Evan Quan a0ec225633 drm/amd/powerplay: unified interfaces for message issuing and response checking
This can avoid potential race condition between them.

Signed-off-by: Evan Quan <evan.quan@amd.com>
Reviewed-by: Kenneth Feng <kenneth.feng@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2020-04-01 14:44:45 -04:00

5483 lines
172 KiB
C

/*
* Copyright 2016 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include <linux/delay.h>
#include <linux/fb.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include "hwmgr.h"
#include "amd_powerplay.h"
#include "hardwaremanager.h"
#include "ppatomfwctrl.h"
#include "atomfirmware.h"
#include "cgs_common.h"
#include "vega10_powertune.h"
#include "smu9.h"
#include "smu9_driver_if.h"
#include "vega10_inc.h"
#include "soc15_common.h"
#include "pppcielanes.h"
#include "vega10_hwmgr.h"
#include "vega10_smumgr.h"
#include "vega10_processpptables.h"
#include "vega10_pptable.h"
#include "vega10_thermal.h"
#include "pp_debug.h"
#include "amd_pcie_helpers.h"
#include "ppinterrupt.h"
#include "pp_overdriver.h"
#include "pp_thermal.h"
#include "vega10_baco.h"
#include "smuio/smuio_9_0_offset.h"
#include "smuio/smuio_9_0_sh_mask.h"
#define HBM_MEMORY_CHANNEL_WIDTH 128
static const uint32_t channel_number[] = {1, 2, 0, 4, 0, 8, 0, 16, 2};
#define mmDF_CS_AON0_DramBaseAddress0 0x0044
#define mmDF_CS_AON0_DramBaseAddress0_BASE_IDX 0
//DF_CS_AON0_DramBaseAddress0
#define DF_CS_AON0_DramBaseAddress0__AddrRngVal__SHIFT 0x0
#define DF_CS_AON0_DramBaseAddress0__LgcyMmioHoleEn__SHIFT 0x1
#define DF_CS_AON0_DramBaseAddress0__IntLvNumChan__SHIFT 0x4
#define DF_CS_AON0_DramBaseAddress0__IntLvAddrSel__SHIFT 0x8
#define DF_CS_AON0_DramBaseAddress0__DramBaseAddr__SHIFT 0xc
#define DF_CS_AON0_DramBaseAddress0__AddrRngVal_MASK 0x00000001L
#define DF_CS_AON0_DramBaseAddress0__LgcyMmioHoleEn_MASK 0x00000002L
#define DF_CS_AON0_DramBaseAddress0__IntLvNumChan_MASK 0x000000F0L
#define DF_CS_AON0_DramBaseAddress0__IntLvAddrSel_MASK 0x00000700L
#define DF_CS_AON0_DramBaseAddress0__DramBaseAddr_MASK 0xFFFFF000L
typedef enum {
CLK_SMNCLK = 0,
CLK_SOCCLK,
CLK_MP0CLK,
CLK_MP1CLK,
CLK_LCLK,
CLK_DCEFCLK,
CLK_VCLK,
CLK_DCLK,
CLK_ECLK,
CLK_UCLK,
CLK_GFXCLK,
CLK_COUNT,
} CLOCK_ID_e;
static const ULONG PhwVega10_Magic = (ULONG)(PHM_VIslands_Magic);
struct vega10_power_state *cast_phw_vega10_power_state(
struct pp_hw_power_state *hw_ps)
{
PP_ASSERT_WITH_CODE((PhwVega10_Magic == hw_ps->magic),
"Invalid Powerstate Type!",
return NULL;);
return (struct vega10_power_state *)hw_ps;
}
const struct vega10_power_state *cast_const_phw_vega10_power_state(
const struct pp_hw_power_state *hw_ps)
{
PP_ASSERT_WITH_CODE((PhwVega10_Magic == hw_ps->magic),
"Invalid Powerstate Type!",
return NULL;);
return (const struct vega10_power_state *)hw_ps;
}
static void vega10_set_default_registry_data(struct pp_hwmgr *hwmgr)
{
struct vega10_hwmgr *data = hwmgr->backend;
data->registry_data.sclk_dpm_key_disabled =
hwmgr->feature_mask & PP_SCLK_DPM_MASK ? false : true;
data->registry_data.socclk_dpm_key_disabled =
hwmgr->feature_mask & PP_SOCCLK_DPM_MASK ? false : true;
data->registry_data.mclk_dpm_key_disabled =
hwmgr->feature_mask & PP_MCLK_DPM_MASK ? false : true;
data->registry_data.pcie_dpm_key_disabled =
hwmgr->feature_mask & PP_PCIE_DPM_MASK ? false : true;
data->registry_data.dcefclk_dpm_key_disabled =
hwmgr->feature_mask & PP_DCEFCLK_DPM_MASK ? false : true;
if (hwmgr->feature_mask & PP_POWER_CONTAINMENT_MASK) {
data->registry_data.power_containment_support = 1;
data->registry_data.enable_pkg_pwr_tracking_feature = 1;
data->registry_data.enable_tdc_limit_feature = 1;
}
data->registry_data.clock_stretcher_support =
hwmgr->feature_mask & PP_CLOCK_STRETCH_MASK ? true : false;
data->registry_data.ulv_support =
hwmgr->feature_mask & PP_ULV_MASK ? true : false;
data->registry_data.sclk_deep_sleep_support =
hwmgr->feature_mask & PP_SCLK_DEEP_SLEEP_MASK ? true : false;
data->registry_data.disable_water_mark = 0;
data->registry_data.fan_control_support = 1;
data->registry_data.thermal_support = 1;
data->registry_data.fw_ctf_enabled = 1;
data->registry_data.avfs_support =
hwmgr->feature_mask & PP_AVFS_MASK ? true : false;
data->registry_data.led_dpm_enabled = 1;
data->registry_data.vr0hot_enabled = 1;
data->registry_data.vr1hot_enabled = 1;
data->registry_data.regulator_hot_gpio_support = 1;
data->registry_data.didt_support = 1;
if (data->registry_data.didt_support) {
data->registry_data.didt_mode = 6;
data->registry_data.sq_ramping_support = 1;
data->registry_data.db_ramping_support = 0;
data->registry_data.td_ramping_support = 0;
data->registry_data.tcp_ramping_support = 0;
data->registry_data.dbr_ramping_support = 0;
data->registry_data.edc_didt_support = 1;
data->registry_data.gc_didt_support = 0;
data->registry_data.psm_didt_support = 0;
}
data->display_voltage_mode = PPVEGA10_VEGA10DISPLAYVOLTAGEMODE_DFLT;
data->dcef_clk_quad_eqn_a = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
data->dcef_clk_quad_eqn_b = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
data->dcef_clk_quad_eqn_c = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
data->disp_clk_quad_eqn_a = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
data->disp_clk_quad_eqn_b = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
data->disp_clk_quad_eqn_c = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
data->pixel_clk_quad_eqn_a = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
data->pixel_clk_quad_eqn_b = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
data->pixel_clk_quad_eqn_c = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
data->phy_clk_quad_eqn_a = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
data->phy_clk_quad_eqn_b = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
data->phy_clk_quad_eqn_c = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
data->gfxclk_average_alpha = PPVEGA10_VEGA10GFXCLKAVERAGEALPHA_DFLT;
data->socclk_average_alpha = PPVEGA10_VEGA10SOCCLKAVERAGEALPHA_DFLT;
data->uclk_average_alpha = PPVEGA10_VEGA10UCLKCLKAVERAGEALPHA_DFLT;
data->gfx_activity_average_alpha = PPVEGA10_VEGA10GFXACTIVITYAVERAGEALPHA_DFLT;
}
static int vega10_set_features_platform_caps(struct pp_hwmgr *hwmgr)
{
struct vega10_hwmgr *data = hwmgr->backend;
struct phm_ppt_v2_information *table_info =
(struct phm_ppt_v2_information *)hwmgr->pptable;
struct amdgpu_device *adev = hwmgr->adev;
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_SclkDeepSleep);
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_DynamicPatchPowerState);
if (data->vddci_control == VEGA10_VOLTAGE_CONTROL_NONE)
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_ControlVDDCI);
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_EnableSMU7ThermalManagement);
if (adev->pg_flags & AMD_PG_SUPPORT_UVD)
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_UVDPowerGating);
if (adev->pg_flags & AMD_PG_SUPPORT_VCE)
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_VCEPowerGating);
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_UnTabledHardwareInterface);
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_FanSpeedInTableIsRPM);
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_ODFuzzyFanControlSupport);
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_DynamicPowerManagement);
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_SMC);
/* power tune caps */
/* assume disabled */
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_PowerContainment);
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_DiDtSupport);
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_SQRamping);
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_DBRamping);
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_TDRamping);
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_TCPRamping);
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_DBRRamping);
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_DiDtEDCEnable);
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_GCEDC);
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_PSM);
if (data->registry_data.didt_support) {
phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DiDtSupport);
if (data->registry_data.sq_ramping_support)
phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SQRamping);
if (data->registry_data.db_ramping_support)
phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DBRamping);
if (data->registry_data.td_ramping_support)
phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_TDRamping);
if (data->registry_data.tcp_ramping_support)
phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_TCPRamping);
if (data->registry_data.dbr_ramping_support)
phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DBRRamping);
if (data->registry_data.edc_didt_support)
phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DiDtEDCEnable);
if (data->registry_data.gc_didt_support)
phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_GCEDC);
if (data->registry_data.psm_didt_support)
phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PSM);
}
if (data->registry_data.power_containment_support)
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_PowerContainment);
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_CAC);
if (table_info->tdp_table->usClockStretchAmount &&
data->registry_data.clock_stretcher_support)
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_ClockStretcher);
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_RegulatorHot);
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_AutomaticDCTransition);
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_UVDDPM);
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_VCEDPM);
return 0;
}
static int vega10_odn_initial_default_setting(struct pp_hwmgr *hwmgr)
{
struct vega10_hwmgr *data = hwmgr->backend;
struct phm_ppt_v2_information *table_info =
(struct phm_ppt_v2_information *)(hwmgr->pptable);
struct vega10_odn_dpm_table *odn_table = &(data->odn_dpm_table);
struct vega10_odn_vddc_lookup_table *od_lookup_table;
struct phm_ppt_v1_voltage_lookup_table *vddc_lookup_table;
struct phm_ppt_v1_clock_voltage_dependency_table *dep_table[3];
struct phm_ppt_v1_clock_voltage_dependency_table *od_table[3];
struct pp_atomfwctrl_avfs_parameters avfs_params = {0};
uint32_t i;
int result;
result = pp_atomfwctrl_get_avfs_information(hwmgr, &avfs_params);
if (!result) {
data->odn_dpm_table.max_vddc = avfs_params.ulMaxVddc;
data->odn_dpm_table.min_vddc = avfs_params.ulMinVddc;
}
od_lookup_table = &odn_table->vddc_lookup_table;
vddc_lookup_table = table_info->vddc_lookup_table;
for (i = 0; i < vddc_lookup_table->count; i++)
od_lookup_table->entries[i].us_vdd = vddc_lookup_table->entries[i].us_vdd;
od_lookup_table->count = vddc_lookup_table->count;
dep_table[0] = table_info->vdd_dep_on_sclk;
dep_table[1] = table_info->vdd_dep_on_mclk;
dep_table[2] = table_info->vdd_dep_on_socclk;
od_table[0] = (struct phm_ppt_v1_clock_voltage_dependency_table *)&odn_table->vdd_dep_on_sclk;
od_table[1] = (struct phm_ppt_v1_clock_voltage_dependency_table *)&odn_table->vdd_dep_on_mclk;
od_table[2] = (struct phm_ppt_v1_clock_voltage_dependency_table *)&odn_table->vdd_dep_on_socclk;
for (i = 0; i < 3; i++)
smu_get_voltage_dependency_table_ppt_v1(dep_table[i], od_table[i]);
if (odn_table->max_vddc == 0 || odn_table->max_vddc > 2000)
odn_table->max_vddc = dep_table[0]->entries[dep_table[0]->count - 1].vddc;
if (odn_table->min_vddc == 0 || odn_table->min_vddc > 2000)
odn_table->min_vddc = dep_table[0]->entries[0].vddc;
i = od_table[2]->count - 1;
od_table[2]->entries[i].clk = hwmgr->platform_descriptor.overdriveLimit.memoryClock > od_table[2]->entries[i].clk ?
hwmgr->platform_descriptor.overdriveLimit.memoryClock :
od_table[2]->entries[i].clk;
od_table[2]->entries[i].vddc = odn_table->max_vddc > od_table[2]->entries[i].vddc ?
odn_table->max_vddc :
od_table[2]->entries[i].vddc;
return 0;
}
static void vega10_init_dpm_defaults(struct pp_hwmgr *hwmgr)
{
struct vega10_hwmgr *data = hwmgr->backend;
int i;
uint32_t sub_vendor_id, hw_revision;
uint32_t top32, bottom32;
struct amdgpu_device *adev = hwmgr->adev;
vega10_initialize_power_tune_defaults(hwmgr);
for (i = 0; i < GNLD_FEATURES_MAX; i++) {
data->smu_features[i].smu_feature_id = 0xffff;
data->smu_features[i].smu_feature_bitmap = 1 << i;
data->smu_features[i].enabled = false;
data->smu_features[i].supported = false;
}
data->smu_features[GNLD_DPM_PREFETCHER].smu_feature_id =
FEATURE_DPM_PREFETCHER_BIT;
data->smu_features[GNLD_DPM_GFXCLK].smu_feature_id =
FEATURE_DPM_GFXCLK_BIT;
data->smu_features[GNLD_DPM_UCLK].smu_feature_id =
FEATURE_DPM_UCLK_BIT;
data->smu_features[GNLD_DPM_SOCCLK].smu_feature_id =
FEATURE_DPM_SOCCLK_BIT;
data->smu_features[GNLD_DPM_UVD].smu_feature_id =
FEATURE_DPM_UVD_BIT;
data->smu_features[GNLD_DPM_VCE].smu_feature_id =
FEATURE_DPM_VCE_BIT;
data->smu_features[GNLD_DPM_MP0CLK].smu_feature_id =
FEATURE_DPM_MP0CLK_BIT;
data->smu_features[GNLD_DPM_LINK].smu_feature_id =
FEATURE_DPM_LINK_BIT;
data->smu_features[GNLD_DPM_DCEFCLK].smu_feature_id =
FEATURE_DPM_DCEFCLK_BIT;
data->smu_features[GNLD_ULV].smu_feature_id =
FEATURE_ULV_BIT;
data->smu_features[GNLD_AVFS].smu_feature_id =
FEATURE_AVFS_BIT;
data->smu_features[GNLD_DS_GFXCLK].smu_feature_id =
FEATURE_DS_GFXCLK_BIT;
data->smu_features[GNLD_DS_SOCCLK].smu_feature_id =
FEATURE_DS_SOCCLK_BIT;
data->smu_features[GNLD_DS_LCLK].smu_feature_id =
FEATURE_DS_LCLK_BIT;
data->smu_features[GNLD_PPT].smu_feature_id =
FEATURE_PPT_BIT;
data->smu_features[GNLD_TDC].smu_feature_id =
FEATURE_TDC_BIT;
data->smu_features[GNLD_THERMAL].smu_feature_id =
FEATURE_THERMAL_BIT;
data->smu_features[GNLD_GFX_PER_CU_CG].smu_feature_id =
FEATURE_GFX_PER_CU_CG_BIT;
data->smu_features[GNLD_RM].smu_feature_id =
FEATURE_RM_BIT;
data->smu_features[GNLD_DS_DCEFCLK].smu_feature_id =
FEATURE_DS_DCEFCLK_BIT;
data->smu_features[GNLD_ACDC].smu_feature_id =
FEATURE_ACDC_BIT;
data->smu_features[GNLD_VR0HOT].smu_feature_id =
FEATURE_VR0HOT_BIT;
data->smu_features[GNLD_VR1HOT].smu_feature_id =
FEATURE_VR1HOT_BIT;
data->smu_features[GNLD_FW_CTF].smu_feature_id =
FEATURE_FW_CTF_BIT;
data->smu_features[GNLD_LED_DISPLAY].smu_feature_id =
FEATURE_LED_DISPLAY_BIT;
data->smu_features[GNLD_FAN_CONTROL].smu_feature_id =
FEATURE_FAN_CONTROL_BIT;
data->smu_features[GNLD_ACG].smu_feature_id = FEATURE_ACG_BIT;
data->smu_features[GNLD_DIDT].smu_feature_id = FEATURE_GFX_EDC_BIT;
data->smu_features[GNLD_PCC_LIMIT].smu_feature_id = FEATURE_PCC_LIMIT_CONTROL_BIT;
if (!data->registry_data.prefetcher_dpm_key_disabled)
data->smu_features[GNLD_DPM_PREFETCHER].supported = true;
if (!data->registry_data.sclk_dpm_key_disabled)
data->smu_features[GNLD_DPM_GFXCLK].supported = true;
if (!data->registry_data.mclk_dpm_key_disabled)
data->smu_features[GNLD_DPM_UCLK].supported = true;
if (!data->registry_data.socclk_dpm_key_disabled)
data->smu_features[GNLD_DPM_SOCCLK].supported = true;
if (PP_CAP(PHM_PlatformCaps_UVDDPM))
data->smu_features[GNLD_DPM_UVD].supported = true;
if (PP_CAP(PHM_PlatformCaps_VCEDPM))
data->smu_features[GNLD_DPM_VCE].supported = true;
if (!data->registry_data.pcie_dpm_key_disabled)
data->smu_features[GNLD_DPM_LINK].supported = true;
if (!data->registry_data.dcefclk_dpm_key_disabled)
data->smu_features[GNLD_DPM_DCEFCLK].supported = true;
if (PP_CAP(PHM_PlatformCaps_SclkDeepSleep) &&
data->registry_data.sclk_deep_sleep_support) {
data->smu_features[GNLD_DS_GFXCLK].supported = true;
data->smu_features[GNLD_DS_SOCCLK].supported = true;
data->smu_features[GNLD_DS_LCLK].supported = true;
data->smu_features[GNLD_DS_DCEFCLK].supported = true;
}
if (data->registry_data.enable_pkg_pwr_tracking_feature)
data->smu_features[GNLD_PPT].supported = true;
if (data->registry_data.enable_tdc_limit_feature)
data->smu_features[GNLD_TDC].supported = true;
if (data->registry_data.thermal_support)
data->smu_features[GNLD_THERMAL].supported = true;
if (data->registry_data.fan_control_support)
data->smu_features[GNLD_FAN_CONTROL].supported = true;
if (data->registry_data.fw_ctf_enabled)
data->smu_features[GNLD_FW_CTF].supported = true;
if (data->registry_data.avfs_support)
data->smu_features[GNLD_AVFS].supported = true;
if (data->registry_data.led_dpm_enabled)
data->smu_features[GNLD_LED_DISPLAY].supported = true;
if (data->registry_data.vr1hot_enabled)
data->smu_features[GNLD_VR1HOT].supported = true;
if (data->registry_data.vr0hot_enabled)
data->smu_features[GNLD_VR0HOT].supported = true;
smum_send_msg_to_smc(hwmgr,
PPSMC_MSG_GetSmuVersion,
&hwmgr->smu_version);
/* ACG firmware has major version 5 */
if ((hwmgr->smu_version & 0xff000000) == 0x5000000)
data->smu_features[GNLD_ACG].supported = true;
if (data->registry_data.didt_support)
data->smu_features[GNLD_DIDT].supported = true;
hw_revision = adev->pdev->revision;
sub_vendor_id = adev->pdev->subsystem_vendor;
if ((hwmgr->chip_id == 0x6862 ||
hwmgr->chip_id == 0x6861 ||
hwmgr->chip_id == 0x6868) &&
(hw_revision == 0) &&
(sub_vendor_id != 0x1002))
data->smu_features[GNLD_PCC_LIMIT].supported = true;
/* Get the SN to turn into a Unique ID */
smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ReadSerialNumTop32, &top32);
smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ReadSerialNumBottom32, &bottom32);
adev->unique_id = ((uint64_t)bottom32 << 32) | top32;
}
#ifdef PPLIB_VEGA10_EVV_SUPPORT
static int vega10_get_socclk_for_voltage_evv(struct pp_hwmgr *hwmgr,
phm_ppt_v1_voltage_lookup_table *lookup_table,
uint16_t virtual_voltage_id, int32_t *socclk)
{
uint8_t entry_id;
uint8_t voltage_id;
struct phm_ppt_v2_information *table_info =
(struct phm_ppt_v2_information *)(hwmgr->pptable);
PP_ASSERT_WITH_CODE(lookup_table->count != 0,
"Lookup table is empty",
return -EINVAL);
/* search for leakage voltage ID 0xff01 ~ 0xff08 and sclk */
for (entry_id = 0; entry_id < table_info->vdd_dep_on_sclk->count; entry_id++) {
voltage_id = table_info->vdd_dep_on_socclk->entries[entry_id].vddInd;
if (lookup_table->entries[voltage_id].us_vdd == virtual_voltage_id)
break;
}
PP_ASSERT_WITH_CODE(entry_id < table_info->vdd_dep_on_socclk->count,
"Can't find requested voltage id in vdd_dep_on_socclk table!",
return -EINVAL);
*socclk = table_info->vdd_dep_on_socclk->entries[entry_id].clk;
return 0;
}
#define ATOM_VIRTUAL_VOLTAGE_ID0 0xff01
/**
* Get Leakage VDDC based on leakage ID.
*
* @param hwmgr the address of the powerplay hardware manager.
* @return always 0.
*/
static int vega10_get_evv_voltages(struct pp_hwmgr *hwmgr)
{
struct vega10_hwmgr *data = hwmgr->backend;
uint16_t vv_id;
uint32_t vddc = 0;
uint16_t i, j;
uint32_t sclk = 0;
struct phm_ppt_v2_information *table_info =
(struct phm_ppt_v2_information *)hwmgr->pptable;
struct phm_ppt_v1_clock_voltage_dependency_table *socclk_table =
table_info->vdd_dep_on_socclk;
int result;
for (i = 0; i < VEGA10_MAX_LEAKAGE_COUNT; i++) {
vv_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i;
if (!vega10_get_socclk_for_voltage_evv(hwmgr,
table_info->vddc_lookup_table, vv_id, &sclk)) {
if (PP_CAP(PHM_PlatformCaps_ClockStretcher)) {
for (j = 1; j < socclk_table->count; j++) {
if (socclk_table->entries[j].clk == sclk &&
socclk_table->entries[j].cks_enable == 0) {
sclk += 5000;
break;
}
}
}
PP_ASSERT_WITH_CODE(!atomctrl_get_voltage_evv_on_sclk_ai(hwmgr,
VOLTAGE_TYPE_VDDC, sclk, vv_id, &vddc),
"Error retrieving EVV voltage value!",
continue);
/* need to make sure vddc is less than 2v or else, it could burn the ASIC. */
PP_ASSERT_WITH_CODE((vddc < 2000 && vddc != 0),
"Invalid VDDC value", result = -EINVAL;);
/* the voltage should not be zero nor equal to leakage ID */
if (vddc != 0 && vddc != vv_id) {
data->vddc_leakage.actual_voltage[data->vddc_leakage.count] = (uint16_t)(vddc/100);
data->vddc_leakage.leakage_id[data->vddc_leakage.count] = vv_id;
data->vddc_leakage.count++;
}
}
}
return 0;
}
/**
* Change virtual leakage voltage to actual value.
*
* @param hwmgr the address of the powerplay hardware manager.
* @param pointer to changing voltage
* @param pointer to leakage table
*/
static void vega10_patch_with_vdd_leakage(struct pp_hwmgr *hwmgr,
uint16_t *voltage, struct vega10_leakage_voltage *leakage_table)
{
uint32_t index;
/* search for leakage voltage ID 0xff01 ~ 0xff08 */
for (index = 0; index < leakage_table->count; index++) {
/* if this voltage matches a leakage voltage ID */
/* patch with actual leakage voltage */
if (leakage_table->leakage_id[index] == *voltage) {
*voltage = leakage_table->actual_voltage[index];
break;
}
}
if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0)
pr_info("Voltage value looks like a Leakage ID but it's not patched\n");
}
/**
* Patch voltage lookup table by EVV leakages.
*
* @param hwmgr the address of the powerplay hardware manager.
* @param pointer to voltage lookup table
* @param pointer to leakage table
* @return always 0
*/
static int vega10_patch_lookup_table_with_leakage(struct pp_hwmgr *hwmgr,
phm_ppt_v1_voltage_lookup_table *lookup_table,
struct vega10_leakage_voltage *leakage_table)
{
uint32_t i;
for (i = 0; i < lookup_table->count; i++)
vega10_patch_with_vdd_leakage(hwmgr,
&lookup_table->entries[i].us_vdd, leakage_table);
return 0;
}
static int vega10_patch_clock_voltage_limits_with_vddc_leakage(
struct pp_hwmgr *hwmgr, struct vega10_leakage_voltage *leakage_table,
uint16_t *vddc)
{
vega10_patch_with_vdd_leakage(hwmgr, (uint16_t *)vddc, leakage_table);
return 0;
}
#endif
static int vega10_patch_voltage_dependency_tables_with_lookup_table(
struct pp_hwmgr *hwmgr)
{
uint8_t entry_id, voltage_id;
unsigned i;
struct phm_ppt_v2_information *table_info =
(struct phm_ppt_v2_information *)(hwmgr->pptable);
struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
table_info->mm_dep_table;
struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table =
table_info->vdd_dep_on_mclk;
for (i = 0; i < 6; i++) {
struct phm_ppt_v1_clock_voltage_dependency_table *vdt;
switch (i) {
case 0: vdt = table_info->vdd_dep_on_socclk; break;
case 1: vdt = table_info->vdd_dep_on_sclk; break;
case 2: vdt = table_info->vdd_dep_on_dcefclk; break;
case 3: vdt = table_info->vdd_dep_on_pixclk; break;
case 4: vdt = table_info->vdd_dep_on_dispclk; break;
case 5: vdt = table_info->vdd_dep_on_phyclk; break;
}
for (entry_id = 0; entry_id < vdt->count; entry_id++) {
voltage_id = vdt->entries[entry_id].vddInd;
vdt->entries[entry_id].vddc =
table_info->vddc_lookup_table->entries[voltage_id].us_vdd;
}
}
for (entry_id = 0; entry_id < mm_table->count; ++entry_id) {
voltage_id = mm_table->entries[entry_id].vddcInd;
mm_table->entries[entry_id].vddc =
table_info->vddc_lookup_table->entries[voltage_id].us_vdd;
}
for (entry_id = 0; entry_id < mclk_table->count; ++entry_id) {
voltage_id = mclk_table->entries[entry_id].vddInd;
mclk_table->entries[entry_id].vddc =
table_info->vddc_lookup_table->entries[voltage_id].us_vdd;
voltage_id = mclk_table->entries[entry_id].vddciInd;
mclk_table->entries[entry_id].vddci =
table_info->vddci_lookup_table->entries[voltage_id].us_vdd;
voltage_id = mclk_table->entries[entry_id].mvddInd;
mclk_table->entries[entry_id].mvdd =
table_info->vddmem_lookup_table->entries[voltage_id].us_vdd;
}
return 0;
}
static int vega10_sort_lookup_table(struct pp_hwmgr *hwmgr,
struct phm_ppt_v1_voltage_lookup_table *lookup_table)
{
uint32_t table_size, i, j;
PP_ASSERT_WITH_CODE(lookup_table && lookup_table->count,
"Lookup table is empty", return -EINVAL);
table_size = lookup_table->count;
/* Sorting voltages */
for (i = 0; i < table_size - 1; i++) {
for (j = i + 1; j > 0; j--) {
if (lookup_table->entries[j].us_vdd <
lookup_table->entries[j - 1].us_vdd) {
swap(lookup_table->entries[j - 1],
lookup_table->entries[j]);
}
}
}
return 0;
}
static int vega10_complete_dependency_tables(struct pp_hwmgr *hwmgr)
{
int result = 0;
int tmp_result;
struct phm_ppt_v2_information *table_info =
(struct phm_ppt_v2_information *)(hwmgr->pptable);
#ifdef PPLIB_VEGA10_EVV_SUPPORT
struct vega10_hwmgr *data = hwmgr->backend;
tmp_result = vega10_patch_lookup_table_with_leakage(hwmgr,
table_info->vddc_lookup_table, &(data->vddc_leakage));
if (tmp_result)
result = tmp_result;
tmp_result = vega10_patch_clock_voltage_limits_with_vddc_leakage(hwmgr,
&(data->vddc_leakage), &table_info->max_clock_voltage_on_dc.vddc);
if (tmp_result)
result = tmp_result;
#endif
tmp_result = vega10_patch_voltage_dependency_tables_with_lookup_table(hwmgr);
if (tmp_result)
result = tmp_result;
tmp_result = vega10_sort_lookup_table(hwmgr, table_info->vddc_lookup_table);
if (tmp_result)
result = tmp_result;
return result;
}
static int vega10_set_private_data_based_on_pptable(struct pp_hwmgr *hwmgr)
{
struct phm_ppt_v2_information *table_info =
(struct phm_ppt_v2_information *)(hwmgr->pptable);
struct phm_ppt_v1_clock_voltage_dependency_table *allowed_sclk_vdd_table =
table_info->vdd_dep_on_socclk;
struct phm_ppt_v1_clock_voltage_dependency_table *allowed_mclk_vdd_table =
table_info->vdd_dep_on_mclk;
PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table,
"VDD dependency on SCLK table is missing. This table is mandatory", return -EINVAL);
PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table->count >= 1,
"VDD dependency on SCLK table is empty. This table is mandatory", return -EINVAL);
PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table,
"VDD dependency on MCLK table is missing. This table is mandatory", return -EINVAL);
PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table->count >= 1,
"VDD dependency on MCLK table is empty. This table is mandatory", return -EINVAL);
table_info->max_clock_voltage_on_ac.sclk =
allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].clk;
table_info->max_clock_voltage_on_ac.mclk =
allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].clk;
table_info->max_clock_voltage_on_ac.vddc =
allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc;
table_info->max_clock_voltage_on_ac.vddci =
allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].vddci;
hwmgr->dyn_state.max_clock_voltage_on_ac.sclk =
table_info->max_clock_voltage_on_ac.sclk;
hwmgr->dyn_state.max_clock_voltage_on_ac.mclk =
table_info->max_clock_voltage_on_ac.mclk;
hwmgr->dyn_state.max_clock_voltage_on_ac.vddc =
table_info->max_clock_voltage_on_ac.vddc;
hwmgr->dyn_state.max_clock_voltage_on_ac.vddci =
table_info->max_clock_voltage_on_ac.vddci;
return 0;
}
static int vega10_hwmgr_backend_fini(struct pp_hwmgr *hwmgr)
{
kfree(hwmgr->dyn_state.vddc_dep_on_dal_pwrl);
hwmgr->dyn_state.vddc_dep_on_dal_pwrl = NULL;
kfree(hwmgr->backend);
hwmgr->backend = NULL;
return 0;
}
static int vega10_hwmgr_backend_init(struct pp_hwmgr *hwmgr)
{
int result = 0;
struct vega10_hwmgr *data;
uint32_t config_telemetry = 0;
struct pp_atomfwctrl_voltage_table vol_table;
struct amdgpu_device *adev = hwmgr->adev;
data = kzalloc(sizeof(struct vega10_hwmgr), GFP_KERNEL);
if (data == NULL)
return -ENOMEM;
hwmgr->backend = data;
hwmgr->workload_mask = 1 << hwmgr->workload_prority[PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT];
hwmgr->power_profile_mode = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT;
hwmgr->default_power_profile_mode = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT;
vega10_set_default_registry_data(hwmgr);
data->disable_dpm_mask = 0xff;
/* need to set voltage control types before EVV patching */
data->vddc_control = VEGA10_VOLTAGE_CONTROL_NONE;
data->mvdd_control = VEGA10_VOLTAGE_CONTROL_NONE;
data->vddci_control = VEGA10_VOLTAGE_CONTROL_NONE;
/* VDDCR_SOC */
if (pp_atomfwctrl_is_voltage_controlled_by_gpio_v4(hwmgr,
VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2)) {
if (!pp_atomfwctrl_get_voltage_table_v4(hwmgr,
VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2,
&vol_table)) {
config_telemetry = ((vol_table.telemetry_slope << 8) & 0xff00) |
(vol_table.telemetry_offset & 0xff);
data->vddc_control = VEGA10_VOLTAGE_CONTROL_BY_SVID2;
}
} else {
kfree(hwmgr->backend);
hwmgr->backend = NULL;
PP_ASSERT_WITH_CODE(false,
"VDDCR_SOC is not SVID2!",
return -1);
}
/* MVDDC */
if (pp_atomfwctrl_is_voltage_controlled_by_gpio_v4(hwmgr,
VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_SVID2)) {
if (!pp_atomfwctrl_get_voltage_table_v4(hwmgr,
VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_SVID2,
&vol_table)) {
config_telemetry |=
((vol_table.telemetry_slope << 24) & 0xff000000) |
((vol_table.telemetry_offset << 16) & 0xff0000);
data->mvdd_control = VEGA10_VOLTAGE_CONTROL_BY_SVID2;
}
}
/* VDDCI_MEM */
if (PP_CAP(PHM_PlatformCaps_ControlVDDCI)) {
if (pp_atomfwctrl_is_voltage_controlled_by_gpio_v4(hwmgr,
VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT))
data->vddci_control = VEGA10_VOLTAGE_CONTROL_BY_GPIO;
}
data->config_telemetry = config_telemetry;
vega10_set_features_platform_caps(hwmgr);
vega10_init_dpm_defaults(hwmgr);
#ifdef PPLIB_VEGA10_EVV_SUPPORT
/* Get leakage voltage based on leakage ID. */
PP_ASSERT_WITH_CODE(!vega10_get_evv_voltages(hwmgr),
"Get EVV Voltage Failed. Abort Driver loading!",
return -1);
#endif
/* Patch our voltage dependency table with actual leakage voltage
* We need to perform leakage translation before it's used by other functions
*/
vega10_complete_dependency_tables(hwmgr);
/* Parse pptable data read from VBIOS */
vega10_set_private_data_based_on_pptable(hwmgr);
data->is_tlu_enabled = false;
hwmgr->platform_descriptor.hardwareActivityPerformanceLevels =
VEGA10_MAX_HARDWARE_POWERLEVELS;
hwmgr->platform_descriptor.hardwarePerformanceLevels = 2;
hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50;
hwmgr->platform_descriptor.vbiosInterruptId = 0x20000400; /* IRQ_SOURCE1_SW_INT */
/* The true clock step depends on the frequency, typically 4.5 or 9 MHz. Here we use 5. */
hwmgr->platform_descriptor.clockStep.engineClock = 500;
hwmgr->platform_descriptor.clockStep.memoryClock = 500;
data->total_active_cus = adev->gfx.cu_info.number;
if (!hwmgr->not_vf)
return result;
/* Setup default Overdrive Fan control settings */
data->odn_fan_table.target_fan_speed =
hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanRPM;
data->odn_fan_table.target_temperature =
hwmgr->thermal_controller.
advanceFanControlParameters.ucTargetTemperature;
data->odn_fan_table.min_performance_clock =
hwmgr->thermal_controller.advanceFanControlParameters.
ulMinFanSCLKAcousticLimit;
data->odn_fan_table.min_fan_limit =
hwmgr->thermal_controller.
advanceFanControlParameters.usFanPWMMinLimit *
hwmgr->thermal_controller.fanInfo.ulMaxRPM / 100;
data->mem_channels = (RREG32_SOC15(DF, 0, mmDF_CS_AON0_DramBaseAddress0) &
DF_CS_AON0_DramBaseAddress0__IntLvNumChan_MASK) >>
DF_CS_AON0_DramBaseAddress0__IntLvNumChan__SHIFT;
PP_ASSERT_WITH_CODE(data->mem_channels < ARRAY_SIZE(channel_number),
"Mem Channel Index Exceeded maximum!",
return -EINVAL);
return result;
}
static int vega10_init_sclk_threshold(struct pp_hwmgr *hwmgr)
{
struct vega10_hwmgr *data = hwmgr->backend;
data->low_sclk_interrupt_threshold = 0;
return 0;
}
static int vega10_setup_dpm_led_config(struct pp_hwmgr *hwmgr)
{
struct vega10_hwmgr *data = hwmgr->backend;
PPTable_t *pp_table = &(data->smc_state_table.pp_table);
struct pp_atomfwctrl_voltage_table table;
uint8_t i, j;
uint32_t mask = 0;
uint32_t tmp;
int32_t ret = 0;
ret = pp_atomfwctrl_get_voltage_table_v4(hwmgr, VOLTAGE_TYPE_LEDDPM,
VOLTAGE_OBJ_GPIO_LUT, &table);
if (!ret) {
tmp = table.mask_low;
for (i = 0, j = 0; i < 32; i++) {
if (tmp & 1) {
mask |= (uint32_t)(i << (8 * j));
if (++j >= 3)
break;
}
tmp >>= 1;
}
}
pp_table->LedPin0 = (uint8_t)(mask & 0xff);
pp_table->LedPin1 = (uint8_t)((mask >> 8) & 0xff);
pp_table->LedPin2 = (uint8_t)((mask >> 16) & 0xff);
return 0;
}
static int vega10_setup_asic_task(struct pp_hwmgr *hwmgr)
{
if (!hwmgr->not_vf)
return 0;
PP_ASSERT_WITH_CODE(!vega10_init_sclk_threshold(hwmgr),
"Failed to init sclk threshold!",
return -EINVAL);
PP_ASSERT_WITH_CODE(!vega10_setup_dpm_led_config(hwmgr),
"Failed to set up led dpm config!",
return -EINVAL);
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_NumOfDisplays,
0,
NULL);
return 0;
}
/**
* Remove repeated voltage values and create table with unique values.
*
* @param hwmgr the address of the powerplay hardware manager.
* @param vol_table the pointer to changing voltage table
* @return 0 in success
*/
static int vega10_trim_voltage_table(struct pp_hwmgr *hwmgr,
struct pp_atomfwctrl_voltage_table *vol_table)
{
uint32_t i, j;
uint16_t vvalue;
bool found = false;
struct pp_atomfwctrl_voltage_table *table;
PP_ASSERT_WITH_CODE(vol_table,
"Voltage Table empty.", return -EINVAL);
table = kzalloc(sizeof(struct pp_atomfwctrl_voltage_table),
GFP_KERNEL);
if (!table)
return -ENOMEM;
table->mask_low = vol_table->mask_low;
table->phase_delay = vol_table->phase_delay;
for (i = 0; i < vol_table->count; i++) {
vvalue = vol_table->entries[i].value;
found = false;
for (j = 0; j < table->count; j++) {
if (vvalue == table->entries[j].value) {
found = true;
break;
}
}
if (!found) {
table->entries[table->count].value = vvalue;
table->entries[table->count].smio_low =
vol_table->entries[i].smio_low;
table->count++;
}
}
memcpy(vol_table, table, sizeof(struct pp_atomfwctrl_voltage_table));
kfree(table);
return 0;
}
static int vega10_get_mvdd_voltage_table(struct pp_hwmgr *hwmgr,
phm_ppt_v1_clock_voltage_dependency_table *dep_table,
struct pp_atomfwctrl_voltage_table *vol_table)
{
int i;
PP_ASSERT_WITH_CODE(dep_table->count,
"Voltage Dependency Table empty.",
return -EINVAL);
vol_table->mask_low = 0;
vol_table->phase_delay = 0;
vol_table->count = dep_table->count;
for (i = 0; i < vol_table->count; i++) {
vol_table->entries[i].value = dep_table->entries[i].mvdd;
vol_table->entries[i].smio_low = 0;
}
PP_ASSERT_WITH_CODE(!vega10_trim_voltage_table(hwmgr,
vol_table),
"Failed to trim MVDD Table!",
return -1);
return 0;
}
static int vega10_get_vddci_voltage_table(struct pp_hwmgr *hwmgr,
phm_ppt_v1_clock_voltage_dependency_table *dep_table,
struct pp_atomfwctrl_voltage_table *vol_table)
{
uint32_t i;
PP_ASSERT_WITH_CODE(dep_table->count,
"Voltage Dependency Table empty.",
return -EINVAL);
vol_table->mask_low = 0;
vol_table->phase_delay = 0;
vol_table->count = dep_table->count;
for (i = 0; i < dep_table->count; i++) {
vol_table->entries[i].value = dep_table->entries[i].vddci;
vol_table->entries[i].smio_low = 0;
}
PP_ASSERT_WITH_CODE(!vega10_trim_voltage_table(hwmgr, vol_table),
"Failed to trim VDDCI table.",
return -1);
return 0;
}
static int vega10_get_vdd_voltage_table(struct pp_hwmgr *hwmgr,
phm_ppt_v1_clock_voltage_dependency_table *dep_table,
struct pp_atomfwctrl_voltage_table *vol_table)
{
int i;
PP_ASSERT_WITH_CODE(dep_table->count,
"Voltage Dependency Table empty.",
return -EINVAL);
vol_table->mask_low = 0;
vol_table->phase_delay = 0;
vol_table->count = dep_table->count;
for (i = 0; i < vol_table->count; i++) {
vol_table->entries[i].value = dep_table->entries[i].vddc;
vol_table->entries[i].smio_low = 0;
}
return 0;
}
/* ---- Voltage Tables ----
* If the voltage table would be bigger than
* what will fit into the state table on
* the SMC keep only the higher entries.
*/
static void vega10_trim_voltage_table_to_fit_state_table(
struct pp_hwmgr *hwmgr,
uint32_t max_vol_steps,
struct pp_atomfwctrl_voltage_table *vol_table)
{
unsigned int i, diff;
if (vol_table->count <= max_vol_steps)
return;
diff = vol_table->count - max_vol_steps;
for (i = 0; i < max_vol_steps; i++)
vol_table->entries[i] = vol_table->entries[i + diff];
vol_table->count = max_vol_steps;
}
/**
* Create Voltage Tables.
*
* @param hwmgr the address of the powerplay hardware manager.
* @return always 0
*/
static int vega10_construct_voltage_tables(struct pp_hwmgr *hwmgr)
{
struct vega10_hwmgr *data = hwmgr->backend;
struct phm_ppt_v2_information *table_info =
(struct phm_ppt_v2_information *)hwmgr->pptable;
int result;
if (data->mvdd_control == VEGA10_VOLTAGE_CONTROL_BY_SVID2 ||
data->mvdd_control == VEGA10_VOLTAGE_CONTROL_NONE) {
result = vega10_get_mvdd_voltage_table(hwmgr,
table_info->vdd_dep_on_mclk,
&(data->mvdd_voltage_table));
PP_ASSERT_WITH_CODE(!result,
"Failed to retrieve MVDDC table!",
return result);
}
if (data->vddci_control == VEGA10_VOLTAGE_CONTROL_NONE) {
result = vega10_get_vddci_voltage_table(hwmgr,
table_info->vdd_dep_on_mclk,
&(data->vddci_voltage_table));
PP_ASSERT_WITH_CODE(!result,
"Failed to retrieve VDDCI_MEM table!",
return result);
}
if (data->vddc_control == VEGA10_VOLTAGE_CONTROL_BY_SVID2 ||
data->vddc_control == VEGA10_VOLTAGE_CONTROL_NONE) {
result = vega10_get_vdd_voltage_table(hwmgr,
table_info->vdd_dep_on_sclk,
&(data->vddc_voltage_table));
PP_ASSERT_WITH_CODE(!result,
"Failed to retrieve VDDCR_SOC table!",
return result);
}
PP_ASSERT_WITH_CODE(data->vddc_voltage_table.count <= 16,
"Too many voltage values for VDDC. Trimming to fit state table.",
vega10_trim_voltage_table_to_fit_state_table(hwmgr,
16, &(data->vddc_voltage_table)));
PP_ASSERT_WITH_CODE(data->vddci_voltage_table.count <= 16,
"Too many voltage values for VDDCI. Trimming to fit state table.",
vega10_trim_voltage_table_to_fit_state_table(hwmgr,
16, &(data->vddci_voltage_table)));
PP_ASSERT_WITH_CODE(data->mvdd_voltage_table.count <= 16,
"Too many voltage values for MVDD. Trimming to fit state table.",
vega10_trim_voltage_table_to_fit_state_table(hwmgr,
16, &(data->mvdd_voltage_table)));
return 0;
}
/*
* @fn vega10_init_dpm_state
* @brief Function to initialize all Soft Min/Max and Hard Min/Max to 0xff.
*
* @param dpm_state - the address of the DPM Table to initiailize.
* @return None.
*/
static void vega10_init_dpm_state(struct vega10_dpm_state *dpm_state)
{
dpm_state->soft_min_level = 0xff;
dpm_state->soft_max_level = 0xff;
dpm_state->hard_min_level = 0xff;
dpm_state->hard_max_level = 0xff;
}
static void vega10_setup_default_single_dpm_table(struct pp_hwmgr *hwmgr,
struct vega10_single_dpm_table *dpm_table,
struct phm_ppt_v1_clock_voltage_dependency_table *dep_table)
{
int i;
dpm_table->count = 0;
for (i = 0; i < dep_table->count; i++) {
if (i == 0 || dpm_table->dpm_levels[dpm_table->count - 1].value <=
dep_table->entries[i].clk) {
dpm_table->dpm_levels[dpm_table->count].value =
dep_table->entries[i].clk;
dpm_table->dpm_levels[dpm_table->count].enabled = true;
dpm_table->count++;
}
}
}
static int vega10_setup_default_pcie_table(struct pp_hwmgr *hwmgr)
{
struct vega10_hwmgr *data = hwmgr->backend;
struct vega10_pcie_table *pcie_table = &(data->dpm_table.pcie_table);
struct phm_ppt_v2_information *table_info =
(struct phm_ppt_v2_information *)(hwmgr->pptable);
struct phm_ppt_v1_pcie_table *bios_pcie_table =
table_info->pcie_table;
uint32_t i;
PP_ASSERT_WITH_CODE(bios_pcie_table->count,
"Incorrect number of PCIE States from VBIOS!",
return -1);
for (i = 0; i < NUM_LINK_LEVELS; i++) {
if (data->registry_data.pcieSpeedOverride)
pcie_table->pcie_gen[i] =
data->registry_data.pcieSpeedOverride;
else
pcie_table->pcie_gen[i] =
bios_pcie_table->entries[i].gen_speed;
if (data->registry_data.pcieLaneOverride)
pcie_table->pcie_lane[i] = (uint8_t)encode_pcie_lane_width(
data->registry_data.pcieLaneOverride);
else
pcie_table->pcie_lane[i] = (uint8_t)encode_pcie_lane_width(
bios_pcie_table->entries[i].lane_width);
if (data->registry_data.pcieClockOverride)
pcie_table->lclk[i] =
data->registry_data.pcieClockOverride;
else
pcie_table->lclk[i] =
bios_pcie_table->entries[i].pcie_sclk;
}
pcie_table->count = NUM_LINK_LEVELS;
return 0;
}
/*
* This function is to initialize all DPM state tables
* for SMU based on the dependency table.
* Dynamic state patching function will then trim these
* state tables to the allowed range based
* on the power policy or external client requests,
* such as UVD request, etc.
*/
static int vega10_setup_default_dpm_tables(struct pp_hwmgr *hwmgr)
{
struct vega10_hwmgr *data = hwmgr->backend;
struct phm_ppt_v2_information *table_info =
(struct phm_ppt_v2_information *)(hwmgr->pptable);
struct vega10_single_dpm_table *dpm_table;
uint32_t i;
struct phm_ppt_v1_clock_voltage_dependency_table *dep_soc_table =
table_info->vdd_dep_on_socclk;
struct phm_ppt_v1_clock_voltage_dependency_table *dep_gfx_table =
table_info->vdd_dep_on_sclk;
struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table =
table_info->vdd_dep_on_mclk;
struct phm_ppt_v1_mm_clock_voltage_dependency_table *dep_mm_table =
table_info->mm_dep_table;
struct phm_ppt_v1_clock_voltage_dependency_table *dep_dcef_table =
table_info->vdd_dep_on_dcefclk;
struct phm_ppt_v1_clock_voltage_dependency_table *dep_pix_table =
table_info->vdd_dep_on_pixclk;
struct phm_ppt_v1_clock_voltage_dependency_table *dep_disp_table =
table_info->vdd_dep_on_dispclk;
struct phm_ppt_v1_clock_voltage_dependency_table *dep_phy_table =
table_info->vdd_dep_on_phyclk;
PP_ASSERT_WITH_CODE(dep_soc_table,
"SOCCLK dependency table is missing. This table is mandatory",
return -EINVAL);
PP_ASSERT_WITH_CODE(dep_soc_table->count >= 1,
"SOCCLK dependency table is empty. This table is mandatory",
return -EINVAL);
PP_ASSERT_WITH_CODE(dep_gfx_table,
"GFXCLK dependency table is missing. This table is mandatory",
return -EINVAL);
PP_ASSERT_WITH_CODE(dep_gfx_table->count >= 1,
"GFXCLK dependency table is empty. This table is mandatory",
return -EINVAL);
PP_ASSERT_WITH_CODE(dep_mclk_table,
"MCLK dependency table is missing. This table is mandatory",
return -EINVAL);
PP_ASSERT_WITH_CODE(dep_mclk_table->count >= 1,
"MCLK dependency table has to have is missing. This table is mandatory",
return -EINVAL);
/* Initialize Sclk DPM table based on allow Sclk values */
dpm_table = &(data->dpm_table.soc_table);
vega10_setup_default_single_dpm_table(hwmgr,
dpm_table,
dep_soc_table);
vega10_init_dpm_state(&(dpm_table->dpm_state));
dpm_table = &(data->dpm_table.gfx_table);
vega10_setup_default_single_dpm_table(hwmgr,
dpm_table,
dep_gfx_table);
if (hwmgr->platform_descriptor.overdriveLimit.engineClock == 0)
hwmgr->platform_descriptor.overdriveLimit.engineClock =
dpm_table->dpm_levels[dpm_table->count-1].value;
vega10_init_dpm_state(&(dpm_table->dpm_state));
/* Initialize Mclk DPM table based on allow Mclk values */
data->dpm_table.mem_table.count = 0;
dpm_table = &(data->dpm_table.mem_table);
vega10_setup_default_single_dpm_table(hwmgr,
dpm_table,
dep_mclk_table);
if (hwmgr->platform_descriptor.overdriveLimit.memoryClock == 0)
hwmgr->platform_descriptor.overdriveLimit.memoryClock =
dpm_table->dpm_levels[dpm_table->count-1].value;
vega10_init_dpm_state(&(dpm_table->dpm_state));
data->dpm_table.eclk_table.count = 0;
dpm_table = &(data->dpm_table.eclk_table);
for (i = 0; i < dep_mm_table->count; i++) {
if (i == 0 || dpm_table->dpm_levels
[dpm_table->count - 1].value <=
dep_mm_table->entries[i].eclk) {
dpm_table->dpm_levels[dpm_table->count].value =
dep_mm_table->entries[i].eclk;
dpm_table->dpm_levels[dpm_table->count].enabled =
(i == 0) ? true : false;
dpm_table->count++;
}
}
vega10_init_dpm_state(&(dpm_table->dpm_state));
data->dpm_table.vclk_table.count = 0;
data->dpm_table.dclk_table.count = 0;
dpm_table = &(data->dpm_table.vclk_table);
for (i = 0; i < dep_mm_table->count; i++) {
if (i == 0 || dpm_table->dpm_levels
[dpm_table->count - 1].value <=
dep_mm_table->entries[i].vclk) {
dpm_table->dpm_levels[dpm_table->count].value =
dep_mm_table->entries[i].vclk;
dpm_table->dpm_levels[dpm_table->count].enabled =
(i == 0) ? true : false;
dpm_table->count++;
}
}
vega10_init_dpm_state(&(dpm_table->dpm_state));
dpm_table = &(data->dpm_table.dclk_table);
for (i = 0; i < dep_mm_table->count; i++) {
if (i == 0 || dpm_table->dpm_levels
[dpm_table->count - 1].value <=
dep_mm_table->entries[i].dclk) {
dpm_table->dpm_levels[dpm_table->count].value =
dep_mm_table->entries[i].dclk;
dpm_table->dpm_levels[dpm_table->count].enabled =
(i == 0) ? true : false;
dpm_table->count++;
}
}
vega10_init_dpm_state(&(dpm_table->dpm_state));
/* Assume there is no headless Vega10 for now */
dpm_table = &(data->dpm_table.dcef_table);
vega10_setup_default_single_dpm_table(hwmgr,
dpm_table,
dep_dcef_table);
vega10_init_dpm_state(&(dpm_table->dpm_state));
dpm_table = &(data->dpm_table.pixel_table);
vega10_setup_default_single_dpm_table(hwmgr,
dpm_table,
dep_pix_table);
vega10_init_dpm_state(&(dpm_table->dpm_state));
dpm_table = &(data->dpm_table.display_table);
vega10_setup_default_single_dpm_table(hwmgr,
dpm_table,
dep_disp_table);
vega10_init_dpm_state(&(dpm_table->dpm_state));
dpm_table = &(data->dpm_table.phy_table);
vega10_setup_default_single_dpm_table(hwmgr,
dpm_table,
dep_phy_table);
vega10_init_dpm_state(&(dpm_table->dpm_state));
vega10_setup_default_pcie_table(hwmgr);
/* Zero out the saved copy of the CUSTOM profile
* This will be checked when trying to set the profile
* and will require that new values be passed in
*/
data->custom_profile_mode[0] = 0;
data->custom_profile_mode[1] = 0;
data->custom_profile_mode[2] = 0;
data->custom_profile_mode[3] = 0;
/* save a copy of the default DPM table */
memcpy(&(data->golden_dpm_table), &(data->dpm_table),
sizeof(struct vega10_dpm_table));
return 0;
}
/*
* @fn vega10_populate_ulv_state
* @brief Function to provide parameters for Utral Low Voltage state to SMC.
*
* @param hwmgr - the address of the hardware manager.
* @return Always 0.
*/
static int vega10_populate_ulv_state(struct pp_hwmgr *hwmgr)
{
struct vega10_hwmgr *data = hwmgr->backend;
struct phm_ppt_v2_information *table_info =
(struct phm_ppt_v2_information *)(hwmgr->pptable);
data->smc_state_table.pp_table.UlvOffsetVid =
(uint8_t)table_info->us_ulv_voltage_offset;
data->smc_state_table.pp_table.UlvSmnclkDid =
(uint8_t)(table_info->us_ulv_smnclk_did);
data->smc_state_table.pp_table.UlvMp1clkDid =
(uint8_t)(table_info->us_ulv_mp1clk_did);
data->smc_state_table.pp_table.UlvGfxclkBypass =
(uint8_t)(table_info->us_ulv_gfxclk_bypass);
data->smc_state_table.pp_table.UlvPhaseSheddingPsi0 =
(uint8_t)(data->vddc_voltage_table.psi0_enable);
data->smc_state_table.pp_table.UlvPhaseSheddingPsi1 =
(uint8_t)(data->vddc_voltage_table.psi1_enable);
return 0;
}
static int vega10_populate_single_lclk_level(struct pp_hwmgr *hwmgr,
uint32_t lclock, uint8_t *curr_lclk_did)
{
struct pp_atomfwctrl_clock_dividers_soc15 dividers;
PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(
hwmgr,
COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
lclock, &dividers),
"Failed to get LCLK clock settings from VBIOS!",
return -1);
*curr_lclk_did = dividers.ulDid;
return 0;
}
static int vega10_populate_smc_link_levels(struct pp_hwmgr *hwmgr)
{
int result = -1;
struct vega10_hwmgr *data = hwmgr->backend;
PPTable_t *pp_table = &(data->smc_state_table.pp_table);
struct vega10_pcie_table *pcie_table =
&(data->dpm_table.pcie_table);
uint32_t i, j;
for (i = 0; i < pcie_table->count; i++) {
pp_table->PcieGenSpeed[i] = pcie_table->pcie_gen[i];
pp_table->PcieLaneCount[i] = pcie_table->pcie_lane[i];
result = vega10_populate_single_lclk_level(hwmgr,
pcie_table->lclk[i], &(pp_table->LclkDid[i]));
if (result) {
pr_info("Populate LClock Level %d Failed!\n", i);
return result;
}
}
j = i - 1;
while (i < NUM_LINK_LEVELS) {
pp_table->PcieGenSpeed[i] = pcie_table->pcie_gen[j];
pp_table->PcieLaneCount[i] = pcie_table->pcie_lane[j];
result = vega10_populate_single_lclk_level(hwmgr,
pcie_table->lclk[j], &(pp_table->LclkDid[i]));
if (result) {
pr_info("Populate LClock Level %d Failed!\n", i);
return result;
}
i++;
}
return result;
}
/**
* Populates single SMC GFXSCLK structure using the provided engine clock
*
* @param hwmgr the address of the hardware manager
* @param gfx_clock the GFX clock to use to populate the structure.
* @param current_gfxclk_level location in PPTable for the SMC GFXCLK structure.
*/
static int vega10_populate_single_gfx_level(struct pp_hwmgr *hwmgr,
uint32_t gfx_clock, PllSetting_t *current_gfxclk_level,
uint32_t *acg_freq)
{
struct phm_ppt_v2_information *table_info =
(struct phm_ppt_v2_information *)(hwmgr->pptable);
struct phm_ppt_v1_clock_voltage_dependency_table *dep_on_sclk;
struct vega10_hwmgr *data = hwmgr->backend;
struct pp_atomfwctrl_clock_dividers_soc15 dividers;
uint32_t gfx_max_clock =
hwmgr->platform_descriptor.overdriveLimit.engineClock;
uint32_t i = 0;
if (hwmgr->od_enabled)
dep_on_sclk = (struct phm_ppt_v1_clock_voltage_dependency_table *)
&(data->odn_dpm_table.vdd_dep_on_sclk);
else
dep_on_sclk = table_info->vdd_dep_on_sclk;
PP_ASSERT_WITH_CODE(dep_on_sclk,
"Invalid SOC_VDD-GFX_CLK Dependency Table!",
return -EINVAL);
if (data->need_update_dpm_table & DPMTABLE_OD_UPDATE_SCLK)
gfx_clock = gfx_clock > gfx_max_clock ? gfx_max_clock : gfx_clock;
else {
for (i = 0; i < dep_on_sclk->count; i++) {
if (dep_on_sclk->entries[i].clk == gfx_clock)
break;
}
PP_ASSERT_WITH_CODE(dep_on_sclk->count > i,
"Cannot find gfx_clk in SOC_VDD-GFX_CLK!",
return -EINVAL);
}
PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr,
COMPUTE_GPUCLK_INPUT_FLAG_GFXCLK,
gfx_clock, &dividers),
"Failed to get GFX Clock settings from VBIOS!",
return -EINVAL);
/* Feedback Multiplier: bit 0:8 int, bit 15:12 post_div, bit 31:16 frac */
current_gfxclk_level->FbMult =
cpu_to_le32(dividers.ulPll_fb_mult);
/* Spread FB Multiplier bit: bit 0:8 int, bit 31:16 frac */
current_gfxclk_level->SsOn = dividers.ucPll_ss_enable;
current_gfxclk_level->SsFbMult =
cpu_to_le32(dividers.ulPll_ss_fbsmult);
current_gfxclk_level->SsSlewFrac =
cpu_to_le16(dividers.usPll_ss_slew_frac);
current_gfxclk_level->Did = (uint8_t)(dividers.ulDid);
*acg_freq = gfx_clock / 100; /* 100 Khz to Mhz conversion */
return 0;
}
/**
* @brief Populates single SMC SOCCLK structure using the provided clock.
*
* @param hwmgr - the address of the hardware manager.
* @param soc_clock - the SOC clock to use to populate the structure.
* @param current_socclk_level - location in PPTable for the SMC SOCCLK structure.
* @return 0 on success..
*/
static int vega10_populate_single_soc_level(struct pp_hwmgr *hwmgr,
uint32_t soc_clock, uint8_t *current_soc_did,
uint8_t *current_vol_index)
{
struct vega10_hwmgr *data = hwmgr->backend;
struct phm_ppt_v2_information *table_info =
(struct phm_ppt_v2_information *)(hwmgr->pptable);
struct phm_ppt_v1_clock_voltage_dependency_table *dep_on_soc;
struct pp_atomfwctrl_clock_dividers_soc15 dividers;
uint32_t i;
if (hwmgr->od_enabled) {
dep_on_soc = (struct phm_ppt_v1_clock_voltage_dependency_table *)
&data->odn_dpm_table.vdd_dep_on_socclk;
for (i = 0; i < dep_on_soc->count; i++) {
if (dep_on_soc->entries[i].clk >= soc_clock)
break;
}
} else {
dep_on_soc = table_info->vdd_dep_on_socclk;
for (i = 0; i < dep_on_soc->count; i++) {
if (dep_on_soc->entries[i].clk == soc_clock)
break;
}
}
PP_ASSERT_WITH_CODE(dep_on_soc->count > i,
"Cannot find SOC_CLK in SOC_VDD-SOC_CLK Dependency Table",
return -EINVAL);
PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr,
COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
soc_clock, &dividers),
"Failed to get SOC Clock settings from VBIOS!",
return -EINVAL);
*current_soc_did = (uint8_t)dividers.ulDid;
*current_vol_index = (uint8_t)(dep_on_soc->entries[i].vddInd);
return 0;
}
/**
* Populates all SMC SCLK levels' structure based on the trimmed allowed dpm engine clock states
*
* @param hwmgr the address of the hardware manager
*/
static int vega10_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
{
struct vega10_hwmgr *data = hwmgr->backend;
struct phm_ppt_v2_information *table_info =
(struct phm_ppt_v2_information *)(hwmgr->pptable);
PPTable_t *pp_table = &(data->smc_state_table.pp_table);
struct vega10_single_dpm_table *dpm_table = &(data->dpm_table.gfx_table);
int result = 0;
uint32_t i, j;
for (i = 0; i < dpm_table->count; i++) {
result = vega10_populate_single_gfx_level(hwmgr,
dpm_table->dpm_levels[i].value,
&(pp_table->GfxclkLevel[i]),
&(pp_table->AcgFreqTable[i]));
if (result)
return result;
}
j = i - 1;
while (i < NUM_GFXCLK_DPM_LEVELS) {
result = vega10_populate_single_gfx_level(hwmgr,
dpm_table->dpm_levels[j].value,
&(pp_table->GfxclkLevel[i]),
&(pp_table->AcgFreqTable[i]));
if (result)
return result;
i++;
}
pp_table->GfxclkSlewRate =
cpu_to_le16(table_info->us_gfxclk_slew_rate);
dpm_table = &(data->dpm_table.soc_table);
for (i = 0; i < dpm_table->count; i++) {
result = vega10_populate_single_soc_level(hwmgr,
dpm_table->dpm_levels[i].value,
&(pp_table->SocclkDid[i]),
&(pp_table->SocDpmVoltageIndex[i]));
if (result)
return result;
}
j = i - 1;
while (i < NUM_SOCCLK_DPM_LEVELS) {
result = vega10_populate_single_soc_level(hwmgr,
dpm_table->dpm_levels[j].value,
&(pp_table->SocclkDid[i]),
&(pp_table->SocDpmVoltageIndex[i]));
if (result)
return result;
i++;
}
return result;
}
static void vega10_populate_vddc_soc_levels(struct pp_hwmgr *hwmgr)
{
struct vega10_hwmgr *data = hwmgr->backend;
PPTable_t *pp_table = &(data->smc_state_table.pp_table);
struct phm_ppt_v2_information *table_info = hwmgr->pptable;
struct phm_ppt_v1_voltage_lookup_table *vddc_lookup_table;
uint8_t soc_vid = 0;
uint32_t i, max_vddc_level;
if (hwmgr->od_enabled)
vddc_lookup_table = (struct phm_ppt_v1_voltage_lookup_table *)&data->odn_dpm_table.vddc_lookup_table;
else
vddc_lookup_table = table_info->vddc_lookup_table;
max_vddc_level = vddc_lookup_table->count;
for (i = 0; i < max_vddc_level; i++) {
soc_vid = (uint8_t)convert_to_vid(vddc_lookup_table->entries[i].us_vdd);
pp_table->SocVid[i] = soc_vid;
}
while (i < MAX_REGULAR_DPM_NUMBER) {
pp_table->SocVid[i] = soc_vid;
i++;
}
}
/**
* @brief Populates single SMC GFXCLK structure using the provided clock.
*
* @param hwmgr - the address of the hardware manager.
* @param mem_clock - the memory clock to use to populate the structure.
* @return 0 on success..
*/
static int vega10_populate_single_memory_level(struct pp_hwmgr *hwmgr,
uint32_t mem_clock, uint8_t *current_mem_vid,
PllSetting_t *current_memclk_level, uint8_t *current_mem_soc_vind)
{
struct vega10_hwmgr *data = hwmgr->backend;
struct phm_ppt_v2_information *table_info =
(struct phm_ppt_v2_information *)(hwmgr->pptable);
struct phm_ppt_v1_clock_voltage_dependency_table *dep_on_mclk;
struct pp_atomfwctrl_clock_dividers_soc15 dividers;
uint32_t mem_max_clock =
hwmgr->platform_descriptor.overdriveLimit.memoryClock;
uint32_t i = 0;
if (hwmgr->od_enabled)
dep_on_mclk = (struct phm_ppt_v1_clock_voltage_dependency_table *)
&data->odn_dpm_table.vdd_dep_on_mclk;
else
dep_on_mclk = table_info->vdd_dep_on_mclk;
PP_ASSERT_WITH_CODE(dep_on_mclk,
"Invalid SOC_VDD-UCLK Dependency Table!",
return -EINVAL);
if (data->need_update_dpm_table & DPMTABLE_OD_UPDATE_MCLK) {
mem_clock = mem_clock > mem_max_clock ? mem_max_clock : mem_clock;
} else {
for (i = 0; i < dep_on_mclk->count; i++) {
if (dep_on_mclk->entries[i].clk == mem_clock)
break;
}
PP_ASSERT_WITH_CODE(dep_on_mclk->count > i,
"Cannot find UCLK in SOC_VDD-UCLK Dependency Table!",
return -EINVAL);
}
PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(
hwmgr, COMPUTE_GPUCLK_INPUT_FLAG_UCLK, mem_clock, &dividers),
"Failed to get UCLK settings from VBIOS!",
return -1);
*current_mem_vid =
(uint8_t)(convert_to_vid(dep_on_mclk->entries[i].mvdd));
*current_mem_soc_vind =
(uint8_t)(dep_on_mclk->entries[i].vddInd);
current_memclk_level->FbMult = cpu_to_le32(dividers.ulPll_fb_mult);
current_memclk_level->Did = (uint8_t)(dividers.ulDid);
PP_ASSERT_WITH_CODE(current_memclk_level->Did >= 1,
"Invalid Divider ID!",
return -EINVAL);
return 0;
}
/**
* @brief Populates all SMC MCLK levels' structure based on the trimmed allowed dpm memory clock states.
*
* @param pHwMgr - the address of the hardware manager.
* @return PP_Result_OK on success.
*/
static int vega10_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
{
struct vega10_hwmgr *data = hwmgr->backend;
PPTable_t *pp_table = &(data->smc_state_table.pp_table);
struct vega10_single_dpm_table *dpm_table =
&(data->dpm_table.mem_table);
int result = 0;
uint32_t i, j;
for (i = 0; i < dpm_table->count; i++) {
result = vega10_populate_single_memory_level(hwmgr,
dpm_table->dpm_levels[i].value,
&(pp_table->MemVid[i]),
&(pp_table->UclkLevel[i]),
&(pp_table->MemSocVoltageIndex[i]));
if (result)
return result;
}
j = i - 1;
while (i < NUM_UCLK_DPM_LEVELS) {
result = vega10_populate_single_memory_level(hwmgr,
dpm_table->dpm_levels[j].value,
&(pp_table->MemVid[i]),
&(pp_table->UclkLevel[i]),
&(pp_table->MemSocVoltageIndex[i]));
if (result)
return result;
i++;
}
pp_table->NumMemoryChannels = (uint16_t)(data->mem_channels);
pp_table->MemoryChannelWidth =
(uint16_t)(HBM_MEMORY_CHANNEL_WIDTH *
channel_number[data->mem_channels]);
pp_table->LowestUclkReservedForUlv =
(uint8_t)(data->lowest_uclk_reserved_for_ulv);
return result;
}
static int vega10_populate_single_display_type(struct pp_hwmgr *hwmgr,
DSPCLK_e disp_clock)
{
struct vega10_hwmgr *data = hwmgr->backend;
PPTable_t *pp_table = &(data->smc_state_table.pp_table);
struct phm_ppt_v2_information *table_info =
(struct phm_ppt_v2_information *)
(hwmgr->pptable);
struct phm_ppt_v1_clock_voltage_dependency_table *dep_table;
uint32_t i;
uint16_t clk = 0, vddc = 0;
uint8_t vid = 0;
switch (disp_clock) {
case DSPCLK_DCEFCLK:
dep_table = table_info->vdd_dep_on_dcefclk;
break;
case DSPCLK_DISPCLK:
dep_table = table_info->vdd_dep_on_dispclk;
break;
case DSPCLK_PIXCLK:
dep_table = table_info->vdd_dep_on_pixclk;
break;
case DSPCLK_PHYCLK:
dep_table = table_info->vdd_dep_on_phyclk;
break;
default:
return -1;
}
PP_ASSERT_WITH_CODE(dep_table->count <= NUM_DSPCLK_LEVELS,
"Number Of Entries Exceeded maximum!",
return -1);
for (i = 0; i < dep_table->count; i++) {
clk = (uint16_t)(dep_table->entries[i].clk / 100);
vddc = table_info->vddc_lookup_table->
entries[dep_table->entries[i].vddInd].us_vdd;
vid = (uint8_t)convert_to_vid(vddc);
pp_table->DisplayClockTable[disp_clock][i].Freq =
cpu_to_le16(clk);
pp_table->DisplayClockTable[disp_clock][i].Vid =
cpu_to_le16(vid);
}
while (i < NUM_DSPCLK_LEVELS) {
pp_table->DisplayClockTable[disp_clock][i].Freq =
cpu_to_le16(clk);
pp_table->DisplayClockTable[disp_clock][i].Vid =
cpu_to_le16(vid);
i++;
}
return 0;
}
static int vega10_populate_all_display_clock_levels(struct pp_hwmgr *hwmgr)
{
uint32_t i;
for (i = 0; i < DSPCLK_COUNT; i++) {
PP_ASSERT_WITH_CODE(!vega10_populate_single_display_type(hwmgr, i),
"Failed to populate Clock in DisplayClockTable!",
return -1);
}
return 0;
}
static int vega10_populate_single_eclock_level(struct pp_hwmgr *hwmgr,
uint32_t eclock, uint8_t *current_eclk_did,
uint8_t *current_soc_vol)
{
struct phm_ppt_v2_information *table_info =
(struct phm_ppt_v2_information *)(hwmgr->pptable);
struct phm_ppt_v1_mm_clock_voltage_dependency_table *dep_table =
table_info->mm_dep_table;
struct pp_atomfwctrl_clock_dividers_soc15 dividers;
uint32_t i;
PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr,
COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
eclock, &dividers),
"Failed to get ECLK clock settings from VBIOS!",
return -1);
*current_eclk_did = (uint8_t)dividers.ulDid;
for (i = 0; i < dep_table->count; i++) {
if (dep_table->entries[i].eclk == eclock)
*current_soc_vol = dep_table->entries[i].vddcInd;
}
return 0;
}
static int vega10_populate_smc_vce_levels(struct pp_hwmgr *hwmgr)
{
struct vega10_hwmgr *data = hwmgr->backend;
PPTable_t *pp_table = &(data->smc_state_table.pp_table);
struct vega10_single_dpm_table *dpm_table = &(data->dpm_table.eclk_table);
int result = -EINVAL;
uint32_t i, j;
for (i = 0; i < dpm_table->count; i++) {
result = vega10_populate_single_eclock_level(hwmgr,
dpm_table->dpm_levels[i].value,
&(pp_table->EclkDid[i]),
&(pp_table->VceDpmVoltageIndex[i]));
if (result)
return result;
}
j = i - 1;
while (i < NUM_VCE_DPM_LEVELS) {
result = vega10_populate_single_eclock_level(hwmgr,
dpm_table->dpm_levels[j].value,
&(pp_table->EclkDid[i]),
&(pp_table->VceDpmVoltageIndex[i]));
if (result)
return result;
i++;
}
return result;
}
static int vega10_populate_single_vclock_level(struct pp_hwmgr *hwmgr,
uint32_t vclock, uint8_t *current_vclk_did)
{
struct pp_atomfwctrl_clock_dividers_soc15 dividers;
PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr,
COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
vclock, &dividers),
"Failed to get VCLK clock settings from VBIOS!",
return -EINVAL);
*current_vclk_did = (uint8_t)dividers.ulDid;
return 0;
}
static int vega10_populate_single_dclock_level(struct pp_hwmgr *hwmgr,
uint32_t dclock, uint8_t *current_dclk_did)
{
struct pp_atomfwctrl_clock_dividers_soc15 dividers;
PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr,
COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
dclock, &dividers),
"Failed to get DCLK clock settings from VBIOS!",
return -EINVAL);
*current_dclk_did = (uint8_t)dividers.ulDid;
return 0;
}
static int vega10_populate_smc_uvd_levels(struct pp_hwmgr *hwmgr)
{
struct vega10_hwmgr *data = hwmgr->backend;
PPTable_t *pp_table = &(data->smc_state_table.pp_table);
struct vega10_single_dpm_table *vclk_dpm_table =
&(data->dpm_table.vclk_table);
struct vega10_single_dpm_table *dclk_dpm_table =
&(data->dpm_table.dclk_table);
struct phm_ppt_v2_information *table_info =
(struct phm_ppt_v2_information *)(hwmgr->pptable);
struct phm_ppt_v1_mm_clock_voltage_dependency_table *dep_table =
table_info->mm_dep_table;
int result = -EINVAL;
uint32_t i, j;
for (i = 0; i < vclk_dpm_table->count; i++) {
result = vega10_populate_single_vclock_level(hwmgr,
vclk_dpm_table->dpm_levels[i].value,
&(pp_table->VclkDid[i]));
if (result)
return result;
}
j = i - 1;
while (i < NUM_UVD_DPM_LEVELS) {
result = vega10_populate_single_vclock_level(hwmgr,
vclk_dpm_table->dpm_levels[j].value,
&(pp_table->VclkDid[i]));
if (result)
return result;
i++;
}
for (i = 0; i < dclk_dpm_table->count; i++) {
result = vega10_populate_single_dclock_level(hwmgr,
dclk_dpm_table->dpm_levels[i].value,
&(pp_table->DclkDid[i]));
if (result)
return result;
}
j = i - 1;
while (i < NUM_UVD_DPM_LEVELS) {
result = vega10_populate_single_dclock_level(hwmgr,
dclk_dpm_table->dpm_levels[j].value,
&(pp_table->DclkDid[i]));
if (result)
return result;
i++;
}
for (i = 0; i < dep_table->count; i++) {
if (dep_table->entries[i].vclk ==
vclk_dpm_table->dpm_levels[i].value &&
dep_table->entries[i].dclk ==
dclk_dpm_table->dpm_levels[i].value)
pp_table->UvdDpmVoltageIndex[i] =
dep_table->entries[i].vddcInd;
else
return -1;
}
j = i - 1;
while (i < NUM_UVD_DPM_LEVELS) {
pp_table->UvdDpmVoltageIndex[i] = dep_table->entries[j].vddcInd;
i++;
}
return 0;
}
static int vega10_populate_clock_stretcher_table(struct pp_hwmgr *hwmgr)
{
struct vega10_hwmgr *data = hwmgr->backend;
PPTable_t *pp_table = &(data->smc_state_table.pp_table);
struct phm_ppt_v2_information *table_info =
(struct phm_ppt_v2_information *)(hwmgr->pptable);
struct phm_ppt_v1_clock_voltage_dependency_table *dep_table =
table_info->vdd_dep_on_sclk;
uint32_t i;
for (i = 0; i < dep_table->count; i++) {
pp_table->CksEnable[i] = dep_table->entries[i].cks_enable;
pp_table->CksVidOffset[i] = (uint8_t)(dep_table->entries[i].cks_voffset
* VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1);
}
return 0;
}
static int vega10_populate_avfs_parameters(struct pp_hwmgr *hwmgr)
{
struct vega10_hwmgr *data = hwmgr->backend;
PPTable_t *pp_table = &(data->smc_state_table.pp_table);
struct phm_ppt_v2_information *table_info =
(struct phm_ppt_v2_information *)(hwmgr->pptable);
struct phm_ppt_v1_clock_voltage_dependency_table *dep_table =
table_info->vdd_dep_on_sclk;
struct pp_atomfwctrl_avfs_parameters avfs_params = {0};
int result = 0;
uint32_t i;
pp_table->MinVoltageVid = (uint8_t)0xff;
pp_table->MaxVoltageVid = (uint8_t)0;
if (data->smu_features[GNLD_AVFS].supported) {
result = pp_atomfwctrl_get_avfs_information(hwmgr, &avfs_params);
if (!result) {
pp_table->MinVoltageVid = (uint8_t)
convert_to_vid((uint16_t)(avfs_params.ulMinVddc));
pp_table->MaxVoltageVid = (uint8_t)
convert_to_vid((uint16_t)(avfs_params.ulMaxVddc));
pp_table->AConstant[0] = cpu_to_le32(avfs_params.ulMeanNsigmaAcontant0);
pp_table->AConstant[1] = cpu_to_le32(avfs_params.ulMeanNsigmaAcontant1);
pp_table->AConstant[2] = cpu_to_le32(avfs_params.ulMeanNsigmaAcontant2);
pp_table->DC_tol_sigma = cpu_to_le16(avfs_params.usMeanNsigmaDcTolSigma);
pp_table->Platform_mean = cpu_to_le16(avfs_params.usMeanNsigmaPlatformMean);
pp_table->Platform_sigma = cpu_to_le16(avfs_params.usMeanNsigmaDcTolSigma);
pp_table->PSM_Age_CompFactor = cpu_to_le16(avfs_params.usPsmAgeComfactor);
pp_table->BtcGbVdroopTableCksOff.a0 =
cpu_to_le32(avfs_params.ulGbVdroopTableCksoffA0);
pp_table->BtcGbVdroopTableCksOff.a0_shift = 20;
pp_table->BtcGbVdroopTableCksOff.a1 =
cpu_to_le32(avfs_params.ulGbVdroopTableCksoffA1);
pp_table->BtcGbVdroopTableCksOff.a1_shift = 20;
pp_table->BtcGbVdroopTableCksOff.a2 =
cpu_to_le32(avfs_params.ulGbVdroopTableCksoffA2);
pp_table->BtcGbVdroopTableCksOff.a2_shift = 20;
pp_table->OverrideBtcGbCksOn = avfs_params.ucEnableGbVdroopTableCkson;
pp_table->BtcGbVdroopTableCksOn.a0 =
cpu_to_le32(avfs_params.ulGbVdroopTableCksonA0);
pp_table->BtcGbVdroopTableCksOn.a0_shift = 20;
pp_table->BtcGbVdroopTableCksOn.a1 =
cpu_to_le32(avfs_params.ulGbVdroopTableCksonA1);
pp_table->BtcGbVdroopTableCksOn.a1_shift = 20;
pp_table->BtcGbVdroopTableCksOn.a2 =
cpu_to_le32(avfs_params.ulGbVdroopTableCksonA2);
pp_table->BtcGbVdroopTableCksOn.a2_shift = 20;
pp_table->AvfsGbCksOn.m1 =
cpu_to_le32(avfs_params.ulGbFuseTableCksonM1);
pp_table->AvfsGbCksOn.m2 =
cpu_to_le32(avfs_params.ulGbFuseTableCksonM2);
pp_table->AvfsGbCksOn.b =
cpu_to_le32(avfs_params.ulGbFuseTableCksonB);
pp_table->AvfsGbCksOn.m1_shift = 24;
pp_table->AvfsGbCksOn.m2_shift = 12;
pp_table->AvfsGbCksOn.b_shift = 0;
pp_table->OverrideAvfsGbCksOn =
avfs_params.ucEnableGbFuseTableCkson;
pp_table->AvfsGbCksOff.m1 =
cpu_to_le32(avfs_params.ulGbFuseTableCksoffM1);
pp_table->AvfsGbCksOff.m2 =
cpu_to_le32(avfs_params.ulGbFuseTableCksoffM2);
pp_table->AvfsGbCksOff.b =
cpu_to_le32(avfs_params.ulGbFuseTableCksoffB);
pp_table->AvfsGbCksOff.m1_shift = 24;
pp_table->AvfsGbCksOff.m2_shift = 12;
pp_table->AvfsGbCksOff.b_shift = 0;
for (i = 0; i < dep_table->count; i++)
pp_table->StaticVoltageOffsetVid[i] =
convert_to_vid((uint8_t)(dep_table->entries[i].sclk_offset));
if ((PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
data->disp_clk_quad_eqn_a) &&
(PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
data->disp_clk_quad_eqn_b)) {
pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m1 =
(int32_t)data->disp_clk_quad_eqn_a;
pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m2 =
(int32_t)data->disp_clk_quad_eqn_b;
pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].b =
(int32_t)data->disp_clk_quad_eqn_c;
} else {
pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m1 =
(int32_t)avfs_params.ulDispclk2GfxclkM1;
pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m2 =
(int32_t)avfs_params.ulDispclk2GfxclkM2;
pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].b =
(int32_t)avfs_params.ulDispclk2GfxclkB;
}
pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m1_shift = 24;
pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m2_shift = 12;
pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].b_shift = 12;
if ((PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
data->dcef_clk_quad_eqn_a) &&
(PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
data->dcef_clk_quad_eqn_b)) {
pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m1 =
(int32_t)data->dcef_clk_quad_eqn_a;
pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m2 =
(int32_t)data->dcef_clk_quad_eqn_b;
pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].b =
(int32_t)data->dcef_clk_quad_eqn_c;
} else {
pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m1 =
(int32_t)avfs_params.ulDcefclk2GfxclkM1;
pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m2 =
(int32_t)avfs_params.ulDcefclk2GfxclkM2;
pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].b =
(int32_t)avfs_params.ulDcefclk2GfxclkB;
}
pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m1_shift = 24;
pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m2_shift = 12;
pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].b_shift = 12;
if ((PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
data->pixel_clk_quad_eqn_a) &&
(PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
data->pixel_clk_quad_eqn_b)) {
pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m1 =
(int32_t)data->pixel_clk_quad_eqn_a;
pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m2 =
(int32_t)data->pixel_clk_quad_eqn_b;
pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].b =
(int32_t)data->pixel_clk_quad_eqn_c;
} else {
pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m1 =
(int32_t)avfs_params.ulPixelclk2GfxclkM1;
pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m2 =
(int32_t)avfs_params.ulPixelclk2GfxclkM2;
pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].b =
(int32_t)avfs_params.ulPixelclk2GfxclkB;
}
pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m1_shift = 24;
pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m2_shift = 12;
pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].b_shift = 12;
if ((PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
data->phy_clk_quad_eqn_a) &&
(PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
data->phy_clk_quad_eqn_b)) {
pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m1 =
(int32_t)data->phy_clk_quad_eqn_a;
pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m2 =
(int32_t)data->phy_clk_quad_eqn_b;
pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].b =
(int32_t)data->phy_clk_quad_eqn_c;
} else {
pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m1 =
(int32_t)avfs_params.ulPhyclk2GfxclkM1;
pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m2 =
(int32_t)avfs_params.ulPhyclk2GfxclkM2;
pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].b =
(int32_t)avfs_params.ulPhyclk2GfxclkB;
}
pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m1_shift = 24;
pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m2_shift = 12;
pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].b_shift = 12;
pp_table->AcgBtcGbVdroopTable.a0 = avfs_params.ulAcgGbVdroopTableA0;
pp_table->AcgBtcGbVdroopTable.a0_shift = 20;
pp_table->AcgBtcGbVdroopTable.a1 = avfs_params.ulAcgGbVdroopTableA1;
pp_table->AcgBtcGbVdroopTable.a1_shift = 20;
pp_table->AcgBtcGbVdroopTable.a2 = avfs_params.ulAcgGbVdroopTableA2;
pp_table->AcgBtcGbVdroopTable.a2_shift = 20;
pp_table->AcgAvfsGb.m1 = avfs_params.ulAcgGbFuseTableM1;
pp_table->AcgAvfsGb.m2 = avfs_params.ulAcgGbFuseTableM2;
pp_table->AcgAvfsGb.b = avfs_params.ulAcgGbFuseTableB;
pp_table->AcgAvfsGb.m1_shift = 24;
pp_table->AcgAvfsGb.m2_shift = 12;
pp_table->AcgAvfsGb.b_shift = 0;
} else {
data->smu_features[GNLD_AVFS].supported = false;
}
}
return 0;
}
static int vega10_acg_enable(struct pp_hwmgr *hwmgr)
{
struct vega10_hwmgr *data = hwmgr->backend;
uint32_t agc_btc_response;
if (data->smu_features[GNLD_ACG].supported) {
if (0 == vega10_enable_smc_features(hwmgr, true,
data->smu_features[GNLD_DPM_PREFETCHER].smu_feature_bitmap))
data->smu_features[GNLD_DPM_PREFETCHER].enabled = true;
smum_send_msg_to_smc(hwmgr, PPSMC_MSG_InitializeAcg, NULL);
smum_send_msg_to_smc(hwmgr, PPSMC_MSG_RunAcgBtc, &agc_btc_response);
if (1 == agc_btc_response) {
if (1 == data->acg_loop_state)
smum_send_msg_to_smc(hwmgr, PPSMC_MSG_RunAcgInClosedLoop, NULL);
else if (2 == data->acg_loop_state)
smum_send_msg_to_smc(hwmgr, PPSMC_MSG_RunAcgInOpenLoop, NULL);
if (0 == vega10_enable_smc_features(hwmgr, true,
data->smu_features[GNLD_ACG].smu_feature_bitmap))
data->smu_features[GNLD_ACG].enabled = true;
} else {
pr_info("[ACG_Enable] ACG BTC Returned Failed Status!\n");
data->smu_features[GNLD_ACG].enabled = false;
}
}
return 0;
}
static int vega10_acg_disable(struct pp_hwmgr *hwmgr)
{
struct vega10_hwmgr *data = hwmgr->backend;
if (data->smu_features[GNLD_ACG].supported &&
data->smu_features[GNLD_ACG].enabled)
if (!vega10_enable_smc_features(hwmgr, false,
data->smu_features[GNLD_ACG].smu_feature_bitmap))
data->smu_features[GNLD_ACG].enabled = false;
return 0;
}
static int vega10_populate_gpio_parameters(struct pp_hwmgr *hwmgr)
{
struct vega10_hwmgr *data = hwmgr->backend;
PPTable_t *pp_table = &(data->smc_state_table.pp_table);
struct pp_atomfwctrl_gpio_parameters gpio_params = {0};
int result;
result = pp_atomfwctrl_get_gpio_information(hwmgr, &gpio_params);
if (!result) {
if (PP_CAP(PHM_PlatformCaps_RegulatorHot) &&
data->registry_data.regulator_hot_gpio_support) {
pp_table->VR0HotGpio = gpio_params.ucVR0HotGpio;
pp_table->VR0HotPolarity = gpio_params.ucVR0HotPolarity;
pp_table->VR1HotGpio = gpio_params.ucVR1HotGpio;
pp_table->VR1HotPolarity = gpio_params.ucVR1HotPolarity;
} else {
pp_table->VR0HotGpio = 0;
pp_table->VR0HotPolarity = 0;
pp_table->VR1HotGpio = 0;
pp_table->VR1HotPolarity = 0;
}
if (PP_CAP(PHM_PlatformCaps_AutomaticDCTransition) &&
data->registry_data.ac_dc_switch_gpio_support) {
pp_table->AcDcGpio = gpio_params.ucAcDcGpio;
pp_table->AcDcPolarity = gpio_params.ucAcDcPolarity;
} else {
pp_table->AcDcGpio = 0;
pp_table->AcDcPolarity = 0;
}
}
return result;
}
static int vega10_avfs_enable(struct pp_hwmgr *hwmgr, bool enable)
{
struct vega10_hwmgr *data = hwmgr->backend;
if (data->smu_features[GNLD_AVFS].supported) {
/* Already enabled or disabled */
if (!(enable ^ data->smu_features[GNLD_AVFS].enabled))
return 0;
if (enable) {
PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
true,
data->smu_features[GNLD_AVFS].smu_feature_bitmap),
"[avfs_control] Attempt to Enable AVFS feature Failed!",
return -1);
data->smu_features[GNLD_AVFS].enabled = true;
} else {
PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
false,
data->smu_features[GNLD_AVFS].smu_feature_bitmap),
"[avfs_control] Attempt to Disable AVFS feature Failed!",
return -1);
data->smu_features[GNLD_AVFS].enabled = false;
}
}
return 0;
}
static int vega10_update_avfs(struct pp_hwmgr *hwmgr)
{
struct vega10_hwmgr *data = hwmgr->backend;
if (data->need_update_dpm_table & DPMTABLE_OD_UPDATE_VDDC) {
vega10_avfs_enable(hwmgr, false);
} else if (data->need_update_dpm_table) {
vega10_avfs_enable(hwmgr, false);
vega10_avfs_enable(hwmgr, true);
} else {
vega10_avfs_enable(hwmgr, true);
}
return 0;
}
static int vega10_populate_and_upload_avfs_fuse_override(struct pp_hwmgr *hwmgr)
{
int result = 0;
uint64_t serial_number = 0;
uint32_t top32, bottom32;
struct phm_fuses_default fuse;
struct vega10_hwmgr *data = hwmgr->backend;
AvfsFuseOverride_t *avfs_fuse_table = &(data->smc_state_table.avfs_fuse_override_table);
smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ReadSerialNumTop32, &top32);
smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ReadSerialNumBottom32, &bottom32);
serial_number = ((uint64_t)bottom32 << 32) | top32;
if (pp_override_get_default_fuse_value(serial_number, &fuse) == 0) {
avfs_fuse_table->VFT0_b = fuse.VFT0_b;
avfs_fuse_table->VFT0_m1 = fuse.VFT0_m1;
avfs_fuse_table->VFT0_m2 = fuse.VFT0_m2;
avfs_fuse_table->VFT1_b = fuse.VFT1_b;
avfs_fuse_table->VFT1_m1 = fuse.VFT1_m1;
avfs_fuse_table->VFT1_m2 = fuse.VFT1_m2;
avfs_fuse_table->VFT2_b = fuse.VFT2_b;
avfs_fuse_table->VFT2_m1 = fuse.VFT2_m1;
avfs_fuse_table->VFT2_m2 = fuse.VFT2_m2;
result = smum_smc_table_manager(hwmgr, (uint8_t *)avfs_fuse_table,
AVFSFUSETABLE, false);
PP_ASSERT_WITH_CODE(!result,
"Failed to upload FuseOVerride!",
);
}
return result;
}
static void vega10_check_dpm_table_updated(struct pp_hwmgr *hwmgr)
{
struct vega10_hwmgr *data = hwmgr->backend;
struct vega10_odn_dpm_table *odn_table = &(data->odn_dpm_table);
struct phm_ppt_v2_information *table_info = hwmgr->pptable;
struct phm_ppt_v1_clock_voltage_dependency_table *dep_table;
struct phm_ppt_v1_clock_voltage_dependency_table *odn_dep_table;
uint32_t i;
dep_table = table_info->vdd_dep_on_mclk;
odn_dep_table = (struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dep_on_mclk);
for (i = 0; i < dep_table->count; i++) {
if (dep_table->entries[i].vddc != odn_dep_table->entries[i].vddc) {
data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_VDDC | DPMTABLE_OD_UPDATE_MCLK;
return;
}
}
dep_table = table_info->vdd_dep_on_sclk;
odn_dep_table = (struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dep_on_sclk);
for (i = 0; i < dep_table->count; i++) {
if (dep_table->entries[i].vddc != odn_dep_table->entries[i].vddc) {
data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_VDDC | DPMTABLE_OD_UPDATE_SCLK;
return;
}
}
}
/**
* Initializes the SMC table and uploads it
*
* @param hwmgr the address of the powerplay hardware manager.
* @param pInput the pointer to input data (PowerState)
* @return always 0
*/
static int vega10_init_smc_table(struct pp_hwmgr *hwmgr)
{
int result;
struct vega10_hwmgr *data = hwmgr->backend;
struct phm_ppt_v2_information *table_info =
(struct phm_ppt_v2_information *)(hwmgr->pptable);
PPTable_t *pp_table = &(data->smc_state_table.pp_table);
struct pp_atomfwctrl_voltage_table voltage_table;
struct pp_atomfwctrl_bios_boot_up_values boot_up_values;
struct vega10_odn_dpm_table *odn_table = &(data->odn_dpm_table);
result = vega10_setup_default_dpm_tables(hwmgr);
PP_ASSERT_WITH_CODE(!result,
"Failed to setup default DPM tables!",
return result);
if (!hwmgr->not_vf)
return 0;
/* initialize ODN table */
if (hwmgr->od_enabled) {
if (odn_table->max_vddc) {
data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_OD_UPDATE_MCLK;
vega10_check_dpm_table_updated(hwmgr);
} else {
vega10_odn_initial_default_setting(hwmgr);
}
}
pp_atomfwctrl_get_voltage_table_v4(hwmgr, VOLTAGE_TYPE_VDDC,
VOLTAGE_OBJ_SVID2, &voltage_table);
pp_table->MaxVidStep = voltage_table.max_vid_step;
pp_table->GfxDpmVoltageMode =
(uint8_t)(table_info->uc_gfx_dpm_voltage_mode);
pp_table->SocDpmVoltageMode =
(uint8_t)(table_info->uc_soc_dpm_voltage_mode);
pp_table->UclkDpmVoltageMode =
(uint8_t)(table_info->uc_uclk_dpm_voltage_mode);
pp_table->UvdDpmVoltageMode =
(uint8_t)(table_info->uc_uvd_dpm_voltage_mode);
pp_table->VceDpmVoltageMode =
(uint8_t)(table_info->uc_vce_dpm_voltage_mode);
pp_table->Mp0DpmVoltageMode =
(uint8_t)(table_info->uc_mp0_dpm_voltage_mode);
pp_table->DisplayDpmVoltageMode =
(uint8_t)(table_info->uc_dcef_dpm_voltage_mode);
data->vddc_voltage_table.psi0_enable = voltage_table.psi0_enable;
data->vddc_voltage_table.psi1_enable = voltage_table.psi1_enable;
if (data->registry_data.ulv_support &&
table_info->us_ulv_voltage_offset) {
result = vega10_populate_ulv_state(hwmgr);
PP_ASSERT_WITH_CODE(!result,
"Failed to initialize ULV state!",
return result);
}
result = vega10_populate_smc_link_levels(hwmgr);
PP_ASSERT_WITH_CODE(!result,
"Failed to initialize Link Level!",
return result);
result = vega10_populate_all_graphic_levels(hwmgr);
PP_ASSERT_WITH_CODE(!result,
"Failed to initialize Graphics Level!",
return result);
result = vega10_populate_all_memory_levels(hwmgr);
PP_ASSERT_WITH_CODE(!result,
"Failed to initialize Memory Level!",
return result);
vega10_populate_vddc_soc_levels(hwmgr);
result = vega10_populate_all_display_clock_levels(hwmgr);
PP_ASSERT_WITH_CODE(!result,
"Failed to initialize Display Level!",
return result);
result = vega10_populate_smc_vce_levels(hwmgr);
PP_ASSERT_WITH_CODE(!result,
"Failed to initialize VCE Level!",
return result);
result = vega10_populate_smc_uvd_levels(hwmgr);
PP_ASSERT_WITH_CODE(!result,
"Failed to initialize UVD Level!",
return result);
if (data->registry_data.clock_stretcher_support) {
result = vega10_populate_clock_stretcher_table(hwmgr);
PP_ASSERT_WITH_CODE(!result,
"Failed to populate Clock Stretcher Table!",
return result);
}
result = pp_atomfwctrl_get_vbios_bootup_values(hwmgr, &boot_up_values);
if (!result) {
data->vbios_boot_state.vddc = boot_up_values.usVddc;
data->vbios_boot_state.vddci = boot_up_values.usVddci;
data->vbios_boot_state.mvddc = boot_up_values.usMvddc;
data->vbios_boot_state.gfx_clock = boot_up_values.ulGfxClk;
data->vbios_boot_state.mem_clock = boot_up_values.ulUClk;
pp_atomfwctrl_get_clk_information_by_clkid(hwmgr,
SMU9_SYSPLL0_SOCCLK_ID, 0, &boot_up_values.ulSocClk);
pp_atomfwctrl_get_clk_information_by_clkid(hwmgr,
SMU9_SYSPLL0_DCEFCLK_ID, 0, &boot_up_values.ulDCEFClk);
data->vbios_boot_state.soc_clock = boot_up_values.ulSocClk;
data->vbios_boot_state.dcef_clock = boot_up_values.ulDCEFClk;
if (0 != boot_up_values.usVddc) {
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetFloorSocVoltage,
(boot_up_values.usVddc * 4),
NULL);
data->vbios_boot_state.bsoc_vddc_lock = true;
} else {
data->vbios_boot_state.bsoc_vddc_lock = false;
}
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetMinDeepSleepDcefclk,
(uint32_t)(data->vbios_boot_state.dcef_clock / 100),
NULL);
}
result = vega10_populate_avfs_parameters(hwmgr);
PP_ASSERT_WITH_CODE(!result,
"Failed to initialize AVFS Parameters!",
return result);
result = vega10_populate_gpio_parameters(hwmgr);
PP_ASSERT_WITH_CODE(!result,
"Failed to initialize GPIO Parameters!",
return result);
pp_table->GfxclkAverageAlpha = (uint8_t)
(data->gfxclk_average_alpha);
pp_table->SocclkAverageAlpha = (uint8_t)
(data->socclk_average_alpha);
pp_table->UclkAverageAlpha = (uint8_t)
(data->uclk_average_alpha);
pp_table->GfxActivityAverageAlpha = (uint8_t)
(data->gfx_activity_average_alpha);
vega10_populate_and_upload_avfs_fuse_override(hwmgr);
result = smum_smc_table_manager(hwmgr, (uint8_t *)pp_table, PPTABLE, false);
PP_ASSERT_WITH_CODE(!result,
"Failed to upload PPtable!", return result);
result = vega10_avfs_enable(hwmgr, true);
PP_ASSERT_WITH_CODE(!result, "Attempt to enable AVFS feature Failed!",
return result);
vega10_acg_enable(hwmgr);
return 0;
}
static int vega10_enable_thermal_protection(struct pp_hwmgr *hwmgr)
{
struct vega10_hwmgr *data = hwmgr->backend;
if (data->smu_features[GNLD_THERMAL].supported) {
if (data->smu_features[GNLD_THERMAL].enabled)
pr_info("THERMAL Feature Already enabled!");
PP_ASSERT_WITH_CODE(
!vega10_enable_smc_features(hwmgr,
true,
data->smu_features[GNLD_THERMAL].smu_feature_bitmap),
"Enable THERMAL Feature Failed!",
return -1);
data->smu_features[GNLD_THERMAL].enabled = true;
}
return 0;
}
static int vega10_disable_thermal_protection(struct pp_hwmgr *hwmgr)
{
struct vega10_hwmgr *data = hwmgr->backend;
if (data->smu_features[GNLD_THERMAL].supported) {
if (!data->smu_features[GNLD_THERMAL].enabled)
pr_info("THERMAL Feature Already disabled!");
PP_ASSERT_WITH_CODE(
!vega10_enable_smc_features(hwmgr,
false,
data->smu_features[GNLD_THERMAL].smu_feature_bitmap),
"disable THERMAL Feature Failed!",
return -1);
data->smu_features[GNLD_THERMAL].enabled = false;
}
return 0;
}
static int vega10_enable_vrhot_feature(struct pp_hwmgr *hwmgr)
{
struct vega10_hwmgr *data = hwmgr->backend;
if (PP_CAP(PHM_PlatformCaps_RegulatorHot)) {
if (data->smu_features[GNLD_VR0HOT].supported) {
PP_ASSERT_WITH_CODE(
!vega10_enable_smc_features(hwmgr,
true,
data->smu_features[GNLD_VR0HOT].smu_feature_bitmap),
"Attempt to Enable VR0 Hot feature Failed!",
return -1);
data->smu_features[GNLD_VR0HOT].enabled = true;
} else {
if (data->smu_features[GNLD_VR1HOT].supported) {
PP_ASSERT_WITH_CODE(
!vega10_enable_smc_features(hwmgr,
true,
data->smu_features[GNLD_VR1HOT].smu_feature_bitmap),
"Attempt to Enable VR0 Hot feature Failed!",
return -1);
data->smu_features[GNLD_VR1HOT].enabled = true;
}
}
}
return 0;
}
static int vega10_enable_ulv(struct pp_hwmgr *hwmgr)
{
struct vega10_hwmgr *data = hwmgr->backend;
if (data->registry_data.ulv_support) {
PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
true, data->smu_features[GNLD_ULV].smu_feature_bitmap),
"Enable ULV Feature Failed!",
return -1);
data->smu_features[GNLD_ULV].enabled = true;
}
return 0;
}
static int vega10_disable_ulv(struct pp_hwmgr *hwmgr)
{
struct vega10_hwmgr *data = hwmgr->backend;
if (data->registry_data.ulv_support) {
PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
false, data->smu_features[GNLD_ULV].smu_feature_bitmap),
"disable ULV Feature Failed!",
return -EINVAL);
data->smu_features[GNLD_ULV].enabled = false;
}
return 0;
}
static int vega10_enable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr)
{
struct vega10_hwmgr *data = hwmgr->backend;
if (data->smu_features[GNLD_DS_GFXCLK].supported) {
PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
true, data->smu_features[GNLD_DS_GFXCLK].smu_feature_bitmap),
"Attempt to Enable DS_GFXCLK Feature Failed!",
return -EINVAL);
data->smu_features[GNLD_DS_GFXCLK].enabled = true;
}
if (data->smu_features[GNLD_DS_SOCCLK].supported) {
PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
true, data->smu_features[GNLD_DS_SOCCLK].smu_feature_bitmap),
"Attempt to Enable DS_SOCCLK Feature Failed!",
return -EINVAL);
data->smu_features[GNLD_DS_SOCCLK].enabled = true;
}
if (data->smu_features[GNLD_DS_LCLK].supported) {
PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
true, data->smu_features[GNLD_DS_LCLK].smu_feature_bitmap),
"Attempt to Enable DS_LCLK Feature Failed!",
return -EINVAL);
data->smu_features[GNLD_DS_LCLK].enabled = true;
}
if (data->smu_features[GNLD_DS_DCEFCLK].supported) {
PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
true, data->smu_features[GNLD_DS_DCEFCLK].smu_feature_bitmap),
"Attempt to Enable DS_DCEFCLK Feature Failed!",
return -EINVAL);
data->smu_features[GNLD_DS_DCEFCLK].enabled = true;
}
return 0;
}
static int vega10_disable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr)
{
struct vega10_hwmgr *data = hwmgr->backend;
if (data->smu_features[GNLD_DS_GFXCLK].supported) {
PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
false, data->smu_features[GNLD_DS_GFXCLK].smu_feature_bitmap),
"Attempt to disable DS_GFXCLK Feature Failed!",
return -EINVAL);
data->smu_features[GNLD_DS_GFXCLK].enabled = false;
}
if (data->smu_features[GNLD_DS_SOCCLK].supported) {
PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
false, data->smu_features[GNLD_DS_SOCCLK].smu_feature_bitmap),
"Attempt to disable DS_ Feature Failed!",
return -EINVAL);
data->smu_features[GNLD_DS_SOCCLK].enabled = false;
}
if (data->smu_features[GNLD_DS_LCLK].supported) {
PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
false, data->smu_features[GNLD_DS_LCLK].smu_feature_bitmap),
"Attempt to disable DS_LCLK Feature Failed!",
return -EINVAL);
data->smu_features[GNLD_DS_LCLK].enabled = false;
}
if (data->smu_features[GNLD_DS_DCEFCLK].supported) {
PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
false, data->smu_features[GNLD_DS_DCEFCLK].smu_feature_bitmap),
"Attempt to disable DS_DCEFCLK Feature Failed!",
return -EINVAL);
data->smu_features[GNLD_DS_DCEFCLK].enabled = false;
}
return 0;
}
static int vega10_stop_dpm(struct pp_hwmgr *hwmgr, uint32_t bitmap)
{
struct vega10_hwmgr *data = hwmgr->backend;
uint32_t i, feature_mask = 0;
if (!hwmgr->not_vf)
return 0;
if(data->smu_features[GNLD_LED_DISPLAY].supported == true){
PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
false, data->smu_features[GNLD_LED_DISPLAY].smu_feature_bitmap),
"Attempt to disable LED DPM feature failed!", return -EINVAL);
data->smu_features[GNLD_LED_DISPLAY].enabled = false;
}
for (i = 0; i < GNLD_DPM_MAX; i++) {
if (data->smu_features[i].smu_feature_bitmap & bitmap) {
if (data->smu_features[i].supported) {
if (data->smu_features[i].enabled) {
feature_mask |= data->smu_features[i].
smu_feature_bitmap;
data->smu_features[i].enabled = false;
}
}
}
}
vega10_enable_smc_features(hwmgr, false, feature_mask);
return 0;
}
/**
* @brief Tell SMC to enabled the supported DPMs.
*
* @param hwmgr - the address of the powerplay hardware manager.
* @Param bitmap - bitmap for the features to enabled.
* @return 0 on at least one DPM is successfully enabled.
*/
static int vega10_start_dpm(struct pp_hwmgr *hwmgr, uint32_t bitmap)
{
struct vega10_hwmgr *data = hwmgr->backend;
uint32_t i, feature_mask = 0;
for (i = 0; i < GNLD_DPM_MAX; i++) {
if (data->smu_features[i].smu_feature_bitmap & bitmap) {
if (data->smu_features[i].supported) {
if (!data->smu_features[i].enabled) {
feature_mask |= data->smu_features[i].
smu_feature_bitmap;
data->smu_features[i].enabled = true;
}
}
}
}
if (vega10_enable_smc_features(hwmgr,
true, feature_mask)) {
for (i = 0; i < GNLD_DPM_MAX; i++) {
if (data->smu_features[i].smu_feature_bitmap &
feature_mask)
data->smu_features[i].enabled = false;
}
}
if(data->smu_features[GNLD_LED_DISPLAY].supported == true){
PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
true, data->smu_features[GNLD_LED_DISPLAY].smu_feature_bitmap),
"Attempt to Enable LED DPM feature Failed!", return -EINVAL);
data->smu_features[GNLD_LED_DISPLAY].enabled = true;
}
if (data->vbios_boot_state.bsoc_vddc_lock) {
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetFloorSocVoltage, 0,
NULL);
data->vbios_boot_state.bsoc_vddc_lock = false;
}
if (PP_CAP(PHM_PlatformCaps_Falcon_QuickTransition)) {
if (data->smu_features[GNLD_ACDC].supported) {
PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
true, data->smu_features[GNLD_ACDC].smu_feature_bitmap),
"Attempt to Enable DS_GFXCLK Feature Failed!",
return -1);
data->smu_features[GNLD_ACDC].enabled = true;
}
}
return 0;
}
static int vega10_enable_disable_PCC_limit_feature(struct pp_hwmgr *hwmgr, bool enable)
{
struct vega10_hwmgr *data = hwmgr->backend;
if (data->smu_features[GNLD_PCC_LIMIT].supported) {
if (enable == data->smu_features[GNLD_PCC_LIMIT].enabled)
pr_info("GNLD_PCC_LIMIT has been %s \n", enable ? "enabled" : "disabled");
PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
enable, data->smu_features[GNLD_PCC_LIMIT].smu_feature_bitmap),
"Attempt to Enable PCC Limit feature Failed!",
return -EINVAL);
data->smu_features[GNLD_PCC_LIMIT].enabled = enable;
}
return 0;
}
static int vega10_enable_dpm_tasks(struct pp_hwmgr *hwmgr)
{
struct vega10_hwmgr *data = hwmgr->backend;
int tmp_result, result = 0;
if (hwmgr->not_vf) {
vega10_enable_disable_PCC_limit_feature(hwmgr, true);
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_ConfigureTelemetry, data->config_telemetry,
NULL);
tmp_result = vega10_construct_voltage_tables(hwmgr);
PP_ASSERT_WITH_CODE(!tmp_result,
"Failed to construct voltage tables!",
result = tmp_result);
}
if (hwmgr->not_vf || hwmgr->pp_one_vf) {
tmp_result = vega10_init_smc_table(hwmgr);
PP_ASSERT_WITH_CODE(!tmp_result,
"Failed to initialize SMC table!",
result = tmp_result);
}
if (hwmgr->not_vf) {
if (PP_CAP(PHM_PlatformCaps_ThermalController)) {
tmp_result = vega10_enable_thermal_protection(hwmgr);
PP_ASSERT_WITH_CODE(!tmp_result,
"Failed to enable thermal protection!",
result = tmp_result);
}
tmp_result = vega10_enable_vrhot_feature(hwmgr);
PP_ASSERT_WITH_CODE(!tmp_result,
"Failed to enable VR hot feature!",
result = tmp_result);
tmp_result = vega10_enable_deep_sleep_master_switch(hwmgr);
PP_ASSERT_WITH_CODE(!tmp_result,
"Failed to enable deep sleep master switch!",
result = tmp_result);
}
if (hwmgr->not_vf) {
tmp_result = vega10_start_dpm(hwmgr, SMC_DPM_FEATURES);
PP_ASSERT_WITH_CODE(!tmp_result,
"Failed to start DPM!", result = tmp_result);
}
if (hwmgr->not_vf) {
/* enable didt, do not abort if failed didt */
tmp_result = vega10_enable_didt_config(hwmgr);
PP_ASSERT(!tmp_result,
"Failed to enable didt config!");
}
tmp_result = vega10_enable_power_containment(hwmgr);
PP_ASSERT_WITH_CODE(!tmp_result,
"Failed to enable power containment!",
result = tmp_result);
if (hwmgr->not_vf) {
tmp_result = vega10_power_control_set_level(hwmgr);
PP_ASSERT_WITH_CODE(!tmp_result,
"Failed to power control set level!",
result = tmp_result);
tmp_result = vega10_enable_ulv(hwmgr);
PP_ASSERT_WITH_CODE(!tmp_result,
"Failed to enable ULV!",
result = tmp_result);
}
return result;
}
static int vega10_get_power_state_size(struct pp_hwmgr *hwmgr)
{
return sizeof(struct vega10_power_state);
}
static int vega10_get_pp_table_entry_callback_func(struct pp_hwmgr *hwmgr,
void *state, struct pp_power_state *power_state,
void *pp_table, uint32_t classification_flag)
{
ATOM_Vega10_GFXCLK_Dependency_Record_V2 *patom_record_V2;
struct vega10_power_state *vega10_power_state =
cast_phw_vega10_power_state(&(power_state->hardware));
struct vega10_performance_level *performance_level;
ATOM_Vega10_State *state_entry = (ATOM_Vega10_State *)state;
ATOM_Vega10_POWERPLAYTABLE *powerplay_table =
(ATOM_Vega10_POWERPLAYTABLE *)pp_table;
ATOM_Vega10_SOCCLK_Dependency_Table *socclk_dep_table =
(ATOM_Vega10_SOCCLK_Dependency_Table *)
(((unsigned long)powerplay_table) +
le16_to_cpu(powerplay_table->usSocclkDependencyTableOffset));
ATOM_Vega10_GFXCLK_Dependency_Table *gfxclk_dep_table =
(ATOM_Vega10_GFXCLK_Dependency_Table *)
(((unsigned long)powerplay_table) +
le16_to_cpu(powerplay_table->usGfxclkDependencyTableOffset));
ATOM_Vega10_MCLK_Dependency_Table *mclk_dep_table =
(ATOM_Vega10_MCLK_Dependency_Table *)
(((unsigned long)powerplay_table) +
le16_to_cpu(powerplay_table->usMclkDependencyTableOffset));
/* The following fields are not initialized here:
* id orderedList allStatesList
*/
power_state->classification.ui_label =
(le16_to_cpu(state_entry->usClassification) &
ATOM_PPLIB_CLASSIFICATION_UI_MASK) >>
ATOM_PPLIB_CLASSIFICATION_UI_SHIFT;
power_state->classification.flags = classification_flag;
/* NOTE: There is a classification2 flag in BIOS
* that is not being used right now
*/
power_state->classification.temporary_state = false;
power_state->classification.to_be_deleted = false;
power_state->validation.disallowOnDC =
((le32_to_cpu(state_entry->ulCapsAndSettings) &
ATOM_Vega10_DISALLOW_ON_DC) != 0);
power_state->display.disableFrameModulation = false;
power_state->display.limitRefreshrate = false;
power_state->display.enableVariBright =
((le32_to_cpu(state_entry->ulCapsAndSettings) &
ATOM_Vega10_ENABLE_VARIBRIGHT) != 0);
power_state->validation.supportedPowerLevels = 0;
power_state->uvd_clocks.VCLK = 0;
power_state->uvd_clocks.DCLK = 0;
power_state->temperatures.min = 0;
power_state->temperatures.max = 0;
performance_level = &(vega10_power_state->performance_levels
[vega10_power_state->performance_level_count++]);
PP_ASSERT_WITH_CODE(
(vega10_power_state->performance_level_count <
NUM_GFXCLK_DPM_LEVELS),
"Performance levels exceeds SMC limit!",
return -1);
PP_ASSERT_WITH_CODE(
(vega10_power_state->performance_level_count <=
hwmgr->platform_descriptor.
hardwareActivityPerformanceLevels),
"Performance levels exceeds Driver limit!",
return -1);
/* Performance levels are arranged from low to high. */
performance_level->soc_clock = socclk_dep_table->entries
[state_entry->ucSocClockIndexLow].ulClk;
performance_level->gfx_clock = gfxclk_dep_table->entries
[state_entry->ucGfxClockIndexLow].ulClk;
performance_level->mem_clock = mclk_dep_table->entries
[state_entry->ucMemClockIndexLow].ulMemClk;
performance_level = &(vega10_power_state->performance_levels
[vega10_power_state->performance_level_count++]);
performance_level->soc_clock = socclk_dep_table->entries
[state_entry->ucSocClockIndexHigh].ulClk;
if (gfxclk_dep_table->ucRevId == 0) {
/* under vega10 pp one vf mode, the gfx clk dpm need be lower
* to level-4 due to the limited 110w-power
*/
if (hwmgr->pp_one_vf && (state_entry->ucGfxClockIndexHigh > 0))
performance_level->gfx_clock =
gfxclk_dep_table->entries[4].ulClk;
else
performance_level->gfx_clock = gfxclk_dep_table->entries
[state_entry->ucGfxClockIndexHigh].ulClk;
} else if (gfxclk_dep_table->ucRevId == 1) {
patom_record_V2 = (ATOM_Vega10_GFXCLK_Dependency_Record_V2 *)gfxclk_dep_table->entries;
if (hwmgr->pp_one_vf && (state_entry->ucGfxClockIndexHigh > 0))
performance_level->gfx_clock = patom_record_V2[4].ulClk;
else
performance_level->gfx_clock =
patom_record_V2[state_entry->ucGfxClockIndexHigh].ulClk;
}
performance_level->mem_clock = mclk_dep_table->entries
[state_entry->ucMemClockIndexHigh].ulMemClk;
return 0;
}
static int vega10_get_pp_table_entry(struct pp_hwmgr *hwmgr,
unsigned long entry_index, struct pp_power_state *state)
{
int result;
struct vega10_power_state *ps;
state->hardware.magic = PhwVega10_Magic;
ps = cast_phw_vega10_power_state(&state->hardware);
result = vega10_get_powerplay_table_entry(hwmgr, entry_index, state,
vega10_get_pp_table_entry_callback_func);
/*
* This is the earliest time we have all the dependency table
* and the VBIOS boot state
*/
/* set DC compatible flag if this state supports DC */
if (!state->validation.disallowOnDC)
ps->dc_compatible = true;
ps->uvd_clks.vclk = state->uvd_clocks.VCLK;
ps->uvd_clks.dclk = state->uvd_clocks.DCLK;
return 0;
}
static int vega10_patch_boot_state(struct pp_hwmgr *hwmgr,
struct pp_hw_power_state *hw_ps)
{
return 0;
}
static int vega10_apply_state_adjust_rules(struct pp_hwmgr *hwmgr,
struct pp_power_state *request_ps,
const struct pp_power_state *current_ps)
{
struct amdgpu_device *adev = hwmgr->adev;
struct vega10_power_state *vega10_ps =
cast_phw_vega10_power_state(&request_ps->hardware);
uint32_t sclk;
uint32_t mclk;
struct PP_Clocks minimum_clocks = {0};
bool disable_mclk_switching;
bool disable_mclk_switching_for_frame_lock;
bool disable_mclk_switching_for_vr;
bool force_mclk_high;
const struct phm_clock_and_voltage_limits *max_limits;
uint32_t i;
struct vega10_hwmgr *data = hwmgr->backend;
struct phm_ppt_v2_information *table_info =
(struct phm_ppt_v2_information *)(hwmgr->pptable);
int32_t count;
uint32_t stable_pstate_sclk_dpm_percentage;
uint32_t stable_pstate_sclk = 0, stable_pstate_mclk = 0;
uint32_t latency;
data->battery_state = (PP_StateUILabel_Battery ==
request_ps->classification.ui_label);
if (vega10_ps->performance_level_count != 2)
pr_info("VI should always have 2 performance levels");
max_limits = adev->pm.ac_power ?
&(hwmgr->dyn_state.max_clock_voltage_on_ac) :
&(hwmgr->dyn_state.max_clock_voltage_on_dc);
/* Cap clock DPM tables at DC MAX if it is in DC. */
if (!adev->pm.ac_power) {
for (i = 0; i < vega10_ps->performance_level_count; i++) {
if (vega10_ps->performance_levels[i].mem_clock >
max_limits->mclk)
vega10_ps->performance_levels[i].mem_clock =
max_limits->mclk;
if (vega10_ps->performance_levels[i].gfx_clock >
max_limits->sclk)
vega10_ps->performance_levels[i].gfx_clock =
max_limits->sclk;
}
}
/* result = PHM_CheckVBlankTime(hwmgr, &vblankTooShort);*/
minimum_clocks.engineClock = hwmgr->display_config->min_core_set_clock;
minimum_clocks.memoryClock = hwmgr->display_config->min_mem_set_clock;
if (PP_CAP(PHM_PlatformCaps_StablePState)) {
stable_pstate_sclk_dpm_percentage =
data->registry_data.stable_pstate_sclk_dpm_percentage;
PP_ASSERT_WITH_CODE(
data->registry_data.stable_pstate_sclk_dpm_percentage >= 1 &&
data->registry_data.stable_pstate_sclk_dpm_percentage <= 100,
"percent sclk value must range from 1% to 100%, setting default value",
stable_pstate_sclk_dpm_percentage = 75);
max_limits = &(hwmgr->dyn_state.max_clock_voltage_on_ac);
stable_pstate_sclk = (max_limits->sclk *
stable_pstate_sclk_dpm_percentage) / 100;
for (count = table_info->vdd_dep_on_sclk->count - 1;
count >= 0; count--) {
if (stable_pstate_sclk >=
table_info->vdd_dep_on_sclk->entries[count].clk) {
stable_pstate_sclk =
table_info->vdd_dep_on_sclk->entries[count].clk;
break;
}
}
if (count < 0)
stable_pstate_sclk = table_info->vdd_dep_on_sclk->entries[0].clk;
stable_pstate_mclk = max_limits->mclk;
minimum_clocks.engineClock = stable_pstate_sclk;
minimum_clocks.memoryClock = stable_pstate_mclk;
}
disable_mclk_switching_for_frame_lock =
PP_CAP(PHM_PlatformCaps_DisableMclkSwitchingForFrameLock);
disable_mclk_switching_for_vr =
PP_CAP(PHM_PlatformCaps_DisableMclkSwitchForVR);
force_mclk_high = PP_CAP(PHM_PlatformCaps_ForceMclkHigh);
if (hwmgr->display_config->num_display == 0)
disable_mclk_switching = false;
else
disable_mclk_switching = ((1 < hwmgr->display_config->num_display) &&
!hwmgr->display_config->multi_monitor_in_sync) ||
disable_mclk_switching_for_frame_lock ||
disable_mclk_switching_for_vr ||
force_mclk_high;
sclk = vega10_ps->performance_levels[0].gfx_clock;
mclk = vega10_ps->performance_levels[0].mem_clock;
if (sclk < minimum_clocks.engineClock)
sclk = (minimum_clocks.engineClock > max_limits->sclk) ?
max_limits->sclk : minimum_clocks.engineClock;
if (mclk < minimum_clocks.memoryClock)
mclk = (minimum_clocks.memoryClock > max_limits->mclk) ?
max_limits->mclk : minimum_clocks.memoryClock;
vega10_ps->performance_levels[0].gfx_clock = sclk;
vega10_ps->performance_levels[0].mem_clock = mclk;
if (vega10_ps->performance_levels[1].gfx_clock <
vega10_ps->performance_levels[0].gfx_clock)
vega10_ps->performance_levels[0].gfx_clock =
vega10_ps->performance_levels[1].gfx_clock;
if (disable_mclk_switching) {
/* Set Mclk the max of level 0 and level 1 */
if (mclk < vega10_ps->performance_levels[1].mem_clock)
mclk = vega10_ps->performance_levels[1].mem_clock;
/* Find the lowest MCLK frequency that is within
* the tolerable latency defined in DAL
*/
latency = hwmgr->display_config->dce_tolerable_mclk_in_active_latency;
for (i = 0; i < data->mclk_latency_table.count; i++) {
if ((data->mclk_latency_table.entries[i].latency <= latency) &&
(data->mclk_latency_table.entries[i].frequency >=
vega10_ps->performance_levels[0].mem_clock) &&
(data->mclk_latency_table.entries[i].frequency <=
vega10_ps->performance_levels[1].mem_clock))
mclk = data->mclk_latency_table.entries[i].frequency;
}
vega10_ps->performance_levels[0].mem_clock = mclk;
} else {
if (vega10_ps->performance_levels[1].mem_clock <
vega10_ps->performance_levels[0].mem_clock)
vega10_ps->performance_levels[0].mem_clock =
vega10_ps->performance_levels[1].mem_clock;
}
if (PP_CAP(PHM_PlatformCaps_StablePState)) {
for (i = 0; i < vega10_ps->performance_level_count; i++) {
vega10_ps->performance_levels[i].gfx_clock = stable_pstate_sclk;
vega10_ps->performance_levels[i].mem_clock = stable_pstate_mclk;
}
}
return 0;
}
static int vega10_find_dpm_states_clocks_in_dpm_table(struct pp_hwmgr *hwmgr, const void *input)
{
struct vega10_hwmgr *data = hwmgr->backend;
const struct phm_set_power_state_input *states =
(const struct phm_set_power_state_input *)input;
const struct vega10_power_state *vega10_ps =
cast_const_phw_vega10_power_state(states->pnew_state);
struct vega10_single_dpm_table *sclk_table = &(data->dpm_table.gfx_table);
uint32_t sclk = vega10_ps->performance_levels
[vega10_ps->performance_level_count - 1].gfx_clock;
struct vega10_single_dpm_table *mclk_table = &(data->dpm_table.mem_table);
uint32_t mclk = vega10_ps->performance_levels
[vega10_ps->performance_level_count - 1].mem_clock;
uint32_t i;
for (i = 0; i < sclk_table->count; i++) {
if (sclk == sclk_table->dpm_levels[i].value)
break;
}
if (i >= sclk_table->count) {
if (sclk > sclk_table->dpm_levels[i-1].value) {
data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_SCLK;
sclk_table->dpm_levels[i-1].value = sclk;
}
}
for (i = 0; i < mclk_table->count; i++) {
if (mclk == mclk_table->dpm_levels[i].value)
break;
}
if (i >= mclk_table->count) {
if (mclk > mclk_table->dpm_levels[i-1].value) {
data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_MCLK;
mclk_table->dpm_levels[i-1].value = mclk;
}
}
if (data->display_timing.num_existing_displays != hwmgr->display_config->num_display)
data->need_update_dpm_table |= DPMTABLE_UPDATE_MCLK;
return 0;
}
static int vega10_populate_and_upload_sclk_mclk_dpm_levels(
struct pp_hwmgr *hwmgr, const void *input)
{
int result = 0;
struct vega10_hwmgr *data = hwmgr->backend;
struct vega10_dpm_table *dpm_table = &data->dpm_table;
struct vega10_odn_dpm_table *odn_table = &data->odn_dpm_table;
struct vega10_odn_clock_voltage_dependency_table *odn_clk_table = &odn_table->vdd_dep_on_sclk;
int count;
if (!data->need_update_dpm_table)
return 0;
if (hwmgr->od_enabled && data->need_update_dpm_table & DPMTABLE_OD_UPDATE_SCLK) {
for (count = 0; count < dpm_table->gfx_table.count; count++)
dpm_table->gfx_table.dpm_levels[count].value = odn_clk_table->entries[count].clk;
}
odn_clk_table = &odn_table->vdd_dep_on_mclk;
if (hwmgr->od_enabled && data->need_update_dpm_table & DPMTABLE_OD_UPDATE_MCLK) {
for (count = 0; count < dpm_table->mem_table.count; count++)
dpm_table->mem_table.dpm_levels[count].value = odn_clk_table->entries[count].clk;
}
if (data->need_update_dpm_table &
(DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_UPDATE_SCLK | DPMTABLE_UPDATE_SOCCLK)) {
result = vega10_populate_all_graphic_levels(hwmgr);
PP_ASSERT_WITH_CODE((0 == result),
"Failed to populate SCLK during PopulateNewDPMClocksStates Function!",
return result);
}
if (data->need_update_dpm_table &
(DPMTABLE_OD_UPDATE_MCLK | DPMTABLE_UPDATE_MCLK)) {
result = vega10_populate_all_memory_levels(hwmgr);
PP_ASSERT_WITH_CODE((0 == result),
"Failed to populate MCLK during PopulateNewDPMClocksStates Function!",
return result);
}
vega10_populate_vddc_soc_levels(hwmgr);
return result;
}
static int vega10_trim_single_dpm_states(struct pp_hwmgr *hwmgr,
struct vega10_single_dpm_table *dpm_table,
uint32_t low_limit, uint32_t high_limit)
{
uint32_t i;
for (i = 0; i < dpm_table->count; i++) {
if ((dpm_table->dpm_levels[i].value < low_limit) ||
(dpm_table->dpm_levels[i].value > high_limit))
dpm_table->dpm_levels[i].enabled = false;
else
dpm_table->dpm_levels[i].enabled = true;
}
return 0;
}
static int vega10_trim_single_dpm_states_with_mask(struct pp_hwmgr *hwmgr,
struct vega10_single_dpm_table *dpm_table,
uint32_t low_limit, uint32_t high_limit,
uint32_t disable_dpm_mask)
{
uint32_t i;
for (i = 0; i < dpm_table->count; i++) {
if ((dpm_table->dpm_levels[i].value < low_limit) ||
(dpm_table->dpm_levels[i].value > high_limit))
dpm_table->dpm_levels[i].enabled = false;
else if (!((1 << i) & disable_dpm_mask))
dpm_table->dpm_levels[i].enabled = false;
else
dpm_table->dpm_levels[i].enabled = true;
}
return 0;
}
static int vega10_trim_dpm_states(struct pp_hwmgr *hwmgr,
const struct vega10_power_state *vega10_ps)
{
struct vega10_hwmgr *data = hwmgr->backend;
uint32_t high_limit_count;
PP_ASSERT_WITH_CODE((vega10_ps->performance_level_count >= 1),
"power state did not have any performance level",
return -1);
high_limit_count = (vega10_ps->performance_level_count == 1) ? 0 : 1;
vega10_trim_single_dpm_states(hwmgr,
&(data->dpm_table.soc_table),
vega10_ps->performance_levels[0].soc_clock,
vega10_ps->performance_levels[high_limit_count].soc_clock);
vega10_trim_single_dpm_states_with_mask(hwmgr,
&(data->dpm_table.gfx_table),
vega10_ps->performance_levels[0].gfx_clock,
vega10_ps->performance_levels[high_limit_count].gfx_clock,
data->disable_dpm_mask);
vega10_trim_single_dpm_states(hwmgr,
&(data->dpm_table.mem_table),
vega10_ps->performance_levels[0].mem_clock,
vega10_ps->performance_levels[high_limit_count].mem_clock);
return 0;
}
static uint32_t vega10_find_lowest_dpm_level(
struct vega10_single_dpm_table *table)
{
uint32_t i;
for (i = 0; i < table->count; i++) {
if (table->dpm_levels[i].enabled)
break;
}
return i;
}
static uint32_t vega10_find_highest_dpm_level(
struct vega10_single_dpm_table *table)
{
uint32_t i = 0;
if (table->count <= MAX_REGULAR_DPM_NUMBER) {
for (i = table->count; i > 0; i--) {
if (table->dpm_levels[i - 1].enabled)
return i - 1;
}
} else {
pr_info("DPM Table Has Too Many Entries!");
return MAX_REGULAR_DPM_NUMBER - 1;
}
return i;
}
static void vega10_apply_dal_minimum_voltage_request(
struct pp_hwmgr *hwmgr)
{
return;
}
static int vega10_get_soc_index_for_max_uclk(struct pp_hwmgr *hwmgr)
{
struct phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_table_on_mclk;
struct phm_ppt_v2_information *table_info =
(struct phm_ppt_v2_information *)(hwmgr->pptable);
vdd_dep_table_on_mclk = table_info->vdd_dep_on_mclk;
return vdd_dep_table_on_mclk->entries[NUM_UCLK_DPM_LEVELS - 1].vddInd + 1;
}
static int vega10_upload_dpm_bootup_level(struct pp_hwmgr *hwmgr)
{
struct vega10_hwmgr *data = hwmgr->backend;
uint32_t socclk_idx;
vega10_apply_dal_minimum_voltage_request(hwmgr);
if (!data->registry_data.sclk_dpm_key_disabled) {
if (data->smc_state_table.gfx_boot_level !=
data->dpm_table.gfx_table.dpm_state.soft_min_level) {
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetSoftMinGfxclkByIndex,
data->smc_state_table.gfx_boot_level,
NULL);
data->dpm_table.gfx_table.dpm_state.soft_min_level =
data->smc_state_table.gfx_boot_level;
}
}
if (!data->registry_data.mclk_dpm_key_disabled) {
if (data->smc_state_table.mem_boot_level !=
data->dpm_table.mem_table.dpm_state.soft_min_level) {
if ((data->smc_state_table.mem_boot_level == NUM_UCLK_DPM_LEVELS - 1)
&& hwmgr->not_vf) {
socclk_idx = vega10_get_soc_index_for_max_uclk(hwmgr);
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetSoftMinSocclkByIndex,
socclk_idx,
NULL);
} else {
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetSoftMinUclkByIndex,
data->smc_state_table.mem_boot_level,
NULL);
}
data->dpm_table.mem_table.dpm_state.soft_min_level =
data->smc_state_table.mem_boot_level;
}
}
if (!hwmgr->not_vf)
return 0;
if (!data->registry_data.socclk_dpm_key_disabled) {
if (data->smc_state_table.soc_boot_level !=
data->dpm_table.soc_table.dpm_state.soft_min_level) {
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetSoftMinSocclkByIndex,
data->smc_state_table.soc_boot_level,
NULL);
data->dpm_table.soc_table.dpm_state.soft_min_level =
data->smc_state_table.soc_boot_level;
}
}
return 0;
}
static int vega10_upload_dpm_max_level(struct pp_hwmgr *hwmgr)
{
struct vega10_hwmgr *data = hwmgr->backend;
vega10_apply_dal_minimum_voltage_request(hwmgr);
if (!data->registry_data.sclk_dpm_key_disabled) {
if (data->smc_state_table.gfx_max_level !=
data->dpm_table.gfx_table.dpm_state.soft_max_level) {
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetSoftMaxGfxclkByIndex,
data->smc_state_table.gfx_max_level,
NULL);
data->dpm_table.gfx_table.dpm_state.soft_max_level =
data->smc_state_table.gfx_max_level;
}
}
if (!data->registry_data.mclk_dpm_key_disabled) {
if (data->smc_state_table.mem_max_level !=
data->dpm_table.mem_table.dpm_state.soft_max_level) {
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetSoftMaxUclkByIndex,
data->smc_state_table.mem_max_level,
NULL);
data->dpm_table.mem_table.dpm_state.soft_max_level =
data->smc_state_table.mem_max_level;
}
}
if (!hwmgr->not_vf)
return 0;
if (!data->registry_data.socclk_dpm_key_disabled) {
if (data->smc_state_table.soc_max_level !=
data->dpm_table.soc_table.dpm_state.soft_max_level) {
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetSoftMaxSocclkByIndex,
data->smc_state_table.soc_max_level,
NULL);
data->dpm_table.soc_table.dpm_state.soft_max_level =
data->smc_state_table.soc_max_level;
}
}
return 0;
}
static int vega10_generate_dpm_level_enable_mask(
struct pp_hwmgr *hwmgr, const void *input)
{
struct vega10_hwmgr *data = hwmgr->backend;
const struct phm_set_power_state_input *states =
(const struct phm_set_power_state_input *)input;
const struct vega10_power_state *vega10_ps =
cast_const_phw_vega10_power_state(states->pnew_state);
int i;
PP_ASSERT_WITH_CODE(!vega10_trim_dpm_states(hwmgr, vega10_ps),
"Attempt to Trim DPM States Failed!",
return -1);
data->smc_state_table.gfx_boot_level =
vega10_find_lowest_dpm_level(&(data->dpm_table.gfx_table));
data->smc_state_table.gfx_max_level =
vega10_find_highest_dpm_level(&(data->dpm_table.gfx_table));
data->smc_state_table.mem_boot_level =
vega10_find_lowest_dpm_level(&(data->dpm_table.mem_table));
data->smc_state_table.mem_max_level =
vega10_find_highest_dpm_level(&(data->dpm_table.mem_table));
data->smc_state_table.soc_boot_level =
vega10_find_lowest_dpm_level(&(data->dpm_table.soc_table));
data->smc_state_table.soc_max_level =
vega10_find_highest_dpm_level(&(data->dpm_table.soc_table));
PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
"Attempt to upload DPM Bootup Levels Failed!",
return -1);
PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
"Attempt to upload DPM Max Levels Failed!",
return -1);
for(i = data->smc_state_table.gfx_boot_level; i < data->smc_state_table.gfx_max_level; i++)
data->dpm_table.gfx_table.dpm_levels[i].enabled = true;
for(i = data->smc_state_table.mem_boot_level; i < data->smc_state_table.mem_max_level; i++)
data->dpm_table.mem_table.dpm_levels[i].enabled = true;
for (i = data->smc_state_table.soc_boot_level; i < data->smc_state_table.soc_max_level; i++)
data->dpm_table.soc_table.dpm_levels[i].enabled = true;
return 0;
}
int vega10_enable_disable_vce_dpm(struct pp_hwmgr *hwmgr, bool enable)
{
struct vega10_hwmgr *data = hwmgr->backend;
if (data->smu_features[GNLD_DPM_VCE].supported) {
PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
enable,
data->smu_features[GNLD_DPM_VCE].smu_feature_bitmap),
"Attempt to Enable/Disable DPM VCE Failed!",
return -1);
data->smu_features[GNLD_DPM_VCE].enabled = enable;
}
return 0;
}
static int vega10_update_sclk_threshold(struct pp_hwmgr *hwmgr)
{
struct vega10_hwmgr *data = hwmgr->backend;
uint32_t low_sclk_interrupt_threshold = 0;
if (PP_CAP(PHM_PlatformCaps_SclkThrottleLowNotification) &&
(data->low_sclk_interrupt_threshold != 0)) {
low_sclk_interrupt_threshold =
data->low_sclk_interrupt_threshold;
data->smc_state_table.pp_table.LowGfxclkInterruptThreshold =
cpu_to_le32(low_sclk_interrupt_threshold);
/* This message will also enable SmcToHost Interrupt */
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetLowGfxclkInterruptThreshold,
(uint32_t)low_sclk_interrupt_threshold,
NULL);
}
return 0;
}
static int vega10_set_power_state_tasks(struct pp_hwmgr *hwmgr,
const void *input)
{
int tmp_result, result = 0;
struct vega10_hwmgr *data = hwmgr->backend;
PPTable_t *pp_table = &(data->smc_state_table.pp_table);
tmp_result = vega10_find_dpm_states_clocks_in_dpm_table(hwmgr, input);
PP_ASSERT_WITH_CODE(!tmp_result,
"Failed to find DPM states clocks in DPM table!",
result = tmp_result);
tmp_result = vega10_populate_and_upload_sclk_mclk_dpm_levels(hwmgr, input);
PP_ASSERT_WITH_CODE(!tmp_result,
"Failed to populate and upload SCLK MCLK DPM levels!",
result = tmp_result);
tmp_result = vega10_generate_dpm_level_enable_mask(hwmgr, input);
PP_ASSERT_WITH_CODE(!tmp_result,
"Failed to generate DPM level enabled mask!",
result = tmp_result);
tmp_result = vega10_update_sclk_threshold(hwmgr);
PP_ASSERT_WITH_CODE(!tmp_result,
"Failed to update SCLK threshold!",
result = tmp_result);
result = smum_smc_table_manager(hwmgr, (uint8_t *)pp_table, PPTABLE, false);
PP_ASSERT_WITH_CODE(!result,
"Failed to upload PPtable!", return result);
/*
* If a custom pp table is loaded, set DPMTABLE_OD_UPDATE_VDDC flag.
* That effectively disables AVFS feature.
*/
if(hwmgr->hardcode_pp_table != NULL)
data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_VDDC;
vega10_update_avfs(hwmgr);
/*
* Clear all OD flags except DPMTABLE_OD_UPDATE_VDDC.
* That will help to keep AVFS disabled.
*/
data->need_update_dpm_table &= DPMTABLE_OD_UPDATE_VDDC;
return 0;
}
static uint32_t vega10_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low)
{
struct pp_power_state *ps;
struct vega10_power_state *vega10_ps;
if (hwmgr == NULL)
return -EINVAL;
ps = hwmgr->request_ps;
if (ps == NULL)
return -EINVAL;
vega10_ps = cast_phw_vega10_power_state(&ps->hardware);
if (low)
return vega10_ps->performance_levels[0].gfx_clock;
else
return vega10_ps->performance_levels
[vega10_ps->performance_level_count - 1].gfx_clock;
}
static uint32_t vega10_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low)
{
struct pp_power_state *ps;
struct vega10_power_state *vega10_ps;
if (hwmgr == NULL)
return -EINVAL;
ps = hwmgr->request_ps;
if (ps == NULL)
return -EINVAL;
vega10_ps = cast_phw_vega10_power_state(&ps->hardware);
if (low)
return vega10_ps->performance_levels[0].mem_clock;
else
return vega10_ps->performance_levels
[vega10_ps->performance_level_count-1].mem_clock;
}
static int vega10_get_gpu_power(struct pp_hwmgr *hwmgr,
uint32_t *query)
{
uint32_t value;
if (!query)
return -EINVAL;
smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrPkgPwr, &value);
/* SMC returning actual watts, keep consistent with legacy asics, low 8 bit as 8 fractional bits */
*query = value << 8;
return 0;
}
static int vega10_read_sensor(struct pp_hwmgr *hwmgr, int idx,
void *value, int *size)
{
struct amdgpu_device *adev = hwmgr->adev;
uint32_t sclk_mhz, mclk_idx, activity_percent = 0;
struct vega10_hwmgr *data = hwmgr->backend;
struct vega10_dpm_table *dpm_table = &data->dpm_table;
int ret = 0;
uint32_t val_vid;
switch (idx) {
case AMDGPU_PP_SENSOR_GFX_SCLK:
smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetAverageGfxclkActualFrequency, &sclk_mhz);
*((uint32_t *)value) = sclk_mhz * 100;
break;
case AMDGPU_PP_SENSOR_GFX_MCLK:
smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentUclkIndex, &mclk_idx);
if (mclk_idx < dpm_table->mem_table.count) {
*((uint32_t *)value) = dpm_table->mem_table.dpm_levels[mclk_idx].value;
*size = 4;
} else {
ret = -EINVAL;
}
break;
case AMDGPU_PP_SENSOR_GPU_LOAD:
smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_GetAverageGfxActivity, 0,
&activity_percent);
*((uint32_t *)value) = activity_percent > 100 ? 100 : activity_percent;
*size = 4;
break;
case AMDGPU_PP_SENSOR_GPU_TEMP:
*((uint32_t *)value) = vega10_thermal_get_temperature(hwmgr);
*size = 4;
break;
case AMDGPU_PP_SENSOR_HOTSPOT_TEMP:
smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetTemperatureHotspot, (uint32_t *)value);
*((uint32_t *)value) = *((uint32_t *)value) *
PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
*size = 4;
break;
case AMDGPU_PP_SENSOR_MEM_TEMP:
smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetTemperatureHBM, (uint32_t *)value);
*((uint32_t *)value) = *((uint32_t *)value) *
PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
*size = 4;
break;
case AMDGPU_PP_SENSOR_UVD_POWER:
*((uint32_t *)value) = data->uvd_power_gated ? 0 : 1;
*size = 4;
break;
case AMDGPU_PP_SENSOR_VCE_POWER:
*((uint32_t *)value) = data->vce_power_gated ? 0 : 1;
*size = 4;
break;
case AMDGPU_PP_SENSOR_GPU_POWER:
ret = vega10_get_gpu_power(hwmgr, (uint32_t *)value);
break;
case AMDGPU_PP_SENSOR_VDDGFX:
val_vid = (RREG32_SOC15(SMUIO, 0, mmSMUSVI0_PLANE0_CURRENTVID) &
SMUSVI0_PLANE0_CURRENTVID__CURRENT_SVI0_PLANE0_VID_MASK) >>
SMUSVI0_PLANE0_CURRENTVID__CURRENT_SVI0_PLANE0_VID__SHIFT;
*((uint32_t *)value) = (uint32_t)convert_to_vddc((uint8_t)val_vid);
return 0;
case AMDGPU_PP_SENSOR_ENABLED_SMC_FEATURES_MASK:
ret = vega10_get_enabled_smc_features(hwmgr, (uint64_t *)value);
if (!ret)
*size = 8;
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
static void vega10_notify_smc_display_change(struct pp_hwmgr *hwmgr,
bool has_disp)
{
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetUclkFastSwitch,
has_disp ? 1 : 0,
NULL);
}
int vega10_display_clock_voltage_request(struct pp_hwmgr *hwmgr,
struct pp_display_clock_request *clock_req)
{
int result = 0;
enum amd_pp_clock_type clk_type = clock_req->clock_type;
uint32_t clk_freq = clock_req->clock_freq_in_khz / 1000;
DSPCLK_e clk_select = 0;
uint32_t clk_request = 0;
switch (clk_type) {
case amd_pp_dcef_clock:
clk_select = DSPCLK_DCEFCLK;
break;
case amd_pp_disp_clock:
clk_select = DSPCLK_DISPCLK;
break;
case amd_pp_pixel_clock:
clk_select = DSPCLK_PIXCLK;
break;
case amd_pp_phy_clock:
clk_select = DSPCLK_PHYCLK;
break;
default:
pr_info("[DisplayClockVoltageRequest]Invalid Clock Type!");
result = -1;
break;
}
if (!result) {
clk_request = (clk_freq << 16) | clk_select;
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_RequestDisplayClockByFreq,
clk_request,
NULL);
}
return result;
}
static uint8_t vega10_get_uclk_index(struct pp_hwmgr *hwmgr,
struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table,
uint32_t frequency)
{
uint8_t count;
uint8_t i;
if (mclk_table == NULL || mclk_table->count == 0)
return 0;
count = (uint8_t)(mclk_table->count);
for(i = 0; i < count; i++) {
if(mclk_table->entries[i].clk >= frequency)
return i;
}
return i-1;
}
static int vega10_notify_smc_display_config_after_ps_adjustment(
struct pp_hwmgr *hwmgr)
{
struct vega10_hwmgr *data = hwmgr->backend;
struct vega10_single_dpm_table *dpm_table =
&data->dpm_table.dcef_table;
struct phm_ppt_v2_information *table_info =
(struct phm_ppt_v2_information *)hwmgr->pptable;
struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table = table_info->vdd_dep_on_mclk;
uint32_t idx;
struct PP_Clocks min_clocks = {0};
uint32_t i;
struct pp_display_clock_request clock_req;
if ((hwmgr->display_config->num_display > 1) &&
!hwmgr->display_config->multi_monitor_in_sync &&
!hwmgr->display_config->nb_pstate_switch_disable)
vega10_notify_smc_display_change(hwmgr, false);
else
vega10_notify_smc_display_change(hwmgr, true);
min_clocks.dcefClock = hwmgr->display_config->min_dcef_set_clk;
min_clocks.dcefClockInSR = hwmgr->display_config->min_dcef_deep_sleep_set_clk;
min_clocks.memoryClock = hwmgr->display_config->min_mem_set_clock;
for (i = 0; i < dpm_table->count; i++) {
if (dpm_table->dpm_levels[i].value == min_clocks.dcefClock)
break;
}
if (i < dpm_table->count) {
clock_req.clock_type = amd_pp_dcef_clock;
clock_req.clock_freq_in_khz = dpm_table->dpm_levels[i].value * 10;
if (!vega10_display_clock_voltage_request(hwmgr, &clock_req)) {
smum_send_msg_to_smc_with_parameter(
hwmgr, PPSMC_MSG_SetMinDeepSleepDcefclk,
min_clocks.dcefClockInSR / 100,
NULL);
} else {
pr_info("Attempt to set Hard Min for DCEFCLK Failed!");
}
} else {
pr_debug("Cannot find requested DCEFCLK!");
}
if (min_clocks.memoryClock != 0) {
idx = vega10_get_uclk_index(hwmgr, mclk_table, min_clocks.memoryClock);
smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSoftMinUclkByIndex, idx,
NULL);
data->dpm_table.mem_table.dpm_state.soft_min_level= idx;
}
return 0;
}
static int vega10_force_dpm_highest(struct pp_hwmgr *hwmgr)
{
struct vega10_hwmgr *data = hwmgr->backend;
data->smc_state_table.gfx_boot_level =
data->smc_state_table.gfx_max_level =
vega10_find_highest_dpm_level(&(data->dpm_table.gfx_table));
data->smc_state_table.mem_boot_level =
data->smc_state_table.mem_max_level =
vega10_find_highest_dpm_level(&(data->dpm_table.mem_table));
PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
"Failed to upload boot level to highest!",
return -1);
PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
"Failed to upload dpm max level to highest!",
return -1);
return 0;
}
static int vega10_force_dpm_lowest(struct pp_hwmgr *hwmgr)
{
struct vega10_hwmgr *data = hwmgr->backend;
data->smc_state_table.gfx_boot_level =
data->smc_state_table.gfx_max_level =
vega10_find_lowest_dpm_level(&(data->dpm_table.gfx_table));
data->smc_state_table.mem_boot_level =
data->smc_state_table.mem_max_level =
vega10_find_lowest_dpm_level(&(data->dpm_table.mem_table));
PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
"Failed to upload boot level to highest!",
return -1);
PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
"Failed to upload dpm max level to highest!",
return -1);
return 0;
}
static int vega10_unforce_dpm_levels(struct pp_hwmgr *hwmgr)
{
struct vega10_hwmgr *data = hwmgr->backend;
data->smc_state_table.gfx_boot_level =
vega10_find_lowest_dpm_level(&(data->dpm_table.gfx_table));
data->smc_state_table.gfx_max_level =
vega10_find_highest_dpm_level(&(data->dpm_table.gfx_table));
data->smc_state_table.mem_boot_level =
vega10_find_lowest_dpm_level(&(data->dpm_table.mem_table));
data->smc_state_table.mem_max_level =
vega10_find_highest_dpm_level(&(data->dpm_table.mem_table));
PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
"Failed to upload DPM Bootup Levels!",
return -1);
PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
"Failed to upload DPM Max Levels!",
return -1);
return 0;
}
static int vega10_get_profiling_clk_mask(struct pp_hwmgr *hwmgr, enum amd_dpm_forced_level level,
uint32_t *sclk_mask, uint32_t *mclk_mask, uint32_t *soc_mask)
{
struct phm_ppt_v2_information *table_info =
(struct phm_ppt_v2_information *)(hwmgr->pptable);
if (table_info->vdd_dep_on_sclk->count > VEGA10_UMD_PSTATE_GFXCLK_LEVEL &&
table_info->vdd_dep_on_socclk->count > VEGA10_UMD_PSTATE_SOCCLK_LEVEL &&
table_info->vdd_dep_on_mclk->count > VEGA10_UMD_PSTATE_MCLK_LEVEL) {
*sclk_mask = VEGA10_UMD_PSTATE_GFXCLK_LEVEL;
*soc_mask = VEGA10_UMD_PSTATE_SOCCLK_LEVEL;
*mclk_mask = VEGA10_UMD_PSTATE_MCLK_LEVEL;
hwmgr->pstate_sclk = table_info->vdd_dep_on_sclk->entries[VEGA10_UMD_PSTATE_GFXCLK_LEVEL].clk;
hwmgr->pstate_mclk = table_info->vdd_dep_on_mclk->entries[VEGA10_UMD_PSTATE_MCLK_LEVEL].clk;
}
if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) {
*sclk_mask = 0;
} else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK) {
*mclk_mask = 0;
} else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) {
/* under vega10 pp one vf mode, the gfx clk dpm need be lower
* to level-4 due to the limited power
*/
if (hwmgr->pp_one_vf)
*sclk_mask = 4;
else
*sclk_mask = table_info->vdd_dep_on_sclk->count - 1;
*soc_mask = table_info->vdd_dep_on_socclk->count - 1;
*mclk_mask = table_info->vdd_dep_on_mclk->count - 1;
}
return 0;
}
static void vega10_set_fan_control_mode(struct pp_hwmgr *hwmgr, uint32_t mode)
{
if (!hwmgr->not_vf)
return;
switch (mode) {
case AMD_FAN_CTRL_NONE:
vega10_fan_ctrl_set_fan_speed_percent(hwmgr, 100);
break;
case AMD_FAN_CTRL_MANUAL:
if (PP_CAP(PHM_PlatformCaps_MicrocodeFanControl))
vega10_fan_ctrl_stop_smc_fan_control(hwmgr);
break;
case AMD_FAN_CTRL_AUTO:
if (PP_CAP(PHM_PlatformCaps_MicrocodeFanControl))
vega10_fan_ctrl_start_smc_fan_control(hwmgr);
break;
default:
break;
}
}
static int vega10_force_clock_level(struct pp_hwmgr *hwmgr,
enum pp_clock_type type, uint32_t mask)
{
struct vega10_hwmgr *data = hwmgr->backend;
switch (type) {
case PP_SCLK:
data->smc_state_table.gfx_boot_level = mask ? (ffs(mask) - 1) : 0;
data->smc_state_table.gfx_max_level = mask ? (fls(mask) - 1) : 0;
PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
"Failed to upload boot level to lowest!",
return -EINVAL);
PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
"Failed to upload dpm max level to highest!",
return -EINVAL);
break;
case PP_MCLK:
data->smc_state_table.mem_boot_level = mask ? (ffs(mask) - 1) : 0;
data->smc_state_table.mem_max_level = mask ? (fls(mask) - 1) : 0;
PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
"Failed to upload boot level to lowest!",
return -EINVAL);
PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
"Failed to upload dpm max level to highest!",
return -EINVAL);
break;
case PP_SOCCLK:
data->smc_state_table.soc_boot_level = mask ? (ffs(mask) - 1) : 0;
data->smc_state_table.soc_max_level = mask ? (fls(mask) - 1) : 0;
PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
"Failed to upload boot level to lowest!",
return -EINVAL);
PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
"Failed to upload dpm max level to highest!",
return -EINVAL);
break;
case PP_DCEFCLK:
pr_info("Setting DCEFCLK min/max dpm level is not supported!\n");
break;
case PP_PCIE:
default:
break;
}
return 0;
}
static int vega10_dpm_force_dpm_level(struct pp_hwmgr *hwmgr,
enum amd_dpm_forced_level level)
{
int ret = 0;
uint32_t sclk_mask = 0;
uint32_t mclk_mask = 0;
uint32_t soc_mask = 0;
if (hwmgr->pstate_sclk == 0)
vega10_get_profiling_clk_mask(hwmgr, level, &sclk_mask, &mclk_mask, &soc_mask);
switch (level) {
case AMD_DPM_FORCED_LEVEL_HIGH:
ret = vega10_force_dpm_highest(hwmgr);
break;
case AMD_DPM_FORCED_LEVEL_LOW:
ret = vega10_force_dpm_lowest(hwmgr);
break;
case AMD_DPM_FORCED_LEVEL_AUTO:
ret = vega10_unforce_dpm_levels(hwmgr);
break;
case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD:
case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK:
case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK:
case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK:
ret = vega10_get_profiling_clk_mask(hwmgr, level, &sclk_mask, &mclk_mask, &soc_mask);
if (ret)
return ret;
vega10_force_clock_level(hwmgr, PP_SCLK, 1<<sclk_mask);
vega10_force_clock_level(hwmgr, PP_MCLK, 1<<mclk_mask);
break;
case AMD_DPM_FORCED_LEVEL_MANUAL:
case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT:
default:
break;
}
if (!hwmgr->not_vf)
return ret;
if (!ret) {
if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK && hwmgr->dpm_level != AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
vega10_set_fan_control_mode(hwmgr, AMD_FAN_CTRL_NONE);
else if (level != AMD_DPM_FORCED_LEVEL_PROFILE_PEAK && hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
vega10_set_fan_control_mode(hwmgr, AMD_FAN_CTRL_AUTO);
}
return ret;
}
static uint32_t vega10_get_fan_control_mode(struct pp_hwmgr *hwmgr)
{
struct vega10_hwmgr *data = hwmgr->backend;
if (data->smu_features[GNLD_FAN_CONTROL].enabled == false)
return AMD_FAN_CTRL_MANUAL;
else
return AMD_FAN_CTRL_AUTO;
}
static int vega10_get_dal_power_level(struct pp_hwmgr *hwmgr,
struct amd_pp_simple_clock_info *info)
{
struct phm_ppt_v2_information *table_info =
(struct phm_ppt_v2_information *)hwmgr->pptable;
struct phm_clock_and_voltage_limits *max_limits =
&table_info->max_clock_voltage_on_ac;
info->engine_max_clock = max_limits->sclk;
info->memory_max_clock = max_limits->mclk;
return 0;
}
static void vega10_get_sclks(struct pp_hwmgr *hwmgr,
struct pp_clock_levels_with_latency *clocks)
{
struct phm_ppt_v2_information *table_info =
(struct phm_ppt_v2_information *)hwmgr->pptable;
struct phm_ppt_v1_clock_voltage_dependency_table *dep_table =
table_info->vdd_dep_on_sclk;
uint32_t i;
clocks->num_levels = 0;
for (i = 0; i < dep_table->count; i++) {
if (dep_table->entries[i].clk) {
clocks->data[clocks->num_levels].clocks_in_khz =
dep_table->entries[i].clk * 10;
clocks->num_levels++;
}
}
}
static void vega10_get_memclocks(struct pp_hwmgr *hwmgr,
struct pp_clock_levels_with_latency *clocks)
{
struct phm_ppt_v2_information *table_info =
(struct phm_ppt_v2_information *)hwmgr->pptable;
struct phm_ppt_v1_clock_voltage_dependency_table *dep_table =
table_info->vdd_dep_on_mclk;
struct vega10_hwmgr *data = hwmgr->backend;
uint32_t j = 0;
uint32_t i;
for (i = 0; i < dep_table->count; i++) {
if (dep_table->entries[i].clk) {
clocks->data[j].clocks_in_khz =
dep_table->entries[i].clk * 10;
data->mclk_latency_table.entries[j].frequency =
dep_table->entries[i].clk;
clocks->data[j].latency_in_us =
data->mclk_latency_table.entries[j].latency = 25;
j++;
}
}
clocks->num_levels = data->mclk_latency_table.count = j;
}
static void vega10_get_dcefclocks(struct pp_hwmgr *hwmgr,
struct pp_clock_levels_with_latency *clocks)
{
struct phm_ppt_v2_information *table_info =
(struct phm_ppt_v2_information *)hwmgr->pptable;
struct phm_ppt_v1_clock_voltage_dependency_table *dep_table =
table_info->vdd_dep_on_dcefclk;
uint32_t i;
for (i = 0; i < dep_table->count; i++) {
clocks->data[i].clocks_in_khz = dep_table->entries[i].clk * 10;
clocks->data[i].latency_in_us = 0;
clocks->num_levels++;
}
}
static void vega10_get_socclocks(struct pp_hwmgr *hwmgr,
struct pp_clock_levels_with_latency *clocks)
{
struct phm_ppt_v2_information *table_info =
(struct phm_ppt_v2_information *)hwmgr->pptable;
struct phm_ppt_v1_clock_voltage_dependency_table *dep_table =
table_info->vdd_dep_on_socclk;
uint32_t i;
for (i = 0; i < dep_table->count; i++) {
clocks->data[i].clocks_in_khz = dep_table->entries[i].clk * 10;
clocks->data[i].latency_in_us = 0;
clocks->num_levels++;
}
}
static int vega10_get_clock_by_type_with_latency(struct pp_hwmgr *hwmgr,
enum amd_pp_clock_type type,
struct pp_clock_levels_with_latency *clocks)
{
switch (type) {
case amd_pp_sys_clock:
vega10_get_sclks(hwmgr, clocks);
break;
case amd_pp_mem_clock:
vega10_get_memclocks(hwmgr, clocks);
break;
case amd_pp_dcef_clock:
vega10_get_dcefclocks(hwmgr, clocks);
break;
case amd_pp_soc_clock:
vega10_get_socclocks(hwmgr, clocks);
break;
default:
return -1;
}
return 0;
}
static int vega10_get_clock_by_type_with_voltage(struct pp_hwmgr *hwmgr,
enum amd_pp_clock_type type,
struct pp_clock_levels_with_voltage *clocks)
{
struct phm_ppt_v2_information *table_info =
(struct phm_ppt_v2_information *)hwmgr->pptable;
struct phm_ppt_v1_clock_voltage_dependency_table *dep_table;
uint32_t i;
switch (type) {
case amd_pp_mem_clock:
dep_table = table_info->vdd_dep_on_mclk;
break;
case amd_pp_dcef_clock:
dep_table = table_info->vdd_dep_on_dcefclk;
break;
case amd_pp_disp_clock:
dep_table = table_info->vdd_dep_on_dispclk;
break;
case amd_pp_pixel_clock:
dep_table = table_info->vdd_dep_on_pixclk;
break;
case amd_pp_phy_clock:
dep_table = table_info->vdd_dep_on_phyclk;
break;
default:
return -1;
}
for (i = 0; i < dep_table->count; i++) {
clocks->data[i].clocks_in_khz = dep_table->entries[i].clk * 10;
clocks->data[i].voltage_in_mv = (uint32_t)(table_info->vddc_lookup_table->
entries[dep_table->entries[i].vddInd].us_vdd);
clocks->num_levels++;
}
if (i < dep_table->count)
return -1;
return 0;
}
static int vega10_set_watermarks_for_clocks_ranges(struct pp_hwmgr *hwmgr,
void *clock_range)
{
struct vega10_hwmgr *data = hwmgr->backend;
struct dm_pp_wm_sets_with_clock_ranges_soc15 *wm_with_clock_ranges = clock_range;
Watermarks_t *table = &(data->smc_state_table.water_marks_table);
if (!data->registry_data.disable_water_mark) {
smu_set_watermarks_for_clocks_ranges(table, wm_with_clock_ranges);
data->water_marks_bitmap = WaterMarksExist;
}
return 0;
}
static int vega10_get_ppfeature_status(struct pp_hwmgr *hwmgr, char *buf)
{
static const char *ppfeature_name[] = {
"DPM_PREFETCHER",
"GFXCLK_DPM",
"UCLK_DPM",
"SOCCLK_DPM",
"UVD_DPM",
"VCE_DPM",
"ULV",
"MP0CLK_DPM",
"LINK_DPM",
"DCEFCLK_DPM",
"AVFS",
"GFXCLK_DS",
"SOCCLK_DS",
"LCLK_DS",
"PPT",
"TDC",
"THERMAL",
"GFX_PER_CU_CG",
"RM",
"DCEFCLK_DS",
"ACDC",
"VR0HOT",
"VR1HOT",
"FW_CTF",
"LED_DISPLAY",
"FAN_CONTROL",
"FAST_PPT",
"DIDT",
"ACG",
"PCC_LIMIT"};
static const char *output_title[] = {
"FEATURES",
"BITMASK",
"ENABLEMENT"};
uint64_t features_enabled;
int i;
int ret = 0;
int size = 0;
ret = vega10_get_enabled_smc_features(hwmgr, &features_enabled);
PP_ASSERT_WITH_CODE(!ret,
"[EnableAllSmuFeatures] Failed to get enabled smc features!",
return ret);
size += sprintf(buf + size, "Current ppfeatures: 0x%016llx\n", features_enabled);
size += sprintf(buf + size, "%-19s %-22s %s\n",
output_title[0],
output_title[1],
output_title[2]);
for (i = 0; i < GNLD_FEATURES_MAX; i++) {
size += sprintf(buf + size, "%-19s 0x%016llx %6s\n",
ppfeature_name[i],
1ULL << i,
(features_enabled & (1ULL << i)) ? "Y" : "N");
}
return size;
}
static int vega10_set_ppfeature_status(struct pp_hwmgr *hwmgr, uint64_t new_ppfeature_masks)
{
uint64_t features_enabled;
uint64_t features_to_enable;
uint64_t features_to_disable;
int ret = 0;
if (new_ppfeature_masks >= (1ULL << GNLD_FEATURES_MAX))
return -EINVAL;
ret = vega10_get_enabled_smc_features(hwmgr, &features_enabled);
if (ret)
return ret;
features_to_disable =
features_enabled & ~new_ppfeature_masks;
features_to_enable =
~features_enabled & new_ppfeature_masks;
pr_debug("features_to_disable 0x%llx\n", features_to_disable);
pr_debug("features_to_enable 0x%llx\n", features_to_enable);
if (features_to_disable) {
ret = vega10_enable_smc_features(hwmgr, false, features_to_disable);
if (ret)
return ret;
}
if (features_to_enable) {
ret = vega10_enable_smc_features(hwmgr, true, features_to_enable);
if (ret)
return ret;
}
return 0;
}
static int vega10_print_clock_levels(struct pp_hwmgr *hwmgr,
enum pp_clock_type type, char *buf)
{
struct vega10_hwmgr *data = hwmgr->backend;
struct vega10_single_dpm_table *sclk_table = &(data->dpm_table.gfx_table);
struct vega10_single_dpm_table *mclk_table = &(data->dpm_table.mem_table);
struct vega10_single_dpm_table *soc_table = &(data->dpm_table.soc_table);
struct vega10_single_dpm_table *dcef_table = &(data->dpm_table.dcef_table);
struct vega10_pcie_table *pcie_table = &(data->dpm_table.pcie_table);
struct vega10_odn_clock_voltage_dependency_table *podn_vdd_dep = NULL;
int i, now, size = 0, count = 0;
switch (type) {
case PP_SCLK:
if (data->registry_data.sclk_dpm_key_disabled)
break;
smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentGfxclkIndex, &now);
if (hwmgr->pp_one_vf &&
(hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK))
count = 5;
else
count = sclk_table->count;
for (i = 0; i < count; i++)
size += sprintf(buf + size, "%d: %uMhz %s\n",
i, sclk_table->dpm_levels[i].value / 100,
(i == now) ? "*" : "");
break;
case PP_MCLK:
if (data->registry_data.mclk_dpm_key_disabled)
break;
smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentUclkIndex, &now);
for (i = 0; i < mclk_table->count; i++)
size += sprintf(buf + size, "%d: %uMhz %s\n",
i, mclk_table->dpm_levels[i].value / 100,
(i == now) ? "*" : "");
break;
case PP_SOCCLK:
if (data->registry_data.socclk_dpm_key_disabled)
break;
smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentSocclkIndex, &now);
for (i = 0; i < soc_table->count; i++)
size += sprintf(buf + size, "%d: %uMhz %s\n",
i, soc_table->dpm_levels[i].value / 100,
(i == now) ? "*" : "");
break;
case PP_DCEFCLK:
if (data->registry_data.dcefclk_dpm_key_disabled)
break;
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_GetClockFreqMHz, CLK_DCEFCLK, &now);
for (i = 0; i < dcef_table->count; i++)
size += sprintf(buf + size, "%d: %uMhz %s\n",
i, dcef_table->dpm_levels[i].value / 100,
(dcef_table->dpm_levels[i].value / 100 == now) ?
"*" : "");
break;
case PP_PCIE:
smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentLinkIndex, &now);
for (i = 0; i < pcie_table->count; i++)
size += sprintf(buf + size, "%d: %s %s\n", i,
(pcie_table->pcie_gen[i] == 0) ? "2.5GT/s, x1" :
(pcie_table->pcie_gen[i] == 1) ? "5.0GT/s, x16" :
(pcie_table->pcie_gen[i] == 2) ? "8.0GT/s, x16" : "",
(i == now) ? "*" : "");
break;
case OD_SCLK:
if (hwmgr->od_enabled) {
size = sprintf(buf, "%s:\n", "OD_SCLK");
podn_vdd_dep = &data->odn_dpm_table.vdd_dep_on_sclk;
for (i = 0; i < podn_vdd_dep->count; i++)
size += sprintf(buf + size, "%d: %10uMhz %10umV\n",
i, podn_vdd_dep->entries[i].clk / 100,
podn_vdd_dep->entries[i].vddc);
}
break;
case OD_MCLK:
if (hwmgr->od_enabled) {
size = sprintf(buf, "%s:\n", "OD_MCLK");
podn_vdd_dep = &data->odn_dpm_table.vdd_dep_on_mclk;
for (i = 0; i < podn_vdd_dep->count; i++)
size += sprintf(buf + size, "%d: %10uMhz %10umV\n",
i, podn_vdd_dep->entries[i].clk/100,
podn_vdd_dep->entries[i].vddc);
}
break;
case OD_RANGE:
if (hwmgr->od_enabled) {
size = sprintf(buf, "%s:\n", "OD_RANGE");
size += sprintf(buf + size, "SCLK: %7uMHz %10uMHz\n",
data->golden_dpm_table.gfx_table.dpm_levels[0].value/100,
hwmgr->platform_descriptor.overdriveLimit.engineClock/100);
size += sprintf(buf + size, "MCLK: %7uMHz %10uMHz\n",
data->golden_dpm_table.mem_table.dpm_levels[0].value/100,
hwmgr->platform_descriptor.overdriveLimit.memoryClock/100);
size += sprintf(buf + size, "VDDC: %7umV %11umV\n",
data->odn_dpm_table.min_vddc,
data->odn_dpm_table.max_vddc);
}
break;
default:
break;
}
return size;
}
static int vega10_display_configuration_changed_task(struct pp_hwmgr *hwmgr)
{
struct vega10_hwmgr *data = hwmgr->backend;
Watermarks_t *wm_table = &(data->smc_state_table.water_marks_table);
int result = 0;
if ((data->water_marks_bitmap & WaterMarksExist) &&
!(data->water_marks_bitmap & WaterMarksLoaded)) {
result = smum_smc_table_manager(hwmgr, (uint8_t *)wm_table, WMTABLE, false);
PP_ASSERT_WITH_CODE(result, "Failed to update WMTABLE!", return EINVAL);
data->water_marks_bitmap |= WaterMarksLoaded;
}
if (data->water_marks_bitmap & WaterMarksLoaded) {
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_NumOfDisplays, hwmgr->display_config->num_display,
NULL);
}
return result;
}
int vega10_enable_disable_uvd_dpm(struct pp_hwmgr *hwmgr, bool enable)
{
struct vega10_hwmgr *data = hwmgr->backend;
if (data->smu_features[GNLD_DPM_UVD].supported) {
PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
enable,
data->smu_features[GNLD_DPM_UVD].smu_feature_bitmap),
"Attempt to Enable/Disable DPM UVD Failed!",
return -1);
data->smu_features[GNLD_DPM_UVD].enabled = enable;
}
return 0;
}
static void vega10_power_gate_vce(struct pp_hwmgr *hwmgr, bool bgate)
{
struct vega10_hwmgr *data = hwmgr->backend;
data->vce_power_gated = bgate;
vega10_enable_disable_vce_dpm(hwmgr, !bgate);
}
static void vega10_power_gate_uvd(struct pp_hwmgr *hwmgr, bool bgate)
{
struct vega10_hwmgr *data = hwmgr->backend;
data->uvd_power_gated = bgate;
vega10_enable_disable_uvd_dpm(hwmgr, !bgate);
}
static inline bool vega10_are_power_levels_equal(
const struct vega10_performance_level *pl1,
const struct vega10_performance_level *pl2)
{
return ((pl1->soc_clock == pl2->soc_clock) &&
(pl1->gfx_clock == pl2->gfx_clock) &&
(pl1->mem_clock == pl2->mem_clock));
}
static int vega10_check_states_equal(struct pp_hwmgr *hwmgr,
const struct pp_hw_power_state *pstate1,
const struct pp_hw_power_state *pstate2, bool *equal)
{
const struct vega10_power_state *psa;
const struct vega10_power_state *psb;
int i;
if (pstate1 == NULL || pstate2 == NULL || equal == NULL)
return -EINVAL;
psa = cast_const_phw_vega10_power_state(pstate1);
psb = cast_const_phw_vega10_power_state(pstate2);
/* If the two states don't even have the same number of performance levels they cannot be the same state. */
if (psa->performance_level_count != psb->performance_level_count) {
*equal = false;
return 0;
}
for (i = 0; i < psa->performance_level_count; i++) {
if (!vega10_are_power_levels_equal(&(psa->performance_levels[i]), &(psb->performance_levels[i]))) {
/* If we have found even one performance level pair that is different the states are different. */
*equal = false;
return 0;
}
}
/* If all performance levels are the same try to use the UVD clocks to break the tie.*/
*equal = ((psa->uvd_clks.vclk == psb->uvd_clks.vclk) && (psa->uvd_clks.dclk == psb->uvd_clks.dclk));
*equal &= ((psa->vce_clks.evclk == psb->vce_clks.evclk) && (psa->vce_clks.ecclk == psb->vce_clks.ecclk));
*equal &= (psa->sclk_threshold == psb->sclk_threshold);
return 0;
}
static bool
vega10_check_smc_update_required_for_display_configuration(struct pp_hwmgr *hwmgr)
{
struct vega10_hwmgr *data = hwmgr->backend;
bool is_update_required = false;
if (data->display_timing.num_existing_displays != hwmgr->display_config->num_display)
is_update_required = true;
if (PP_CAP(PHM_PlatformCaps_SclkDeepSleep)) {
if (data->display_timing.min_clock_in_sr != hwmgr->display_config->min_core_set_clock_in_sr)
is_update_required = true;
}
return is_update_required;
}
static int vega10_disable_dpm_tasks(struct pp_hwmgr *hwmgr)
{
int tmp_result, result = 0;
if (!hwmgr->not_vf)
return 0;
if (PP_CAP(PHM_PlatformCaps_ThermalController))
vega10_disable_thermal_protection(hwmgr);
tmp_result = vega10_disable_power_containment(hwmgr);
PP_ASSERT_WITH_CODE((tmp_result == 0),
"Failed to disable power containment!", result = tmp_result);
tmp_result = vega10_disable_didt_config(hwmgr);
PP_ASSERT_WITH_CODE((tmp_result == 0),
"Failed to disable didt config!", result = tmp_result);
tmp_result = vega10_avfs_enable(hwmgr, false);
PP_ASSERT_WITH_CODE((tmp_result == 0),
"Failed to disable AVFS!", result = tmp_result);
tmp_result = vega10_stop_dpm(hwmgr, SMC_DPM_FEATURES);
PP_ASSERT_WITH_CODE((tmp_result == 0),
"Failed to stop DPM!", result = tmp_result);
tmp_result = vega10_disable_deep_sleep_master_switch(hwmgr);
PP_ASSERT_WITH_CODE((tmp_result == 0),
"Failed to disable deep sleep!", result = tmp_result);
tmp_result = vega10_disable_ulv(hwmgr);
PP_ASSERT_WITH_CODE((tmp_result == 0),
"Failed to disable ulv!", result = tmp_result);
tmp_result = vega10_acg_disable(hwmgr);
PP_ASSERT_WITH_CODE((tmp_result == 0),
"Failed to disable acg!", result = tmp_result);
vega10_enable_disable_PCC_limit_feature(hwmgr, false);
return result;
}
static int vega10_power_off_asic(struct pp_hwmgr *hwmgr)
{
struct vega10_hwmgr *data = hwmgr->backend;
int result;
result = vega10_disable_dpm_tasks(hwmgr);
PP_ASSERT_WITH_CODE((0 == result),
"[disable_dpm_tasks] Failed to disable DPM!",
);
data->water_marks_bitmap &= ~(WaterMarksLoaded);
return result;
}
static int vega10_get_sclk_od(struct pp_hwmgr *hwmgr)
{
struct vega10_hwmgr *data = hwmgr->backend;
struct vega10_single_dpm_table *sclk_table = &(data->dpm_table.gfx_table);
struct vega10_single_dpm_table *golden_sclk_table =
&(data->golden_dpm_table.gfx_table);
int value = sclk_table->dpm_levels[sclk_table->count - 1].value;
int golden_value = golden_sclk_table->dpm_levels
[golden_sclk_table->count - 1].value;
value -= golden_value;
value = DIV_ROUND_UP(value * 100, golden_value);
return value;
}
static int vega10_set_sclk_od(struct pp_hwmgr *hwmgr, uint32_t value)
{
struct vega10_hwmgr *data = hwmgr->backend;
struct vega10_single_dpm_table *golden_sclk_table =
&(data->golden_dpm_table.gfx_table);
struct pp_power_state *ps;
struct vega10_power_state *vega10_ps;
ps = hwmgr->request_ps;
if (ps == NULL)
return -EINVAL;
vega10_ps = cast_phw_vega10_power_state(&ps->hardware);
vega10_ps->performance_levels
[vega10_ps->performance_level_count - 1].gfx_clock =
golden_sclk_table->dpm_levels
[golden_sclk_table->count - 1].value *
value / 100 +
golden_sclk_table->dpm_levels
[golden_sclk_table->count - 1].value;
if (vega10_ps->performance_levels
[vega10_ps->performance_level_count - 1].gfx_clock >
hwmgr->platform_descriptor.overdriveLimit.engineClock) {
vega10_ps->performance_levels
[vega10_ps->performance_level_count - 1].gfx_clock =
hwmgr->platform_descriptor.overdriveLimit.engineClock;
pr_warn("max sclk supported by vbios is %d\n",
hwmgr->platform_descriptor.overdriveLimit.engineClock);
}
return 0;
}
static int vega10_get_mclk_od(struct pp_hwmgr *hwmgr)
{
struct vega10_hwmgr *data = hwmgr->backend;
struct vega10_single_dpm_table *mclk_table = &(data->dpm_table.mem_table);
struct vega10_single_dpm_table *golden_mclk_table =
&(data->golden_dpm_table.mem_table);
int value = mclk_table->dpm_levels[mclk_table->count - 1].value;
int golden_value = golden_mclk_table->dpm_levels
[golden_mclk_table->count - 1].value;
value -= golden_value;
value = DIV_ROUND_UP(value * 100, golden_value);
return value;
}
static int vega10_set_mclk_od(struct pp_hwmgr *hwmgr, uint32_t value)
{
struct vega10_hwmgr *data = hwmgr->backend;
struct vega10_single_dpm_table *golden_mclk_table =
&(data->golden_dpm_table.mem_table);
struct pp_power_state *ps;
struct vega10_power_state *vega10_ps;
ps = hwmgr->request_ps;
if (ps == NULL)
return -EINVAL;
vega10_ps = cast_phw_vega10_power_state(&ps->hardware);
vega10_ps->performance_levels
[vega10_ps->performance_level_count - 1].mem_clock =
golden_mclk_table->dpm_levels
[golden_mclk_table->count - 1].value *
value / 100 +
golden_mclk_table->dpm_levels
[golden_mclk_table->count - 1].value;
if (vega10_ps->performance_levels
[vega10_ps->performance_level_count - 1].mem_clock >
hwmgr->platform_descriptor.overdriveLimit.memoryClock) {
vega10_ps->performance_levels
[vega10_ps->performance_level_count - 1].mem_clock =
hwmgr->platform_descriptor.overdriveLimit.memoryClock;
pr_warn("max mclk supported by vbios is %d\n",
hwmgr->platform_descriptor.overdriveLimit.memoryClock);
}
return 0;
}
static int vega10_notify_cac_buffer_info(struct pp_hwmgr *hwmgr,
uint32_t virtual_addr_low,
uint32_t virtual_addr_hi,
uint32_t mc_addr_low,
uint32_t mc_addr_hi,
uint32_t size)
{
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetSystemVirtualDramAddrHigh,
virtual_addr_hi,
NULL);
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetSystemVirtualDramAddrLow,
virtual_addr_low,
NULL);
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_DramLogSetDramAddrHigh,
mc_addr_hi,
NULL);
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_DramLogSetDramAddrLow,
mc_addr_low,
NULL);
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_DramLogSetDramSize,
size,
NULL);
return 0;
}
static int vega10_get_thermal_temperature_range(struct pp_hwmgr *hwmgr,
struct PP_TemperatureRange *thermal_data)
{
struct vega10_hwmgr *data = hwmgr->backend;
PPTable_t *pp_table = &(data->smc_state_table.pp_table);
memcpy(thermal_data, &SMU7ThermalWithDelayPolicy[0], sizeof(struct PP_TemperatureRange));
thermal_data->max = pp_table->TedgeLimit *
PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
thermal_data->edge_emergency_max = (pp_table->TedgeLimit + CTF_OFFSET_EDGE) *
PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
thermal_data->hotspot_crit_max = pp_table->ThotspotLimit *
PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
thermal_data->hotspot_emergency_max = (pp_table->ThotspotLimit + CTF_OFFSET_HOTSPOT) *
PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
thermal_data->mem_crit_max = pp_table->ThbmLimit *
PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
thermal_data->mem_emergency_max = (pp_table->ThbmLimit + CTF_OFFSET_HBM)*
PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
return 0;
}
static int vega10_get_power_profile_mode(struct pp_hwmgr *hwmgr, char *buf)
{
struct vega10_hwmgr *data = hwmgr->backend;
uint32_t i, size = 0;
static const uint8_t profile_mode_setting[6][4] = {{70, 60, 0, 0,},
{70, 60, 1, 3,},
{90, 60, 0, 0,},
{70, 60, 0, 0,},
{70, 90, 0, 0,},
{30, 60, 0, 6,},
};
static const char *profile_name[7] = {"BOOTUP_DEFAULT",
"3D_FULL_SCREEN",
"POWER_SAVING",
"VIDEO",
"VR",
"COMPUTE",
"CUSTOM"};
static const char *title[6] = {"NUM",
"MODE_NAME",
"BUSY_SET_POINT",
"FPS",
"USE_RLC_BUSY",
"MIN_ACTIVE_LEVEL"};
if (!buf)
return -EINVAL;
size += sprintf(buf + size, "%s %16s %s %s %s %s\n",title[0],
title[1], title[2], title[3], title[4], title[5]);
for (i = 0; i < PP_SMC_POWER_PROFILE_CUSTOM; i++)
size += sprintf(buf + size, "%3d %14s%s: %14d %3d %10d %14d\n",
i, profile_name[i], (i == hwmgr->power_profile_mode) ? "*" : " ",
profile_mode_setting[i][0], profile_mode_setting[i][1],
profile_mode_setting[i][2], profile_mode_setting[i][3]);
size += sprintf(buf + size, "%3d %14s%s: %14d %3d %10d %14d\n", i,
profile_name[i], (i == hwmgr->power_profile_mode) ? "*" : " ",
data->custom_profile_mode[0], data->custom_profile_mode[1],
data->custom_profile_mode[2], data->custom_profile_mode[3]);
return size;
}
static int vega10_set_power_profile_mode(struct pp_hwmgr *hwmgr, long *input, uint32_t size)
{
struct vega10_hwmgr *data = hwmgr->backend;
uint8_t busy_set_point;
uint8_t FPS;
uint8_t use_rlc_busy;
uint8_t min_active_level;
uint32_t power_profile_mode = input[size];
if (power_profile_mode == PP_SMC_POWER_PROFILE_CUSTOM) {
if (size != 0 && size != 4)
return -EINVAL;
/* If size = 0 and the CUSTOM profile has been set already
* then just apply the profile. The copy stored in the hwmgr
* is zeroed out on init
*/
if (size == 0) {
if (data->custom_profile_mode[0] != 0)
goto out;
else
return -EINVAL;
}
data->custom_profile_mode[0] = busy_set_point = input[0];
data->custom_profile_mode[1] = FPS = input[1];
data->custom_profile_mode[2] = use_rlc_busy = input[2];
data->custom_profile_mode[3] = min_active_level = input[3];
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_SetCustomGfxDpmParameters,
busy_set_point | FPS<<8 |
use_rlc_busy << 16 | min_active_level<<24,
NULL);
}
out:
smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetWorkloadMask,
1 << power_profile_mode,
NULL);
hwmgr->power_profile_mode = power_profile_mode;
return 0;
}
static bool vega10_check_clk_voltage_valid(struct pp_hwmgr *hwmgr,
enum PP_OD_DPM_TABLE_COMMAND type,
uint32_t clk,
uint32_t voltage)
{
struct vega10_hwmgr *data = hwmgr->backend;
struct vega10_odn_dpm_table *odn_table = &(data->odn_dpm_table);
struct vega10_single_dpm_table *golden_table;
if (voltage < odn_table->min_vddc || voltage > odn_table->max_vddc) {
pr_info("OD voltage is out of range [%d - %d] mV\n", odn_table->min_vddc, odn_table->max_vddc);
return false;
}
if (type == PP_OD_EDIT_SCLK_VDDC_TABLE) {
golden_table = &(data->golden_dpm_table.gfx_table);
if (golden_table->dpm_levels[0].value > clk ||
hwmgr->platform_descriptor.overdriveLimit.engineClock < clk) {
pr_info("OD engine clock is out of range [%d - %d] MHz\n",
golden_table->dpm_levels[0].value/100,
hwmgr->platform_descriptor.overdriveLimit.engineClock/100);
return false;
}
} else if (type == PP_OD_EDIT_MCLK_VDDC_TABLE) {
golden_table = &(data->golden_dpm_table.mem_table);
if (golden_table->dpm_levels[0].value > clk ||
hwmgr->platform_descriptor.overdriveLimit.memoryClock < clk) {
pr_info("OD memory clock is out of range [%d - %d] MHz\n",
golden_table->dpm_levels[0].value/100,
hwmgr->platform_descriptor.overdriveLimit.memoryClock/100);
return false;
}
} else {
return false;
}
return true;
}
static void vega10_odn_update_power_state(struct pp_hwmgr *hwmgr)
{
struct vega10_hwmgr *data = hwmgr->backend;
struct pp_power_state *ps = hwmgr->request_ps;
struct vega10_power_state *vega10_ps;
struct vega10_single_dpm_table *gfx_dpm_table =
&data->dpm_table.gfx_table;
struct vega10_single_dpm_table *soc_dpm_table =
&data->dpm_table.soc_table;
struct vega10_single_dpm_table *mem_dpm_table =
&data->dpm_table.mem_table;
int max_level;
if (!ps)
return;
vega10_ps = cast_phw_vega10_power_state(&ps->hardware);
max_level = vega10_ps->performance_level_count - 1;
if (vega10_ps->performance_levels[max_level].gfx_clock !=
gfx_dpm_table->dpm_levels[gfx_dpm_table->count - 1].value)
vega10_ps->performance_levels[max_level].gfx_clock =
gfx_dpm_table->dpm_levels[gfx_dpm_table->count - 1].value;
if (vega10_ps->performance_levels[max_level].soc_clock !=
soc_dpm_table->dpm_levels[soc_dpm_table->count - 1].value)
vega10_ps->performance_levels[max_level].soc_clock =
soc_dpm_table->dpm_levels[soc_dpm_table->count - 1].value;
if (vega10_ps->performance_levels[max_level].mem_clock !=
mem_dpm_table->dpm_levels[mem_dpm_table->count - 1].value)
vega10_ps->performance_levels[max_level].mem_clock =
mem_dpm_table->dpm_levels[mem_dpm_table->count - 1].value;
if (!hwmgr->ps)
return;
ps = (struct pp_power_state *)((unsigned long)(hwmgr->ps) + hwmgr->ps_size * (hwmgr->num_ps - 1));
vega10_ps = cast_phw_vega10_power_state(&ps->hardware);
max_level = vega10_ps->performance_level_count - 1;
if (vega10_ps->performance_levels[max_level].gfx_clock !=
gfx_dpm_table->dpm_levels[gfx_dpm_table->count - 1].value)
vega10_ps->performance_levels[max_level].gfx_clock =
gfx_dpm_table->dpm_levels[gfx_dpm_table->count - 1].value;
if (vega10_ps->performance_levels[max_level].soc_clock !=
soc_dpm_table->dpm_levels[soc_dpm_table->count - 1].value)
vega10_ps->performance_levels[max_level].soc_clock =
soc_dpm_table->dpm_levels[soc_dpm_table->count - 1].value;
if (vega10_ps->performance_levels[max_level].mem_clock !=
mem_dpm_table->dpm_levels[mem_dpm_table->count - 1].value)
vega10_ps->performance_levels[max_level].mem_clock =
mem_dpm_table->dpm_levels[mem_dpm_table->count - 1].value;
}
static void vega10_odn_update_soc_table(struct pp_hwmgr *hwmgr,
enum PP_OD_DPM_TABLE_COMMAND type)
{
struct vega10_hwmgr *data = hwmgr->backend;
struct phm_ppt_v2_information *table_info = hwmgr->pptable;
struct phm_ppt_v1_clock_voltage_dependency_table *dep_table = table_info->vdd_dep_on_socclk;
struct vega10_single_dpm_table *dpm_table = &data->golden_dpm_table.mem_table;
struct vega10_odn_clock_voltage_dependency_table *podn_vdd_dep_on_socclk =
&data->odn_dpm_table.vdd_dep_on_socclk;
struct vega10_odn_vddc_lookup_table *od_vddc_lookup_table = &data->odn_dpm_table.vddc_lookup_table;
struct vega10_odn_clock_voltage_dependency_table *podn_vdd_dep;
uint8_t i, j;
if (type == PP_OD_EDIT_SCLK_VDDC_TABLE) {
podn_vdd_dep = &data->odn_dpm_table.vdd_dep_on_sclk;
for (i = 0; i < podn_vdd_dep->count; i++)
od_vddc_lookup_table->entries[i].us_vdd = podn_vdd_dep->entries[i].vddc;
} else if (type == PP_OD_EDIT_MCLK_VDDC_TABLE) {
podn_vdd_dep = &data->odn_dpm_table.vdd_dep_on_mclk;
for (i = 0; i < dpm_table->count; i++) {
for (j = 0; j < od_vddc_lookup_table->count; j++) {
if (od_vddc_lookup_table->entries[j].us_vdd >
podn_vdd_dep->entries[i].vddc)
break;
}
if (j == od_vddc_lookup_table->count) {
j = od_vddc_lookup_table->count - 1;
od_vddc_lookup_table->entries[j].us_vdd =
podn_vdd_dep->entries[i].vddc;
data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_VDDC;
}
podn_vdd_dep->entries[i].vddInd = j;
}
dpm_table = &data->dpm_table.soc_table;
for (i = 0; i < dep_table->count; i++) {
if (dep_table->entries[i].vddInd == podn_vdd_dep->entries[podn_vdd_dep->count-1].vddInd &&
dep_table->entries[i].clk < podn_vdd_dep->entries[podn_vdd_dep->count-1].clk) {
data->need_update_dpm_table |= DPMTABLE_UPDATE_SOCCLK;
for (; (i < dep_table->count) &&
(dep_table->entries[i].clk < podn_vdd_dep->entries[podn_vdd_dep->count - 1].clk); i++) {
podn_vdd_dep_on_socclk->entries[i].clk = podn_vdd_dep->entries[podn_vdd_dep->count-1].clk;
dpm_table->dpm_levels[i].value = podn_vdd_dep_on_socclk->entries[i].clk;
}
break;
} else {
dpm_table->dpm_levels[i].value = dep_table->entries[i].clk;
podn_vdd_dep_on_socclk->entries[i].vddc = dep_table->entries[i].vddc;
podn_vdd_dep_on_socclk->entries[i].vddInd = dep_table->entries[i].vddInd;
podn_vdd_dep_on_socclk->entries[i].clk = dep_table->entries[i].clk;
}
}
if (podn_vdd_dep_on_socclk->entries[podn_vdd_dep_on_socclk->count - 1].clk <
podn_vdd_dep->entries[podn_vdd_dep->count - 1].clk) {
data->need_update_dpm_table |= DPMTABLE_UPDATE_SOCCLK;
podn_vdd_dep_on_socclk->entries[podn_vdd_dep_on_socclk->count - 1].clk =
podn_vdd_dep->entries[podn_vdd_dep->count - 1].clk;
dpm_table->dpm_levels[podn_vdd_dep_on_socclk->count - 1].value =
podn_vdd_dep->entries[podn_vdd_dep->count - 1].clk;
}
if (podn_vdd_dep_on_socclk->entries[podn_vdd_dep_on_socclk->count - 1].vddInd <
podn_vdd_dep->entries[podn_vdd_dep->count - 1].vddInd) {
data->need_update_dpm_table |= DPMTABLE_UPDATE_SOCCLK;
podn_vdd_dep_on_socclk->entries[podn_vdd_dep_on_socclk->count - 1].vddInd =
podn_vdd_dep->entries[podn_vdd_dep->count - 1].vddInd;
}
}
vega10_odn_update_power_state(hwmgr);
}
static int vega10_odn_edit_dpm_table(struct pp_hwmgr *hwmgr,
enum PP_OD_DPM_TABLE_COMMAND type,
long *input, uint32_t size)
{
struct vega10_hwmgr *data = hwmgr->backend;
struct vega10_odn_clock_voltage_dependency_table *podn_vdd_dep_table;
struct vega10_single_dpm_table *dpm_table;
uint32_t input_clk;
uint32_t input_vol;
uint32_t input_level;
uint32_t i;
PP_ASSERT_WITH_CODE(input, "NULL user input for clock and voltage",
return -EINVAL);
if (!hwmgr->od_enabled) {
pr_info("OverDrive feature not enabled\n");
return -EINVAL;
}
if (PP_OD_EDIT_SCLK_VDDC_TABLE == type) {
dpm_table = &data->dpm_table.gfx_table;
podn_vdd_dep_table = &data->odn_dpm_table.vdd_dep_on_sclk;
data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_SCLK;
} else if (PP_OD_EDIT_MCLK_VDDC_TABLE == type) {
dpm_table = &data->dpm_table.mem_table;
podn_vdd_dep_table = &data->odn_dpm_table.vdd_dep_on_mclk;
data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_MCLK;
} else if (PP_OD_RESTORE_DEFAULT_TABLE == type) {
memcpy(&(data->dpm_table), &(data->golden_dpm_table), sizeof(struct vega10_dpm_table));
vega10_odn_initial_default_setting(hwmgr);
vega10_odn_update_power_state(hwmgr);
/* force to update all clock tables */
data->need_update_dpm_table = DPMTABLE_UPDATE_SCLK |
DPMTABLE_UPDATE_MCLK |
DPMTABLE_UPDATE_SOCCLK;
return 0;
} else if (PP_OD_COMMIT_DPM_TABLE == type) {
vega10_check_dpm_table_updated(hwmgr);
return 0;
} else {
return -EINVAL;
}
for (i = 0; i < size; i += 3) {
if (i + 3 > size || input[i] >= podn_vdd_dep_table->count) {
pr_info("invalid clock voltage input\n");
return 0;
}
input_level = input[i];
input_clk = input[i+1] * 100;
input_vol = input[i+2];
if (vega10_check_clk_voltage_valid(hwmgr, type, input_clk, input_vol)) {
dpm_table->dpm_levels[input_level].value = input_clk;
podn_vdd_dep_table->entries[input_level].clk = input_clk;
podn_vdd_dep_table->entries[input_level].vddc = input_vol;
} else {
return -EINVAL;
}
}
vega10_odn_update_soc_table(hwmgr, type);
return 0;
}
static int vega10_set_mp1_state(struct pp_hwmgr *hwmgr,
enum pp_mp1_state mp1_state)
{
uint16_t msg;
int ret;
switch (mp1_state) {
case PP_MP1_STATE_UNLOAD:
msg = PPSMC_MSG_PrepareMp1ForUnload;
break;
case PP_MP1_STATE_SHUTDOWN:
case PP_MP1_STATE_RESET:
case PP_MP1_STATE_NONE:
default:
return 0;
}
PP_ASSERT_WITH_CODE((ret = smum_send_msg_to_smc(hwmgr, msg, NULL)) == 0,
"[PrepareMp1] Failed!",
return ret);
return 0;
}
static int vega10_get_performance_level(struct pp_hwmgr *hwmgr, const struct pp_hw_power_state *state,
PHM_PerformanceLevelDesignation designation, uint32_t index,
PHM_PerformanceLevel *level)
{
const struct vega10_power_state *ps;
uint32_t i;
if (level == NULL || hwmgr == NULL || state == NULL)
return -EINVAL;
ps = cast_const_phw_vega10_power_state(state);
i = index > ps->performance_level_count - 1 ?
ps->performance_level_count - 1 : index;
level->coreClock = ps->performance_levels[i].gfx_clock;
level->memory_clock = ps->performance_levels[i].mem_clock;
return 0;
}
static int vega10_disable_power_features_for_compute_performance(struct pp_hwmgr *hwmgr, bool disable)
{
struct vega10_hwmgr *data = hwmgr->backend;
uint32_t feature_mask = 0;
if (disable) {
feature_mask |= data->smu_features[GNLD_ULV].enabled ?
data->smu_features[GNLD_ULV].smu_feature_bitmap : 0;
feature_mask |= data->smu_features[GNLD_DS_GFXCLK].enabled ?
data->smu_features[GNLD_DS_GFXCLK].smu_feature_bitmap : 0;
feature_mask |= data->smu_features[GNLD_DS_SOCCLK].enabled ?
data->smu_features[GNLD_DS_SOCCLK].smu_feature_bitmap : 0;
feature_mask |= data->smu_features[GNLD_DS_LCLK].enabled ?
data->smu_features[GNLD_DS_LCLK].smu_feature_bitmap : 0;
feature_mask |= data->smu_features[GNLD_DS_DCEFCLK].enabled ?
data->smu_features[GNLD_DS_DCEFCLK].smu_feature_bitmap : 0;
} else {
feature_mask |= (!data->smu_features[GNLD_ULV].enabled) ?
data->smu_features[GNLD_ULV].smu_feature_bitmap : 0;
feature_mask |= (!data->smu_features[GNLD_DS_GFXCLK].enabled) ?
data->smu_features[GNLD_DS_GFXCLK].smu_feature_bitmap : 0;
feature_mask |= (!data->smu_features[GNLD_DS_SOCCLK].enabled) ?
data->smu_features[GNLD_DS_SOCCLK].smu_feature_bitmap : 0;
feature_mask |= (!data->smu_features[GNLD_DS_LCLK].enabled) ?
data->smu_features[GNLD_DS_LCLK].smu_feature_bitmap : 0;
feature_mask |= (!data->smu_features[GNLD_DS_DCEFCLK].enabled) ?
data->smu_features[GNLD_DS_DCEFCLK].smu_feature_bitmap : 0;
}
if (feature_mask)
PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
!disable, feature_mask),
"enable/disable power features for compute performance Failed!",
return -EINVAL);
if (disable) {
data->smu_features[GNLD_ULV].enabled = false;
data->smu_features[GNLD_DS_GFXCLK].enabled = false;
data->smu_features[GNLD_DS_SOCCLK].enabled = false;
data->smu_features[GNLD_DS_LCLK].enabled = false;
data->smu_features[GNLD_DS_DCEFCLK].enabled = false;
} else {
data->smu_features[GNLD_ULV].enabled = true;
data->smu_features[GNLD_DS_GFXCLK].enabled = true;
data->smu_features[GNLD_DS_SOCCLK].enabled = true;
data->smu_features[GNLD_DS_LCLK].enabled = true;
data->smu_features[GNLD_DS_DCEFCLK].enabled = true;
}
return 0;
}
static const struct pp_hwmgr_func vega10_hwmgr_funcs = {
.backend_init = vega10_hwmgr_backend_init,
.backend_fini = vega10_hwmgr_backend_fini,
.asic_setup = vega10_setup_asic_task,
.dynamic_state_management_enable = vega10_enable_dpm_tasks,
.dynamic_state_management_disable = vega10_disable_dpm_tasks,
.get_num_of_pp_table_entries =
vega10_get_number_of_powerplay_table_entries,
.get_power_state_size = vega10_get_power_state_size,
.get_pp_table_entry = vega10_get_pp_table_entry,
.patch_boot_state = vega10_patch_boot_state,
.apply_state_adjust_rules = vega10_apply_state_adjust_rules,
.power_state_set = vega10_set_power_state_tasks,
.get_sclk = vega10_dpm_get_sclk,
.get_mclk = vega10_dpm_get_mclk,
.notify_smc_display_config_after_ps_adjustment =
vega10_notify_smc_display_config_after_ps_adjustment,
.force_dpm_level = vega10_dpm_force_dpm_level,
.stop_thermal_controller = vega10_thermal_stop_thermal_controller,
.get_fan_speed_info = vega10_fan_ctrl_get_fan_speed_info,
.get_fan_speed_percent = vega10_fan_ctrl_get_fan_speed_percent,
.set_fan_speed_percent = vega10_fan_ctrl_set_fan_speed_percent,
.reset_fan_speed_to_default =
vega10_fan_ctrl_reset_fan_speed_to_default,
.get_fan_speed_rpm = vega10_fan_ctrl_get_fan_speed_rpm,
.set_fan_speed_rpm = vega10_fan_ctrl_set_fan_speed_rpm,
.uninitialize_thermal_controller =
vega10_thermal_ctrl_uninitialize_thermal_controller,
.set_fan_control_mode = vega10_set_fan_control_mode,
.get_fan_control_mode = vega10_get_fan_control_mode,
.read_sensor = vega10_read_sensor,
.get_dal_power_level = vega10_get_dal_power_level,
.get_clock_by_type_with_latency = vega10_get_clock_by_type_with_latency,
.get_clock_by_type_with_voltage = vega10_get_clock_by_type_with_voltage,
.set_watermarks_for_clocks_ranges = vega10_set_watermarks_for_clocks_ranges,
.display_clock_voltage_request = vega10_display_clock_voltage_request,
.force_clock_level = vega10_force_clock_level,
.print_clock_levels = vega10_print_clock_levels,
.display_config_changed = vega10_display_configuration_changed_task,
.powergate_uvd = vega10_power_gate_uvd,
.powergate_vce = vega10_power_gate_vce,
.check_states_equal = vega10_check_states_equal,
.check_smc_update_required_for_display_configuration =
vega10_check_smc_update_required_for_display_configuration,
.power_off_asic = vega10_power_off_asic,
.disable_smc_firmware_ctf = vega10_thermal_disable_alert,
.get_sclk_od = vega10_get_sclk_od,
.set_sclk_od = vega10_set_sclk_od,
.get_mclk_od = vega10_get_mclk_od,
.set_mclk_od = vega10_set_mclk_od,
.avfs_control = vega10_avfs_enable,
.notify_cac_buffer_info = vega10_notify_cac_buffer_info,
.get_thermal_temperature_range = vega10_get_thermal_temperature_range,
.register_irq_handlers = smu9_register_irq_handlers,
.start_thermal_controller = vega10_start_thermal_controller,
.get_power_profile_mode = vega10_get_power_profile_mode,
.set_power_profile_mode = vega10_set_power_profile_mode,
.set_power_limit = vega10_set_power_limit,
.odn_edit_dpm_table = vega10_odn_edit_dpm_table,
.get_performance_level = vega10_get_performance_level,
.get_asic_baco_capability = smu9_baco_get_capability,
.get_asic_baco_state = smu9_baco_get_state,
.set_asic_baco_state = vega10_baco_set_state,
.enable_mgpu_fan_boost = vega10_enable_mgpu_fan_boost,
.get_ppfeature_status = vega10_get_ppfeature_status,
.set_ppfeature_status = vega10_set_ppfeature_status,
.set_mp1_state = vega10_set_mp1_state,
.disable_power_features_for_compute_performance =
vega10_disable_power_features_for_compute_performance,
};
int vega10_hwmgr_init(struct pp_hwmgr *hwmgr)
{
struct amdgpu_device *adev = hwmgr->adev;
hwmgr->hwmgr_func = &vega10_hwmgr_funcs;
hwmgr->pptable_func = &vega10_pptable_funcs;
if (amdgpu_passthrough(adev))
return vega10_baco_set_cap(hwmgr);
return 0;
}