dab74cde38
Certain radar types such as FCC radar type 5 are using chirp in their pulses, hence looking up the chirp status will enhance to avoid false radar detection. Signed-off-by: Peter Oh <poh@qca.qualcomm.com> Signed-off-by: Kalle Valo <kvalo@qca.qualcomm.com>
434 lines
11 KiB
C
434 lines
11 KiB
C
/*
|
|
* Copyright (c) 2012 Neratec Solutions AG
|
|
*
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*/
|
|
|
|
#include <linux/slab.h>
|
|
#include <linux/spinlock.h>
|
|
|
|
#include "ath.h"
|
|
#include "dfs_pattern_detector.h"
|
|
#include "dfs_pri_detector.h"
|
|
|
|
struct ath_dfs_pool_stats global_dfs_pool_stats = {};
|
|
|
|
#define DFS_POOL_STAT_INC(c) (global_dfs_pool_stats.c++)
|
|
#define DFS_POOL_STAT_DEC(c) (global_dfs_pool_stats.c--)
|
|
|
|
/**
|
|
* struct pulse_elem - elements in pulse queue
|
|
* @ts: time stamp in usecs
|
|
*/
|
|
struct pulse_elem {
|
|
struct list_head head;
|
|
u64 ts;
|
|
};
|
|
|
|
/**
|
|
* pde_get_multiple() - get number of multiples considering a given tolerance
|
|
* @return factor if abs(val - factor*fraction) <= tolerance, 0 otherwise
|
|
*/
|
|
static u32 pde_get_multiple(u32 val, u32 fraction, u32 tolerance)
|
|
{
|
|
u32 remainder;
|
|
u32 factor;
|
|
u32 delta;
|
|
|
|
if (fraction == 0)
|
|
return 0;
|
|
|
|
delta = (val < fraction) ? (fraction - val) : (val - fraction);
|
|
|
|
if (delta <= tolerance)
|
|
/* val and fraction are within tolerance */
|
|
return 1;
|
|
|
|
factor = val / fraction;
|
|
remainder = val % fraction;
|
|
if (remainder > tolerance) {
|
|
/* no exact match */
|
|
if ((fraction - remainder) <= tolerance)
|
|
/* remainder is within tolerance */
|
|
factor++;
|
|
else
|
|
factor = 0;
|
|
}
|
|
return factor;
|
|
}
|
|
|
|
/**
|
|
* DOC: Singleton Pulse and Sequence Pools
|
|
*
|
|
* Instances of pri_sequence and pulse_elem are kept in singleton pools to
|
|
* reduce the number of dynamic allocations. They are shared between all
|
|
* instances and grow up to the peak number of simultaneously used objects.
|
|
*
|
|
* Memory is freed after all references to the pools are released.
|
|
*/
|
|
static u32 singleton_pool_references;
|
|
static LIST_HEAD(pulse_pool);
|
|
static LIST_HEAD(pseq_pool);
|
|
static DEFINE_SPINLOCK(pool_lock);
|
|
|
|
static void pool_register_ref(void)
|
|
{
|
|
spin_lock_bh(&pool_lock);
|
|
singleton_pool_references++;
|
|
DFS_POOL_STAT_INC(pool_reference);
|
|
spin_unlock_bh(&pool_lock);
|
|
}
|
|
|
|
static void pool_deregister_ref(void)
|
|
{
|
|
spin_lock_bh(&pool_lock);
|
|
singleton_pool_references--;
|
|
DFS_POOL_STAT_DEC(pool_reference);
|
|
if (singleton_pool_references == 0) {
|
|
/* free singleton pools with no references left */
|
|
struct pri_sequence *ps, *ps0;
|
|
struct pulse_elem *p, *p0;
|
|
|
|
list_for_each_entry_safe(p, p0, &pulse_pool, head) {
|
|
list_del(&p->head);
|
|
DFS_POOL_STAT_DEC(pulse_allocated);
|
|
kfree(p);
|
|
}
|
|
list_for_each_entry_safe(ps, ps0, &pseq_pool, head) {
|
|
list_del(&ps->head);
|
|
DFS_POOL_STAT_DEC(pseq_allocated);
|
|
kfree(ps);
|
|
}
|
|
}
|
|
spin_unlock_bh(&pool_lock);
|
|
}
|
|
|
|
static void pool_put_pulse_elem(struct pulse_elem *pe)
|
|
{
|
|
spin_lock_bh(&pool_lock);
|
|
list_add(&pe->head, &pulse_pool);
|
|
DFS_POOL_STAT_DEC(pulse_used);
|
|
spin_unlock_bh(&pool_lock);
|
|
}
|
|
|
|
static void pool_put_pseq_elem(struct pri_sequence *pse)
|
|
{
|
|
spin_lock_bh(&pool_lock);
|
|
list_add(&pse->head, &pseq_pool);
|
|
DFS_POOL_STAT_DEC(pseq_used);
|
|
spin_unlock_bh(&pool_lock);
|
|
}
|
|
|
|
static struct pri_sequence *pool_get_pseq_elem(void)
|
|
{
|
|
struct pri_sequence *pse = NULL;
|
|
spin_lock_bh(&pool_lock);
|
|
if (!list_empty(&pseq_pool)) {
|
|
pse = list_first_entry(&pseq_pool, struct pri_sequence, head);
|
|
list_del(&pse->head);
|
|
DFS_POOL_STAT_INC(pseq_used);
|
|
}
|
|
spin_unlock_bh(&pool_lock);
|
|
return pse;
|
|
}
|
|
|
|
static struct pulse_elem *pool_get_pulse_elem(void)
|
|
{
|
|
struct pulse_elem *pe = NULL;
|
|
spin_lock_bh(&pool_lock);
|
|
if (!list_empty(&pulse_pool)) {
|
|
pe = list_first_entry(&pulse_pool, struct pulse_elem, head);
|
|
list_del(&pe->head);
|
|
DFS_POOL_STAT_INC(pulse_used);
|
|
}
|
|
spin_unlock_bh(&pool_lock);
|
|
return pe;
|
|
}
|
|
|
|
static struct pulse_elem *pulse_queue_get_tail(struct pri_detector *pde)
|
|
{
|
|
struct list_head *l = &pde->pulses;
|
|
if (list_empty(l))
|
|
return NULL;
|
|
return list_entry(l->prev, struct pulse_elem, head);
|
|
}
|
|
|
|
static bool pulse_queue_dequeue(struct pri_detector *pde)
|
|
{
|
|
struct pulse_elem *p = pulse_queue_get_tail(pde);
|
|
if (p != NULL) {
|
|
list_del_init(&p->head);
|
|
pde->count--;
|
|
/* give it back to pool */
|
|
pool_put_pulse_elem(p);
|
|
}
|
|
return (pde->count > 0);
|
|
}
|
|
|
|
/* remove pulses older than window */
|
|
static void pulse_queue_check_window(struct pri_detector *pde)
|
|
{
|
|
u64 min_valid_ts;
|
|
struct pulse_elem *p;
|
|
|
|
/* there is no delta time with less than 2 pulses */
|
|
if (pde->count < 2)
|
|
return;
|
|
|
|
if (pde->last_ts <= pde->window_size)
|
|
return;
|
|
|
|
min_valid_ts = pde->last_ts - pde->window_size;
|
|
while ((p = pulse_queue_get_tail(pde)) != NULL) {
|
|
if (p->ts >= min_valid_ts)
|
|
return;
|
|
pulse_queue_dequeue(pde);
|
|
}
|
|
}
|
|
|
|
static bool pulse_queue_enqueue(struct pri_detector *pde, u64 ts)
|
|
{
|
|
struct pulse_elem *p = pool_get_pulse_elem();
|
|
if (p == NULL) {
|
|
p = kmalloc(sizeof(*p), GFP_ATOMIC);
|
|
if (p == NULL) {
|
|
DFS_POOL_STAT_INC(pulse_alloc_error);
|
|
return false;
|
|
}
|
|
DFS_POOL_STAT_INC(pulse_allocated);
|
|
DFS_POOL_STAT_INC(pulse_used);
|
|
}
|
|
INIT_LIST_HEAD(&p->head);
|
|
p->ts = ts;
|
|
list_add(&p->head, &pde->pulses);
|
|
pde->count++;
|
|
pde->last_ts = ts;
|
|
pulse_queue_check_window(pde);
|
|
if (pde->count >= pde->max_count)
|
|
pulse_queue_dequeue(pde);
|
|
return true;
|
|
}
|
|
|
|
static bool pseq_handler_create_sequences(struct pri_detector *pde,
|
|
u64 ts, u32 min_count)
|
|
{
|
|
struct pulse_elem *p;
|
|
list_for_each_entry(p, &pde->pulses, head) {
|
|
struct pri_sequence ps, *new_ps;
|
|
struct pulse_elem *p2;
|
|
u32 tmp_false_count;
|
|
u64 min_valid_ts;
|
|
u32 delta_ts = ts - p->ts;
|
|
|
|
if (delta_ts < pde->rs->pri_min)
|
|
/* ignore too small pri */
|
|
continue;
|
|
|
|
if (delta_ts > pde->rs->pri_max)
|
|
/* stop on too large pri (sorted list) */
|
|
break;
|
|
|
|
/* build a new sequence with new potential pri */
|
|
ps.count = 2;
|
|
ps.count_falses = 0;
|
|
ps.first_ts = p->ts;
|
|
ps.last_ts = ts;
|
|
ps.pri = ts - p->ts;
|
|
ps.dur = ps.pri * (pde->rs->ppb - 1)
|
|
+ 2 * pde->rs->max_pri_tolerance;
|
|
|
|
p2 = p;
|
|
tmp_false_count = 0;
|
|
min_valid_ts = ts - ps.dur;
|
|
/* check which past pulses are candidates for new sequence */
|
|
list_for_each_entry_continue(p2, &pde->pulses, head) {
|
|
u32 factor;
|
|
if (p2->ts < min_valid_ts)
|
|
/* stop on crossing window border */
|
|
break;
|
|
/* check if pulse match (multi)PRI */
|
|
factor = pde_get_multiple(ps.last_ts - p2->ts, ps.pri,
|
|
pde->rs->max_pri_tolerance);
|
|
if (factor > 0) {
|
|
ps.count++;
|
|
ps.first_ts = p2->ts;
|
|
/*
|
|
* on match, add the intermediate falses
|
|
* and reset counter
|
|
*/
|
|
ps.count_falses += tmp_false_count;
|
|
tmp_false_count = 0;
|
|
} else {
|
|
/* this is a potential false one */
|
|
tmp_false_count++;
|
|
}
|
|
}
|
|
if (ps.count < min_count)
|
|
/* did not reach minimum count, drop sequence */
|
|
continue;
|
|
|
|
/* this is a valid one, add it */
|
|
ps.deadline_ts = ps.first_ts + ps.dur;
|
|
new_ps = pool_get_pseq_elem();
|
|
if (new_ps == NULL) {
|
|
new_ps = kmalloc(sizeof(*new_ps), GFP_ATOMIC);
|
|
if (new_ps == NULL) {
|
|
DFS_POOL_STAT_INC(pseq_alloc_error);
|
|
return false;
|
|
}
|
|
DFS_POOL_STAT_INC(pseq_allocated);
|
|
DFS_POOL_STAT_INC(pseq_used);
|
|
}
|
|
memcpy(new_ps, &ps, sizeof(ps));
|
|
INIT_LIST_HEAD(&new_ps->head);
|
|
list_add(&new_ps->head, &pde->sequences);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* check new ts and add to all matching existing sequences */
|
|
static u32
|
|
pseq_handler_add_to_existing_seqs(struct pri_detector *pde, u64 ts)
|
|
{
|
|
u32 max_count = 0;
|
|
struct pri_sequence *ps, *ps2;
|
|
list_for_each_entry_safe(ps, ps2, &pde->sequences, head) {
|
|
u32 delta_ts;
|
|
u32 factor;
|
|
|
|
/* first ensure that sequence is within window */
|
|
if (ts > ps->deadline_ts) {
|
|
list_del_init(&ps->head);
|
|
pool_put_pseq_elem(ps);
|
|
continue;
|
|
}
|
|
|
|
delta_ts = ts - ps->last_ts;
|
|
factor = pde_get_multiple(delta_ts, ps->pri,
|
|
pde->rs->max_pri_tolerance);
|
|
if (factor > 0) {
|
|
ps->last_ts = ts;
|
|
ps->count++;
|
|
|
|
if (max_count < ps->count)
|
|
max_count = ps->count;
|
|
} else {
|
|
ps->count_falses++;
|
|
}
|
|
}
|
|
return max_count;
|
|
}
|
|
|
|
static struct pri_sequence *
|
|
pseq_handler_check_detection(struct pri_detector *pde)
|
|
{
|
|
struct pri_sequence *ps;
|
|
|
|
if (list_empty(&pde->sequences))
|
|
return NULL;
|
|
|
|
list_for_each_entry(ps, &pde->sequences, head) {
|
|
/*
|
|
* we assume to have enough matching confidence if we
|
|
* 1) have enough pulses
|
|
* 2) have more matching than false pulses
|
|
*/
|
|
if ((ps->count >= pde->rs->ppb_thresh) &&
|
|
(ps->count * pde->rs->num_pri >= ps->count_falses))
|
|
return ps;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/* free pulse queue and sequences list and give objects back to pools */
|
|
static void pri_detector_reset(struct pri_detector *pde, u64 ts)
|
|
{
|
|
struct pri_sequence *ps, *ps0;
|
|
struct pulse_elem *p, *p0;
|
|
list_for_each_entry_safe(ps, ps0, &pde->sequences, head) {
|
|
list_del_init(&ps->head);
|
|
pool_put_pseq_elem(ps);
|
|
}
|
|
list_for_each_entry_safe(p, p0, &pde->pulses, head) {
|
|
list_del_init(&p->head);
|
|
pool_put_pulse_elem(p);
|
|
}
|
|
pde->count = 0;
|
|
pde->last_ts = ts;
|
|
}
|
|
|
|
static void pri_detector_exit(struct pri_detector *de)
|
|
{
|
|
pri_detector_reset(de, 0);
|
|
pool_deregister_ref();
|
|
kfree(de);
|
|
}
|
|
|
|
static struct pri_sequence *pri_detector_add_pulse(struct pri_detector *de,
|
|
struct pulse_event *event)
|
|
{
|
|
u32 max_updated_seq;
|
|
struct pri_sequence *ps;
|
|
u64 ts = event->ts;
|
|
const struct radar_detector_specs *rs = de->rs;
|
|
|
|
/* ignore pulses not within width range */
|
|
if ((rs->width_min > event->width) || (rs->width_max < event->width))
|
|
return NULL;
|
|
|
|
if ((ts - de->last_ts) < rs->max_pri_tolerance)
|
|
/* if delta to last pulse is too short, don't use this pulse */
|
|
return NULL;
|
|
/* radar detector spec needs chirp, but not detected */
|
|
if (rs->chirp && rs->chirp != event->chirp)
|
|
return NULL;
|
|
|
|
de->last_ts = ts;
|
|
|
|
max_updated_seq = pseq_handler_add_to_existing_seqs(de, ts);
|
|
|
|
if (!pseq_handler_create_sequences(de, ts, max_updated_seq)) {
|
|
pri_detector_reset(de, ts);
|
|
return NULL;
|
|
}
|
|
|
|
ps = pseq_handler_check_detection(de);
|
|
|
|
if (ps == NULL)
|
|
pulse_queue_enqueue(de, ts);
|
|
|
|
return ps;
|
|
}
|
|
|
|
struct pri_detector *pri_detector_init(const struct radar_detector_specs *rs)
|
|
{
|
|
struct pri_detector *de;
|
|
|
|
de = kzalloc(sizeof(*de), GFP_ATOMIC);
|
|
if (de == NULL)
|
|
return NULL;
|
|
de->exit = pri_detector_exit;
|
|
de->add_pulse = pri_detector_add_pulse;
|
|
de->reset = pri_detector_reset;
|
|
|
|
INIT_LIST_HEAD(&de->sequences);
|
|
INIT_LIST_HEAD(&de->pulses);
|
|
de->window_size = rs->pri_max * rs->ppb * rs->num_pri;
|
|
de->max_count = rs->ppb * 2;
|
|
de->rs = rs;
|
|
|
|
pool_register_ref();
|
|
return de;
|
|
}
|