproc->timers),
GFP_KERNEL);
if (!oproc->timers)
return -ENOMEM;
dev_dbg(dev, "device has %d tick timers\n", oproc->num_timers);
}
return 0;
}
static int omap_rproc_probe(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
struct omap_rproc *oproc;
struct rproc *rproc;
const char *firmware;
int ret;
struct reset_control *reset;
if (!np) {
dev_err(&pdev->dev, "only DT-based devices are supported\n");
return -ENODEV;
}
reset = devm_reset_control_array_get_exclusive(&pdev->dev);
if (IS_ERR(reset))
return PTR_ERR(reset);
firmware = omap_rproc_get_firmware(pdev);
if (IS_ERR(firmware))
return PTR_ERR(firmware);
ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
if (ret) {
dev_err(&pdev->dev, "dma_set_coherent_mask: %d\n", ret);
return ret;
}
rproc = rproc_alloc(&pdev->dev, dev_name(&pdev->dev), &omap_rproc_ops,
firmware, sizeof(*oproc));
if (!rproc)
return -ENOMEM;
oproc = rproc->priv;
oproc->rproc = rproc;
oproc->reset = reset;
/* All existing OMAP IPU and DSP processors have an MMU */
rproc->has_iommu = true;
ret = omap_rproc_of_get_internal_memories(pdev, rproc);
if (ret)
goto free_rproc;
ret = omap_rproc_get_boot_data(pdev, rproc);
if (ret)
goto free_rproc;
ret = omap_rproc_of_get_timers(pdev, rproc);
if (ret)
goto free_rproc;
init_completion(&oproc->pm_comp);
oproc->autosuspend_delay = DEFAULT_AUTOSUSPEND_DELAY;
of_property_read_u32(pdev->dev.of_node, "ti,autosuspend-delay-ms",
&oproc->autosuspend_delay);
pm_runtime_set_autosuspend_delay(&pdev->dev, oproc->autosuspend_delay);
oproc->fck = devm_clk_get(&pdev->dev, 0);
if (IS_ERR(oproc->fck)) {
ret = PTR_ERR(oproc->fck);
goto free_rproc;
}
ret = of_reserved_mem_device_init(&pdev->dev);
if (ret) {
dev_warn(&pdev->dev, "device does not have specific CMA pool.\n");
dev_warn(&pdev->dev, "Typically this should be provided,\n");
dev_warn(&pdev->dev, "only omit if you know what you are doing.\n");
}
platform_set_drvdata(pdev, rproc);
ret = rproc_add(rproc);
if (ret)
goto release_mem;
return 0;
release_mem:
of_reserved_mem_device_release(&pdev->dev);
free_rproc:
rproc_free(rproc);
return ret;
}
static int omap_rproc_remove(struct platform_device *pdev)
{
struct rproc *rproc = platform_get_drvdata(pdev);
rproc_del(rproc);
rproc_free(rproc);
of_reserved_mem_device_release(&pdev->dev);
return 0;
}
static const struct dev_pm_ops omap_rproc_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(omap_rproc_suspend, omap_rproc_resume)
SET_RUNTIME_PM_OPS(omap_rproc_runtime_suspend,
omap_rproc_runtime_resume, NULL)
};
static struct platform_driver omap_rproc_driver = {
.probe = omap_rproc_probe,
.remove = omap_rproc_remove,
.driver = {
.name = "omap-rproc",
.pm = &omap_rproc_pm_ops,
.of_match_table = omap_rproc_of_match,
},
};
module_platform_driver(omap_rproc_driver);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("OMAP Remote Processor control driver");