b3e34a47f9
This is reported by kmemleak detector: unreferenced object 0xffffc900002a9000 (size 4096): comm "kexec", pid 14950, jiffies 4295110793 (age 373.951s) hex dump (first 32 bytes): 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00 .ELF............ 04 00 3e 00 01 00 00 00 00 00 00 00 00 00 00 00 ..>............. backtrace: [<0000000016a8ef9f>] __vmalloc_node_range+0x101/0x170 [<000000002b66b6c0>] __vmalloc_node+0xb4/0x160 [<00000000ad40107d>] crash_prepare_elf64_headers+0x8e/0xcd0 [<0000000019afff23>] crash_load_segments+0x260/0x470 [<0000000019ebe95c>] bzImage64_load+0x814/0xad0 [<0000000093e16b05>] arch_kexec_kernel_image_load+0x1be/0x2a0 [<000000009ef2fc88>] kimage_file_alloc_init+0x2ec/0x5a0 [<0000000038f5a97a>] __do_sys_kexec_file_load+0x28d/0x530 [<0000000087c19992>] do_syscall_64+0x3b/0x90 [<0000000066e063a4>] entry_SYSCALL_64_after_hwframe+0x44/0xae In crash_prepare_elf64_headers(), a buffer is allocated via vmalloc() to store elf headers. While it's not freed back to system correctly when kdump kernel is reloaded or unloaded. Then memory leak is caused. Fix it by introducing x86 specific function arch_kimage_file_post_load_cleanup(), and freeing the buffer there. And also remove the incorrect elf header buffer freeing code. Before calling arch specific kexec_file loading function, the image instance has been initialized. So 'image->elf_headers' must be NULL. It doesn't make sense to free the elf header buffer in the place. Three different people have reported three bugs about the memory leak on x86_64 inside Redhat. Link: https://lkml.kernel.org/r/20220223113225.63106-2-bhe@redhat.com Signed-off-by: Baoquan He <bhe@redhat.com> Acked-by: Dave Young <dyoung@redhat.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
603 lines
15 KiB
C
603 lines
15 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* handle transition of Linux booting another kernel
|
|
* Copyright (C) 2002-2005 Eric Biederman <ebiederm@xmission.com>
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "kexec: " fmt
|
|
|
|
#include <linux/mm.h>
|
|
#include <linux/kexec.h>
|
|
#include <linux/string.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/reboot.h>
|
|
#include <linux/numa.h>
|
|
#include <linux/ftrace.h>
|
|
#include <linux/io.h>
|
|
#include <linux/suspend.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/efi.h>
|
|
#include <linux/cc_platform.h>
|
|
|
|
#include <asm/init.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/io_apic.h>
|
|
#include <asm/debugreg.h>
|
|
#include <asm/kexec-bzimage64.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/set_memory.h>
|
|
#include <asm/cpu.h>
|
|
|
|
#ifdef CONFIG_ACPI
|
|
/*
|
|
* Used while adding mapping for ACPI tables.
|
|
* Can be reused when other iomem regions need be mapped
|
|
*/
|
|
struct init_pgtable_data {
|
|
struct x86_mapping_info *info;
|
|
pgd_t *level4p;
|
|
};
|
|
|
|
static int mem_region_callback(struct resource *res, void *arg)
|
|
{
|
|
struct init_pgtable_data *data = arg;
|
|
unsigned long mstart, mend;
|
|
|
|
mstart = res->start;
|
|
mend = mstart + resource_size(res) - 1;
|
|
|
|
return kernel_ident_mapping_init(data->info, data->level4p, mstart, mend);
|
|
}
|
|
|
|
static int
|
|
map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p)
|
|
{
|
|
struct init_pgtable_data data;
|
|
unsigned long flags;
|
|
int ret;
|
|
|
|
data.info = info;
|
|
data.level4p = level4p;
|
|
flags = IORESOURCE_MEM | IORESOURCE_BUSY;
|
|
|
|
ret = walk_iomem_res_desc(IORES_DESC_ACPI_TABLES, flags, 0, -1,
|
|
&data, mem_region_callback);
|
|
if (ret && ret != -EINVAL)
|
|
return ret;
|
|
|
|
/* ACPI tables could be located in ACPI Non-volatile Storage region */
|
|
ret = walk_iomem_res_desc(IORES_DESC_ACPI_NV_STORAGE, flags, 0, -1,
|
|
&data, mem_region_callback);
|
|
if (ret && ret != -EINVAL)
|
|
return ret;
|
|
|
|
return 0;
|
|
}
|
|
#else
|
|
static int map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p) { return 0; }
|
|
#endif
|
|
|
|
#ifdef CONFIG_KEXEC_FILE
|
|
const struct kexec_file_ops * const kexec_file_loaders[] = {
|
|
&kexec_bzImage64_ops,
|
|
NULL
|
|
};
|
|
#endif
|
|
|
|
static int
|
|
map_efi_systab(struct x86_mapping_info *info, pgd_t *level4p)
|
|
{
|
|
#ifdef CONFIG_EFI
|
|
unsigned long mstart, mend;
|
|
|
|
if (!efi_enabled(EFI_BOOT))
|
|
return 0;
|
|
|
|
mstart = (boot_params.efi_info.efi_systab |
|
|
((u64)boot_params.efi_info.efi_systab_hi<<32));
|
|
|
|
if (efi_enabled(EFI_64BIT))
|
|
mend = mstart + sizeof(efi_system_table_64_t);
|
|
else
|
|
mend = mstart + sizeof(efi_system_table_32_t);
|
|
|
|
if (!mstart)
|
|
return 0;
|
|
|
|
return kernel_ident_mapping_init(info, level4p, mstart, mend);
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
static void free_transition_pgtable(struct kimage *image)
|
|
{
|
|
free_page((unsigned long)image->arch.p4d);
|
|
image->arch.p4d = NULL;
|
|
free_page((unsigned long)image->arch.pud);
|
|
image->arch.pud = NULL;
|
|
free_page((unsigned long)image->arch.pmd);
|
|
image->arch.pmd = NULL;
|
|
free_page((unsigned long)image->arch.pte);
|
|
image->arch.pte = NULL;
|
|
}
|
|
|
|
static int init_transition_pgtable(struct kimage *image, pgd_t *pgd)
|
|
{
|
|
pgprot_t prot = PAGE_KERNEL_EXEC_NOENC;
|
|
unsigned long vaddr, paddr;
|
|
int result = -ENOMEM;
|
|
p4d_t *p4d;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
|
|
vaddr = (unsigned long)relocate_kernel;
|
|
paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE);
|
|
pgd += pgd_index(vaddr);
|
|
if (!pgd_present(*pgd)) {
|
|
p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
|
|
if (!p4d)
|
|
goto err;
|
|
image->arch.p4d = p4d;
|
|
set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE));
|
|
}
|
|
p4d = p4d_offset(pgd, vaddr);
|
|
if (!p4d_present(*p4d)) {
|
|
pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
|
|
if (!pud)
|
|
goto err;
|
|
image->arch.pud = pud;
|
|
set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
|
|
}
|
|
pud = pud_offset(p4d, vaddr);
|
|
if (!pud_present(*pud)) {
|
|
pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
|
|
if (!pmd)
|
|
goto err;
|
|
image->arch.pmd = pmd;
|
|
set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
|
|
}
|
|
pmd = pmd_offset(pud, vaddr);
|
|
if (!pmd_present(*pmd)) {
|
|
pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
|
|
if (!pte)
|
|
goto err;
|
|
image->arch.pte = pte;
|
|
set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
|
|
}
|
|
pte = pte_offset_kernel(pmd, vaddr);
|
|
|
|
if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
|
|
prot = PAGE_KERNEL_EXEC;
|
|
|
|
set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, prot));
|
|
return 0;
|
|
err:
|
|
return result;
|
|
}
|
|
|
|
static void *alloc_pgt_page(void *data)
|
|
{
|
|
struct kimage *image = (struct kimage *)data;
|
|
struct page *page;
|
|
void *p = NULL;
|
|
|
|
page = kimage_alloc_control_pages(image, 0);
|
|
if (page) {
|
|
p = page_address(page);
|
|
clear_page(p);
|
|
}
|
|
|
|
return p;
|
|
}
|
|
|
|
static int init_pgtable(struct kimage *image, unsigned long start_pgtable)
|
|
{
|
|
struct x86_mapping_info info = {
|
|
.alloc_pgt_page = alloc_pgt_page,
|
|
.context = image,
|
|
.page_flag = __PAGE_KERNEL_LARGE_EXEC,
|
|
.kernpg_flag = _KERNPG_TABLE_NOENC,
|
|
};
|
|
unsigned long mstart, mend;
|
|
pgd_t *level4p;
|
|
int result;
|
|
int i;
|
|
|
|
level4p = (pgd_t *)__va(start_pgtable);
|
|
clear_page(level4p);
|
|
|
|
if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) {
|
|
info.page_flag |= _PAGE_ENC;
|
|
info.kernpg_flag |= _PAGE_ENC;
|
|
}
|
|
|
|
if (direct_gbpages)
|
|
info.direct_gbpages = true;
|
|
|
|
for (i = 0; i < nr_pfn_mapped; i++) {
|
|
mstart = pfn_mapped[i].start << PAGE_SHIFT;
|
|
mend = pfn_mapped[i].end << PAGE_SHIFT;
|
|
|
|
result = kernel_ident_mapping_init(&info,
|
|
level4p, mstart, mend);
|
|
if (result)
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* segments's mem ranges could be outside 0 ~ max_pfn,
|
|
* for example when jump back to original kernel from kexeced kernel.
|
|
* or first kernel is booted with user mem map, and second kernel
|
|
* could be loaded out of that range.
|
|
*/
|
|
for (i = 0; i < image->nr_segments; i++) {
|
|
mstart = image->segment[i].mem;
|
|
mend = mstart + image->segment[i].memsz;
|
|
|
|
result = kernel_ident_mapping_init(&info,
|
|
level4p, mstart, mend);
|
|
|
|
if (result)
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Prepare EFI systab and ACPI tables for kexec kernel since they are
|
|
* not covered by pfn_mapped.
|
|
*/
|
|
result = map_efi_systab(&info, level4p);
|
|
if (result)
|
|
return result;
|
|
|
|
result = map_acpi_tables(&info, level4p);
|
|
if (result)
|
|
return result;
|
|
|
|
return init_transition_pgtable(image, level4p);
|
|
}
|
|
|
|
static void load_segments(void)
|
|
{
|
|
__asm__ __volatile__ (
|
|
"\tmovl %0,%%ds\n"
|
|
"\tmovl %0,%%es\n"
|
|
"\tmovl %0,%%ss\n"
|
|
"\tmovl %0,%%fs\n"
|
|
"\tmovl %0,%%gs\n"
|
|
: : "a" (__KERNEL_DS) : "memory"
|
|
);
|
|
}
|
|
|
|
int machine_kexec_prepare(struct kimage *image)
|
|
{
|
|
unsigned long start_pgtable;
|
|
int result;
|
|
|
|
/* Calculate the offsets */
|
|
start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT;
|
|
|
|
/* Setup the identity mapped 64bit page table */
|
|
result = init_pgtable(image, start_pgtable);
|
|
if (result)
|
|
return result;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void machine_kexec_cleanup(struct kimage *image)
|
|
{
|
|
free_transition_pgtable(image);
|
|
}
|
|
|
|
/*
|
|
* Do not allocate memory (or fail in any way) in machine_kexec().
|
|
* We are past the point of no return, committed to rebooting now.
|
|
*/
|
|
void machine_kexec(struct kimage *image)
|
|
{
|
|
unsigned long page_list[PAGES_NR];
|
|
void *control_page;
|
|
int save_ftrace_enabled;
|
|
|
|
#ifdef CONFIG_KEXEC_JUMP
|
|
if (image->preserve_context)
|
|
save_processor_state();
|
|
#endif
|
|
|
|
save_ftrace_enabled = __ftrace_enabled_save();
|
|
|
|
/* Interrupts aren't acceptable while we reboot */
|
|
local_irq_disable();
|
|
hw_breakpoint_disable();
|
|
cet_disable();
|
|
|
|
if (image->preserve_context) {
|
|
#ifdef CONFIG_X86_IO_APIC
|
|
/*
|
|
* We need to put APICs in legacy mode so that we can
|
|
* get timer interrupts in second kernel. kexec/kdump
|
|
* paths already have calls to restore_boot_irq_mode()
|
|
* in one form or other. kexec jump path also need one.
|
|
*/
|
|
clear_IO_APIC();
|
|
restore_boot_irq_mode();
|
|
#endif
|
|
}
|
|
|
|
control_page = page_address(image->control_code_page) + PAGE_SIZE;
|
|
__memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE);
|
|
|
|
page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page);
|
|
page_list[VA_CONTROL_PAGE] = (unsigned long)control_page;
|
|
page_list[PA_TABLE_PAGE] =
|
|
(unsigned long)__pa(page_address(image->control_code_page));
|
|
|
|
if (image->type == KEXEC_TYPE_DEFAULT)
|
|
page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page)
|
|
<< PAGE_SHIFT);
|
|
|
|
/*
|
|
* The segment registers are funny things, they have both a
|
|
* visible and an invisible part. Whenever the visible part is
|
|
* set to a specific selector, the invisible part is loaded
|
|
* with from a table in memory. At no other time is the
|
|
* descriptor table in memory accessed.
|
|
*
|
|
* I take advantage of this here by force loading the
|
|
* segments, before I zap the gdt with an invalid value.
|
|
*/
|
|
load_segments();
|
|
/*
|
|
* The gdt & idt are now invalid.
|
|
* If you want to load them you must set up your own idt & gdt.
|
|
*/
|
|
native_idt_invalidate();
|
|
native_gdt_invalidate();
|
|
|
|
/* now call it */
|
|
image->start = relocate_kernel((unsigned long)image->head,
|
|
(unsigned long)page_list,
|
|
image->start,
|
|
image->preserve_context,
|
|
cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT));
|
|
|
|
#ifdef CONFIG_KEXEC_JUMP
|
|
if (image->preserve_context)
|
|
restore_processor_state();
|
|
#endif
|
|
|
|
__ftrace_enabled_restore(save_ftrace_enabled);
|
|
}
|
|
|
|
/* arch-dependent functionality related to kexec file-based syscall */
|
|
|
|
#ifdef CONFIG_KEXEC_FILE
|
|
void *arch_kexec_kernel_image_load(struct kimage *image)
|
|
{
|
|
if (!image->fops || !image->fops->load)
|
|
return ERR_PTR(-ENOEXEC);
|
|
|
|
return image->fops->load(image, image->kernel_buf,
|
|
image->kernel_buf_len, image->initrd_buf,
|
|
image->initrd_buf_len, image->cmdline_buf,
|
|
image->cmdline_buf_len);
|
|
}
|
|
|
|
/*
|
|
* Apply purgatory relocations.
|
|
*
|
|
* @pi: Purgatory to be relocated.
|
|
* @section: Section relocations applying to.
|
|
* @relsec: Section containing RELAs.
|
|
* @symtabsec: Corresponding symtab.
|
|
*
|
|
* TODO: Some of the code belongs to generic code. Move that in kexec.c.
|
|
*/
|
|
int arch_kexec_apply_relocations_add(struct purgatory_info *pi,
|
|
Elf_Shdr *section, const Elf_Shdr *relsec,
|
|
const Elf_Shdr *symtabsec)
|
|
{
|
|
unsigned int i;
|
|
Elf64_Rela *rel;
|
|
Elf64_Sym *sym;
|
|
void *location;
|
|
unsigned long address, sec_base, value;
|
|
const char *strtab, *name, *shstrtab;
|
|
const Elf_Shdr *sechdrs;
|
|
|
|
/* String & section header string table */
|
|
sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
|
|
strtab = (char *)pi->ehdr + sechdrs[symtabsec->sh_link].sh_offset;
|
|
shstrtab = (char *)pi->ehdr + sechdrs[pi->ehdr->e_shstrndx].sh_offset;
|
|
|
|
rel = (void *)pi->ehdr + relsec->sh_offset;
|
|
|
|
pr_debug("Applying relocate section %s to %u\n",
|
|
shstrtab + relsec->sh_name, relsec->sh_info);
|
|
|
|
for (i = 0; i < relsec->sh_size / sizeof(*rel); i++) {
|
|
|
|
/*
|
|
* rel[i].r_offset contains byte offset from beginning
|
|
* of section to the storage unit affected.
|
|
*
|
|
* This is location to update. This is temporary buffer
|
|
* where section is currently loaded. This will finally be
|
|
* loaded to a different address later, pointed to by
|
|
* ->sh_addr. kexec takes care of moving it
|
|
* (kexec_load_segment()).
|
|
*/
|
|
location = pi->purgatory_buf;
|
|
location += section->sh_offset;
|
|
location += rel[i].r_offset;
|
|
|
|
/* Final address of the location */
|
|
address = section->sh_addr + rel[i].r_offset;
|
|
|
|
/*
|
|
* rel[i].r_info contains information about symbol table index
|
|
* w.r.t which relocation must be made and type of relocation
|
|
* to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get
|
|
* these respectively.
|
|
*/
|
|
sym = (void *)pi->ehdr + symtabsec->sh_offset;
|
|
sym += ELF64_R_SYM(rel[i].r_info);
|
|
|
|
if (sym->st_name)
|
|
name = strtab + sym->st_name;
|
|
else
|
|
name = shstrtab + sechdrs[sym->st_shndx].sh_name;
|
|
|
|
pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n",
|
|
name, sym->st_info, sym->st_shndx, sym->st_value,
|
|
sym->st_size);
|
|
|
|
if (sym->st_shndx == SHN_UNDEF) {
|
|
pr_err("Undefined symbol: %s\n", name);
|
|
return -ENOEXEC;
|
|
}
|
|
|
|
if (sym->st_shndx == SHN_COMMON) {
|
|
pr_err("symbol '%s' in common section\n", name);
|
|
return -ENOEXEC;
|
|
}
|
|
|
|
if (sym->st_shndx == SHN_ABS)
|
|
sec_base = 0;
|
|
else if (sym->st_shndx >= pi->ehdr->e_shnum) {
|
|
pr_err("Invalid section %d for symbol %s\n",
|
|
sym->st_shndx, name);
|
|
return -ENOEXEC;
|
|
} else
|
|
sec_base = pi->sechdrs[sym->st_shndx].sh_addr;
|
|
|
|
value = sym->st_value;
|
|
value += sec_base;
|
|
value += rel[i].r_addend;
|
|
|
|
switch (ELF64_R_TYPE(rel[i].r_info)) {
|
|
case R_X86_64_NONE:
|
|
break;
|
|
case R_X86_64_64:
|
|
*(u64 *)location = value;
|
|
break;
|
|
case R_X86_64_32:
|
|
*(u32 *)location = value;
|
|
if (value != *(u32 *)location)
|
|
goto overflow;
|
|
break;
|
|
case R_X86_64_32S:
|
|
*(s32 *)location = value;
|
|
if ((s64)value != *(s32 *)location)
|
|
goto overflow;
|
|
break;
|
|
case R_X86_64_PC32:
|
|
case R_X86_64_PLT32:
|
|
value -= (u64)address;
|
|
*(u32 *)location = value;
|
|
break;
|
|
default:
|
|
pr_err("Unknown rela relocation: %llu\n",
|
|
ELF64_R_TYPE(rel[i].r_info));
|
|
return -ENOEXEC;
|
|
}
|
|
}
|
|
return 0;
|
|
|
|
overflow:
|
|
pr_err("Overflow in relocation type %d value 0x%lx\n",
|
|
(int)ELF64_R_TYPE(rel[i].r_info), value);
|
|
return -ENOEXEC;
|
|
}
|
|
|
|
int arch_kimage_file_post_load_cleanup(struct kimage *image)
|
|
{
|
|
vfree(image->elf_headers);
|
|
image->elf_headers = NULL;
|
|
image->elf_headers_sz = 0;
|
|
|
|
return kexec_image_post_load_cleanup_default(image);
|
|
}
|
|
#endif /* CONFIG_KEXEC_FILE */
|
|
|
|
static int
|
|
kexec_mark_range(unsigned long start, unsigned long end, bool protect)
|
|
{
|
|
struct page *page;
|
|
unsigned int nr_pages;
|
|
|
|
/*
|
|
* For physical range: [start, end]. We must skip the unassigned
|
|
* crashk resource with zero-valued "end" member.
|
|
*/
|
|
if (!end || start > end)
|
|
return 0;
|
|
|
|
page = pfn_to_page(start >> PAGE_SHIFT);
|
|
nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
|
|
if (protect)
|
|
return set_pages_ro(page, nr_pages);
|
|
else
|
|
return set_pages_rw(page, nr_pages);
|
|
}
|
|
|
|
static void kexec_mark_crashkres(bool protect)
|
|
{
|
|
unsigned long control;
|
|
|
|
kexec_mark_range(crashk_low_res.start, crashk_low_res.end, protect);
|
|
|
|
/* Don't touch the control code page used in crash_kexec().*/
|
|
control = PFN_PHYS(page_to_pfn(kexec_crash_image->control_code_page));
|
|
/* Control code page is located in the 2nd page. */
|
|
kexec_mark_range(crashk_res.start, control + PAGE_SIZE - 1, protect);
|
|
control += KEXEC_CONTROL_PAGE_SIZE;
|
|
kexec_mark_range(control, crashk_res.end, protect);
|
|
}
|
|
|
|
void arch_kexec_protect_crashkres(void)
|
|
{
|
|
kexec_mark_crashkres(true);
|
|
}
|
|
|
|
void arch_kexec_unprotect_crashkres(void)
|
|
{
|
|
kexec_mark_crashkres(false);
|
|
}
|
|
|
|
/*
|
|
* During a traditional boot under SME, SME will encrypt the kernel,
|
|
* so the SME kexec kernel also needs to be un-encrypted in order to
|
|
* replicate a normal SME boot.
|
|
*
|
|
* During a traditional boot under SEV, the kernel has already been
|
|
* loaded encrypted, so the SEV kexec kernel needs to be encrypted in
|
|
* order to replicate a normal SEV boot.
|
|
*/
|
|
int arch_kexec_post_alloc_pages(void *vaddr, unsigned int pages, gfp_t gfp)
|
|
{
|
|
if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
|
|
return 0;
|
|
|
|
/*
|
|
* If host memory encryption is active we need to be sure that kexec
|
|
* pages are not encrypted because when we boot to the new kernel the
|
|
* pages won't be accessed encrypted (initially).
|
|
*/
|
|
return set_memory_decrypted((unsigned long)vaddr, pages);
|
|
}
|
|
|
|
void arch_kexec_pre_free_pages(void *vaddr, unsigned int pages)
|
|
{
|
|
if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
|
|
return;
|
|
|
|
/*
|
|
* If host memory encryption is active we need to reset the pages back
|
|
* to being an encrypted mapping before freeing them.
|
|
*/
|
|
set_memory_encrypted((unsigned long)vaddr, pages);
|
|
}
|