5f6e430f93
- Add powerpc qspinlock implementation optimised for large system scalability and paravirt. See the merge message for more details. - Enable objtool to be built on powerpc to generate mcount locations. - Use a temporary mm for code patching with the Radix MMU, so the writable mapping is restricted to the patching CPU. - Add an option to build the 64-bit big-endian kernel with the ELFv2 ABI. - Sanitise user registers on interrupt entry on 64-bit Book3S. - Many other small features and fixes. Thanks to: Aboorva Devarajan, Angel Iglesias, Benjamin Gray, Bjorn Helgaas, Bo Liu, Chen Lifu, Christoph Hellwig, Christophe JAILLET, Christophe Leroy, Christopher M. Riedl, Colin Ian King, Deming Wang, Disha Goel, Dmitry Torokhov, Finn Thain, Geert Uytterhoeven, Gustavo A. R. Silva, Haowen Bai, Joel Stanley, Jordan Niethe, Julia Lawall, Kajol Jain, Laurent Dufour, Li zeming, Miaoqian Lin, Michael Jeanson, Nathan Lynch, Naveen N. Rao, Nayna Jain, Nicholas Miehlbradt, Nicholas Piggin, Pali Rohár, Randy Dunlap, Rohan McLure, Russell Currey, Sathvika Vasireddy, Shaomin Deng, Stephen Kitt, Stephen Rothwell, Thomas Weißschuh, Tiezhu Yang, Uwe Kleine-König, Xie Shaowen, Xiu Jianfeng, XueBing Chen, Yang Yingliang, Zhang Jiaming, ruanjinjie, Jessica Yu, Wolfram Sang. -----BEGIN PGP SIGNATURE----- iQJHBAABCAAxFiEEJFGtCPCthwEv2Y/bUevqPMjhpYAFAmOfrj8THG1wZUBlbGxl cm1hbi5pZC5hdQAKCRBR6+o8yOGlgIWtD/9mGF/ze2k+qFTo+30fb7bO8WJIDgsR dIASnZjXV7q/45elvymhUdkQv4R7xL3pzC40P1+ZKtWzGTNe+zWUQLoALNwRK85j 8CsxZbqefGNKE5Z6ZHo9s37wsu3+jJu9yEQpGFo1LINyzeclCn5St5oqfRam+Hd/ cPF+VfvREwZ0+YOKGBhJ2EgC+Gc9xsFY7DLQsoYlu71iZZr6Z6rgZW/EY5h3RMGS YKBoVwDsWaU0FpFWrr/rYTI6DqSr3AHr1+ftDg7ncCZMD6vQva6aMCCt94aLB1aE vC+DNdhZlA558bXGa5yA7Wr//7aUBUIwyC60DogOeZ6vw3kD9tdEd1fbH5hmqNKY K5bfqm28XU2959CTE8RDgsYYZvwDcfrjBIML14WZGdCQOTcGKpgOGp22o6yNb1Pq JKpHHnVpvu2PZ/p2XdKSm9+etr2yI6lXZAEVTS7ehdtMukButjSHEVbSCEZ8tlWz KokQt2J23BMHuSrXK6+67wWQBtdsLEk+LBOQmweiwarMocqvL/Zjz/5J7DR2DtH8 wlY3wOtB1+E5j7xZ+RgK3c3jNg5dH39ZwvFsSATWTI3P+iq6OK/bbk4q4LmZt2l9 ZIfH/CXPf9BvGCHzHa3AAd3UBbJLFwj17btMEv1wFVPS0T4LPUzkgTNTNUYeP6zL h1e5QfgUxvKPuQ== =7k3p -----END PGP SIGNATURE----- Merge tag 'powerpc-6.2-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux Pull powerpc updates from Michael Ellerman: - Add powerpc qspinlock implementation optimised for large system scalability and paravirt. See the merge message for more details - Enable objtool to be built on powerpc to generate mcount locations - Use a temporary mm for code patching with the Radix MMU, so the writable mapping is restricted to the patching CPU - Add an option to build the 64-bit big-endian kernel with the ELFv2 ABI - Sanitise user registers on interrupt entry on 64-bit Book3S - Many other small features and fixes Thanks to Aboorva Devarajan, Angel Iglesias, Benjamin Gray, Bjorn Helgaas, Bo Liu, Chen Lifu, Christoph Hellwig, Christophe JAILLET, Christophe Leroy, Christopher M. Riedl, Colin Ian King, Deming Wang, Disha Goel, Dmitry Torokhov, Finn Thain, Geert Uytterhoeven, Gustavo A. R. Silva, Haowen Bai, Joel Stanley, Jordan Niethe, Julia Lawall, Kajol Jain, Laurent Dufour, Li zeming, Miaoqian Lin, Michael Jeanson, Nathan Lynch, Naveen N. Rao, Nayna Jain, Nicholas Miehlbradt, Nicholas Piggin, Pali Rohár, Randy Dunlap, Rohan McLure, Russell Currey, Sathvika Vasireddy, Shaomin Deng, Stephen Kitt, Stephen Rothwell, Thomas Weißschuh, Tiezhu Yang, Uwe Kleine-König, Xie Shaowen, Xiu Jianfeng, XueBing Chen, Yang Yingliang, Zhang Jiaming, ruanjinjie, Jessica Yu, and Wolfram Sang. * tag 'powerpc-6.2-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (181 commits) powerpc/code-patching: Fix oops with DEBUG_VM enabled powerpc/qspinlock: Fix 32-bit build powerpc/prom: Fix 32-bit build powerpc/rtas: mandate RTAS syscall filtering powerpc/rtas: define pr_fmt and convert printk call sites powerpc/rtas: clean up includes powerpc/rtas: clean up rtas_error_log_max initialization powerpc/pseries/eeh: use correct API for error log size powerpc/rtas: avoid scheduling in rtas_os_term() powerpc/rtas: avoid device tree lookups in rtas_os_term() powerpc/rtasd: use correct OF API for event scan rate powerpc/rtas: document rtas_call() powerpc/pseries: unregister VPA when hot unplugging a CPU powerpc/pseries: reset the RCU watchdogs after a LPM powerpc: Take in account addition CPU node when building kexec FDT powerpc: export the CPU node count powerpc/cpuidle: Set CPUIDLE_FLAG_POLLING for snooze state powerpc/dts/fsl: Fix pca954x i2c-mux node names cxl: Remove unnecessary cxl_pci_window_alignment() selftests/powerpc: Fix resource leaks ...
574 lines
15 KiB
C
574 lines
15 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* Kernel Probes (KProbes)
|
|
*
|
|
* Copyright (C) IBM Corporation, 2002, 2004
|
|
*
|
|
* 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
|
|
* Probes initial implementation ( includes contributions from
|
|
* Rusty Russell).
|
|
* 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
|
|
* interface to access function arguments.
|
|
* 2004-Nov Ananth N Mavinakayanahalli <ananth@in.ibm.com> kprobes port
|
|
* for PPC64
|
|
*/
|
|
|
|
#include <linux/kprobes.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/preempt.h>
|
|
#include <linux/extable.h>
|
|
#include <linux/kdebug.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/moduleloader.h>
|
|
#include <linux/set_memory.h>
|
|
#include <asm/code-patching.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/sstep.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/inst.h>
|
|
#include <linux/uaccess.h>
|
|
|
|
DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
|
|
DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
|
|
|
|
struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
|
|
|
|
bool arch_within_kprobe_blacklist(unsigned long addr)
|
|
{
|
|
return (addr >= (unsigned long)__kprobes_text_start &&
|
|
addr < (unsigned long)__kprobes_text_end) ||
|
|
(addr >= (unsigned long)_stext &&
|
|
addr < (unsigned long)__head_end);
|
|
}
|
|
|
|
kprobe_opcode_t *kprobe_lookup_name(const char *name, unsigned int offset)
|
|
{
|
|
kprobe_opcode_t *addr = NULL;
|
|
|
|
#ifdef CONFIG_PPC64_ELF_ABI_V2
|
|
/* PPC64 ABIv2 needs local entry point */
|
|
addr = (kprobe_opcode_t *)kallsyms_lookup_name(name);
|
|
if (addr && !offset) {
|
|
#ifdef CONFIG_KPROBES_ON_FTRACE
|
|
unsigned long faddr;
|
|
/*
|
|
* Per livepatch.h, ftrace location is always within the first
|
|
* 16 bytes of a function on powerpc with -mprofile-kernel.
|
|
*/
|
|
faddr = ftrace_location_range((unsigned long)addr,
|
|
(unsigned long)addr + 16);
|
|
if (faddr)
|
|
addr = (kprobe_opcode_t *)faddr;
|
|
else
|
|
#endif
|
|
addr = (kprobe_opcode_t *)ppc_function_entry(addr);
|
|
}
|
|
#elif defined(CONFIG_PPC64_ELF_ABI_V1)
|
|
/*
|
|
* 64bit powerpc ABIv1 uses function descriptors:
|
|
* - Check for the dot variant of the symbol first.
|
|
* - If that fails, try looking up the symbol provided.
|
|
*
|
|
* This ensures we always get to the actual symbol and not
|
|
* the descriptor.
|
|
*
|
|
* Also handle <module:symbol> format.
|
|
*/
|
|
char dot_name[MODULE_NAME_LEN + 1 + KSYM_NAME_LEN];
|
|
bool dot_appended = false;
|
|
const char *c;
|
|
ssize_t ret = 0;
|
|
int len = 0;
|
|
|
|
if ((c = strnchr(name, MODULE_NAME_LEN, ':')) != NULL) {
|
|
c++;
|
|
len = c - name;
|
|
memcpy(dot_name, name, len);
|
|
} else
|
|
c = name;
|
|
|
|
if (*c != '\0' && *c != '.') {
|
|
dot_name[len++] = '.';
|
|
dot_appended = true;
|
|
}
|
|
ret = strscpy(dot_name + len, c, KSYM_NAME_LEN);
|
|
if (ret > 0)
|
|
addr = (kprobe_opcode_t *)kallsyms_lookup_name(dot_name);
|
|
|
|
/* Fallback to the original non-dot symbol lookup */
|
|
if (!addr && dot_appended)
|
|
addr = (kprobe_opcode_t *)kallsyms_lookup_name(name);
|
|
#else
|
|
addr = (kprobe_opcode_t *)kallsyms_lookup_name(name);
|
|
#endif
|
|
|
|
return addr;
|
|
}
|
|
|
|
static bool arch_kprobe_on_func_entry(unsigned long offset)
|
|
{
|
|
#ifdef CONFIG_PPC64_ELF_ABI_V2
|
|
#ifdef CONFIG_KPROBES_ON_FTRACE
|
|
return offset <= 16;
|
|
#else
|
|
return offset <= 8;
|
|
#endif
|
|
#else
|
|
return !offset;
|
|
#endif
|
|
}
|
|
|
|
/* XXX try and fold the magic of kprobe_lookup_name() in this */
|
|
kprobe_opcode_t *arch_adjust_kprobe_addr(unsigned long addr, unsigned long offset,
|
|
bool *on_func_entry)
|
|
{
|
|
*on_func_entry = arch_kprobe_on_func_entry(offset);
|
|
return (kprobe_opcode_t *)(addr + offset);
|
|
}
|
|
|
|
void *alloc_insn_page(void)
|
|
{
|
|
void *page;
|
|
|
|
page = module_alloc(PAGE_SIZE);
|
|
if (!page)
|
|
return NULL;
|
|
|
|
if (strict_module_rwx_enabled())
|
|
set_memory_rox((unsigned long)page, 1);
|
|
|
|
return page;
|
|
}
|
|
|
|
int arch_prepare_kprobe(struct kprobe *p)
|
|
{
|
|
int ret = 0;
|
|
struct kprobe *prev;
|
|
ppc_inst_t insn = ppc_inst_read(p->addr);
|
|
|
|
if ((unsigned long)p->addr & 0x03) {
|
|
printk("Attempt to register kprobe at an unaligned address\n");
|
|
ret = -EINVAL;
|
|
} else if (!can_single_step(ppc_inst_val(insn))) {
|
|
printk("Cannot register a kprobe on instructions that can't be single stepped\n");
|
|
ret = -EINVAL;
|
|
} else if ((unsigned long)p->addr & ~PAGE_MASK &&
|
|
ppc_inst_prefixed(ppc_inst_read(p->addr - 1))) {
|
|
printk("Cannot register a kprobe on the second word of prefixed instruction\n");
|
|
ret = -EINVAL;
|
|
}
|
|
prev = get_kprobe(p->addr - 1);
|
|
|
|
/*
|
|
* When prev is a ftrace-based kprobe, we don't have an insn, and it
|
|
* doesn't probe for prefixed instruction.
|
|
*/
|
|
if (prev && !kprobe_ftrace(prev) &&
|
|
ppc_inst_prefixed(ppc_inst_read(prev->ainsn.insn))) {
|
|
printk("Cannot register a kprobe on the second word of prefixed instruction\n");
|
|
ret = -EINVAL;
|
|
}
|
|
|
|
/* insn must be on a special executable page on ppc64. This is
|
|
* not explicitly required on ppc32 (right now), but it doesn't hurt */
|
|
if (!ret) {
|
|
p->ainsn.insn = get_insn_slot();
|
|
if (!p->ainsn.insn)
|
|
ret = -ENOMEM;
|
|
}
|
|
|
|
if (!ret) {
|
|
patch_instruction(p->ainsn.insn, insn);
|
|
p->opcode = ppc_inst_val(insn);
|
|
}
|
|
|
|
p->ainsn.boostable = 0;
|
|
return ret;
|
|
}
|
|
NOKPROBE_SYMBOL(arch_prepare_kprobe);
|
|
|
|
void arch_arm_kprobe(struct kprobe *p)
|
|
{
|
|
WARN_ON_ONCE(patch_instruction(p->addr, ppc_inst(BREAKPOINT_INSTRUCTION)));
|
|
}
|
|
NOKPROBE_SYMBOL(arch_arm_kprobe);
|
|
|
|
void arch_disarm_kprobe(struct kprobe *p)
|
|
{
|
|
WARN_ON_ONCE(patch_instruction(p->addr, ppc_inst(p->opcode)));
|
|
}
|
|
NOKPROBE_SYMBOL(arch_disarm_kprobe);
|
|
|
|
void arch_remove_kprobe(struct kprobe *p)
|
|
{
|
|
if (p->ainsn.insn) {
|
|
free_insn_slot(p->ainsn.insn, 0);
|
|
p->ainsn.insn = NULL;
|
|
}
|
|
}
|
|
NOKPROBE_SYMBOL(arch_remove_kprobe);
|
|
|
|
static nokprobe_inline void prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
|
|
{
|
|
enable_single_step(regs);
|
|
|
|
/*
|
|
* On powerpc we should single step on the original
|
|
* instruction even if the probed insn is a trap
|
|
* variant as values in regs could play a part in
|
|
* if the trap is taken or not
|
|
*/
|
|
regs_set_return_ip(regs, (unsigned long)p->ainsn.insn);
|
|
}
|
|
|
|
static nokprobe_inline void save_previous_kprobe(struct kprobe_ctlblk *kcb)
|
|
{
|
|
kcb->prev_kprobe.kp = kprobe_running();
|
|
kcb->prev_kprobe.status = kcb->kprobe_status;
|
|
kcb->prev_kprobe.saved_msr = kcb->kprobe_saved_msr;
|
|
}
|
|
|
|
static nokprobe_inline void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
|
|
{
|
|
__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
|
|
kcb->kprobe_status = kcb->prev_kprobe.status;
|
|
kcb->kprobe_saved_msr = kcb->prev_kprobe.saved_msr;
|
|
}
|
|
|
|
static nokprobe_inline void set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
|
|
struct kprobe_ctlblk *kcb)
|
|
{
|
|
__this_cpu_write(current_kprobe, p);
|
|
kcb->kprobe_saved_msr = regs->msr;
|
|
}
|
|
|
|
void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
|
|
{
|
|
ri->ret_addr = (kprobe_opcode_t *)regs->link;
|
|
ri->fp = NULL;
|
|
|
|
/* Replace the return addr with trampoline addr */
|
|
regs->link = (unsigned long)__kretprobe_trampoline;
|
|
}
|
|
NOKPROBE_SYMBOL(arch_prepare_kretprobe);
|
|
|
|
static int try_to_emulate(struct kprobe *p, struct pt_regs *regs)
|
|
{
|
|
int ret;
|
|
ppc_inst_t insn = ppc_inst_read(p->ainsn.insn);
|
|
|
|
/* regs->nip is also adjusted if emulate_step returns 1 */
|
|
ret = emulate_step(regs, insn);
|
|
if (ret > 0) {
|
|
/*
|
|
* Once this instruction has been boosted
|
|
* successfully, set the boostable flag
|
|
*/
|
|
if (unlikely(p->ainsn.boostable == 0))
|
|
p->ainsn.boostable = 1;
|
|
} else if (ret < 0) {
|
|
/*
|
|
* We don't allow kprobes on mtmsr(d)/rfi(d), etc.
|
|
* So, we should never get here... but, its still
|
|
* good to catch them, just in case...
|
|
*/
|
|
printk("Can't step on instruction %08lx\n", ppc_inst_as_ulong(insn));
|
|
BUG();
|
|
} else {
|
|
/*
|
|
* If we haven't previously emulated this instruction, then it
|
|
* can't be boosted. Note it down so we don't try to do so again.
|
|
*
|
|
* If, however, we had emulated this instruction in the past,
|
|
* then this is just an error with the current run (for
|
|
* instance, exceptions due to a load/store). We return 0 so
|
|
* that this is now single-stepped, but continue to try
|
|
* emulating it in subsequent probe hits.
|
|
*/
|
|
if (unlikely(p->ainsn.boostable != 1))
|
|
p->ainsn.boostable = -1;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
NOKPROBE_SYMBOL(try_to_emulate);
|
|
|
|
int kprobe_handler(struct pt_regs *regs)
|
|
{
|
|
struct kprobe *p;
|
|
int ret = 0;
|
|
unsigned int *addr = (unsigned int *)regs->nip;
|
|
struct kprobe_ctlblk *kcb;
|
|
|
|
if (user_mode(regs))
|
|
return 0;
|
|
|
|
if (!IS_ENABLED(CONFIG_BOOKE) &&
|
|
(!(regs->msr & MSR_IR) || !(regs->msr & MSR_DR)))
|
|
return 0;
|
|
|
|
/*
|
|
* We don't want to be preempted for the entire
|
|
* duration of kprobe processing
|
|
*/
|
|
preempt_disable();
|
|
kcb = get_kprobe_ctlblk();
|
|
|
|
p = get_kprobe(addr);
|
|
if (!p) {
|
|
unsigned int instr;
|
|
|
|
if (get_kernel_nofault(instr, addr))
|
|
goto no_kprobe;
|
|
|
|
if (instr != BREAKPOINT_INSTRUCTION) {
|
|
/*
|
|
* PowerPC has multiple variants of the "trap"
|
|
* instruction. If the current instruction is a
|
|
* trap variant, it could belong to someone else
|
|
*/
|
|
if (is_trap(instr))
|
|
goto no_kprobe;
|
|
/*
|
|
* The breakpoint instruction was removed right
|
|
* after we hit it. Another cpu has removed
|
|
* either a probepoint or a debugger breakpoint
|
|
* at this address. In either case, no further
|
|
* handling of this interrupt is appropriate.
|
|
*/
|
|
ret = 1;
|
|
}
|
|
/* Not one of ours: let kernel handle it */
|
|
goto no_kprobe;
|
|
}
|
|
|
|
/* Check we're not actually recursing */
|
|
if (kprobe_running()) {
|
|
kprobe_opcode_t insn = *p->ainsn.insn;
|
|
if (kcb->kprobe_status == KPROBE_HIT_SS && is_trap(insn)) {
|
|
/* Turn off 'trace' bits */
|
|
regs_set_return_msr(regs,
|
|
(regs->msr & ~MSR_SINGLESTEP) |
|
|
kcb->kprobe_saved_msr);
|
|
goto no_kprobe;
|
|
}
|
|
|
|
/*
|
|
* We have reentered the kprobe_handler(), since another probe
|
|
* was hit while within the handler. We here save the original
|
|
* kprobes variables and just single step on the instruction of
|
|
* the new probe without calling any user handlers.
|
|
*/
|
|
save_previous_kprobe(kcb);
|
|
set_current_kprobe(p, regs, kcb);
|
|
kprobes_inc_nmissed_count(p);
|
|
kcb->kprobe_status = KPROBE_REENTER;
|
|
if (p->ainsn.boostable >= 0) {
|
|
ret = try_to_emulate(p, regs);
|
|
|
|
if (ret > 0) {
|
|
restore_previous_kprobe(kcb);
|
|
preempt_enable();
|
|
return 1;
|
|
}
|
|
}
|
|
prepare_singlestep(p, regs);
|
|
return 1;
|
|
}
|
|
|
|
kcb->kprobe_status = KPROBE_HIT_ACTIVE;
|
|
set_current_kprobe(p, regs, kcb);
|
|
if (p->pre_handler && p->pre_handler(p, regs)) {
|
|
/* handler changed execution path, so skip ss setup */
|
|
reset_current_kprobe();
|
|
preempt_enable();
|
|
return 1;
|
|
}
|
|
|
|
if (p->ainsn.boostable >= 0) {
|
|
ret = try_to_emulate(p, regs);
|
|
|
|
if (ret > 0) {
|
|
if (p->post_handler)
|
|
p->post_handler(p, regs, 0);
|
|
|
|
kcb->kprobe_status = KPROBE_HIT_SSDONE;
|
|
reset_current_kprobe();
|
|
preempt_enable();
|
|
return 1;
|
|
}
|
|
}
|
|
prepare_singlestep(p, regs);
|
|
kcb->kprobe_status = KPROBE_HIT_SS;
|
|
return 1;
|
|
|
|
no_kprobe:
|
|
preempt_enable();
|
|
return ret;
|
|
}
|
|
NOKPROBE_SYMBOL(kprobe_handler);
|
|
|
|
/*
|
|
* Function return probe trampoline:
|
|
* - init_kprobes() establishes a probepoint here
|
|
* - When the probed function returns, this probe
|
|
* causes the handlers to fire
|
|
*/
|
|
asm(".global __kretprobe_trampoline\n"
|
|
".type __kretprobe_trampoline, @function\n"
|
|
"__kretprobe_trampoline:\n"
|
|
"nop\n"
|
|
"blr\n"
|
|
".size __kretprobe_trampoline, .-__kretprobe_trampoline\n");
|
|
|
|
/*
|
|
* Called when the probe at kretprobe trampoline is hit
|
|
*/
|
|
static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
|
|
{
|
|
unsigned long orig_ret_address;
|
|
|
|
orig_ret_address = __kretprobe_trampoline_handler(regs, NULL);
|
|
/*
|
|
* We get here through one of two paths:
|
|
* 1. by taking a trap -> kprobe_handler() -> here
|
|
* 2. by optprobe branch -> optimized_callback() -> opt_pre_handler() -> here
|
|
*
|
|
* When going back through (1), we need regs->nip to be setup properly
|
|
* as it is used to determine the return address from the trap.
|
|
* For (2), since nip is not honoured with optprobes, we instead setup
|
|
* the link register properly so that the subsequent 'blr' in
|
|
* __kretprobe_trampoline jumps back to the right instruction.
|
|
*
|
|
* For nip, we should set the address to the previous instruction since
|
|
* we end up emulating it in kprobe_handler(), which increments the nip
|
|
* again.
|
|
*/
|
|
regs_set_return_ip(regs, orig_ret_address - 4);
|
|
regs->link = orig_ret_address;
|
|
|
|
return 0;
|
|
}
|
|
NOKPROBE_SYMBOL(trampoline_probe_handler);
|
|
|
|
/*
|
|
* Called after single-stepping. p->addr is the address of the
|
|
* instruction whose first byte has been replaced by the "breakpoint"
|
|
* instruction. To avoid the SMP problems that can occur when we
|
|
* temporarily put back the original opcode to single-step, we
|
|
* single-stepped a copy of the instruction. The address of this
|
|
* copy is p->ainsn.insn.
|
|
*/
|
|
int kprobe_post_handler(struct pt_regs *regs)
|
|
{
|
|
int len;
|
|
struct kprobe *cur = kprobe_running();
|
|
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
|
|
|
if (!cur || user_mode(regs))
|
|
return 0;
|
|
|
|
len = ppc_inst_len(ppc_inst_read(cur->ainsn.insn));
|
|
/* make sure we got here for instruction we have a kprobe on */
|
|
if (((unsigned long)cur->ainsn.insn + len) != regs->nip)
|
|
return 0;
|
|
|
|
if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
|
|
kcb->kprobe_status = KPROBE_HIT_SSDONE;
|
|
cur->post_handler(cur, regs, 0);
|
|
}
|
|
|
|
/* Adjust nip to after the single-stepped instruction */
|
|
regs_set_return_ip(regs, (unsigned long)cur->addr + len);
|
|
regs_set_return_msr(regs, regs->msr | kcb->kprobe_saved_msr);
|
|
|
|
/*Restore back the original saved kprobes variables and continue. */
|
|
if (kcb->kprobe_status == KPROBE_REENTER) {
|
|
restore_previous_kprobe(kcb);
|
|
goto out;
|
|
}
|
|
reset_current_kprobe();
|
|
out:
|
|
preempt_enable();
|
|
|
|
/*
|
|
* if somebody else is singlestepping across a probe point, msr
|
|
* will have DE/SE set, in which case, continue the remaining processing
|
|
* of do_debug, as if this is not a probe hit.
|
|
*/
|
|
if (regs->msr & MSR_SINGLESTEP)
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
NOKPROBE_SYMBOL(kprobe_post_handler);
|
|
|
|
int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
|
|
{
|
|
struct kprobe *cur = kprobe_running();
|
|
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
|
const struct exception_table_entry *entry;
|
|
|
|
switch(kcb->kprobe_status) {
|
|
case KPROBE_HIT_SS:
|
|
case KPROBE_REENTER:
|
|
/*
|
|
* We are here because the instruction being single
|
|
* stepped caused a page fault. We reset the current
|
|
* kprobe and the nip points back to the probe address
|
|
* and allow the page fault handler to continue as a
|
|
* normal page fault.
|
|
*/
|
|
regs_set_return_ip(regs, (unsigned long)cur->addr);
|
|
/* Turn off 'trace' bits */
|
|
regs_set_return_msr(regs,
|
|
(regs->msr & ~MSR_SINGLESTEP) |
|
|
kcb->kprobe_saved_msr);
|
|
if (kcb->kprobe_status == KPROBE_REENTER)
|
|
restore_previous_kprobe(kcb);
|
|
else
|
|
reset_current_kprobe();
|
|
preempt_enable();
|
|
break;
|
|
case KPROBE_HIT_ACTIVE:
|
|
case KPROBE_HIT_SSDONE:
|
|
/*
|
|
* In case the user-specified fault handler returned
|
|
* zero, try to fix up.
|
|
*/
|
|
if ((entry = search_exception_tables(regs->nip)) != NULL) {
|
|
regs_set_return_ip(regs, extable_fixup(entry));
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* fixup_exception() could not handle it,
|
|
* Let do_page_fault() fix it.
|
|
*/
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
NOKPROBE_SYMBOL(kprobe_fault_handler);
|
|
|
|
static struct kprobe trampoline_p = {
|
|
.addr = (kprobe_opcode_t *) &__kretprobe_trampoline,
|
|
.pre_handler = trampoline_probe_handler
|
|
};
|
|
|
|
int __init arch_init_kprobes(void)
|
|
{
|
|
return register_kprobe(&trampoline_p);
|
|
}
|
|
|
|
int arch_trampoline_kprobe(struct kprobe *p)
|
|
{
|
|
if (p->addr == (kprobe_opcode_t *)&__kretprobe_trampoline)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
NOKPROBE_SYMBOL(arch_trampoline_kprobe);
|