iommu_dma_map_page() allocates swiotlb memory as a bounce buffer when an untrusted device wants to map only part of the memory in an granule. The goal is to disallow the untrusted device having DMA access to unrelated kernel data that may be sharing the granule. To meet this goal, the bounce buffer itself is zeroed, and any additional swiotlb memory up to alloc_size after the bounce buffer end (i.e., "post-padding") is also zeroed. However, as of commit 901c7280ca0d ("Reinstate some of "swiotlb: rework "fix info leak with DMA_FROM_DEVICE"""), swiotlb_tbl_map_single() always initializes the contents of the bounce buffer to the original memory. Zeroing the bounce buffer is redundant and probably wrong per the discussion in that commit. Only the post-padding needs to be zeroed. Also, when the DMA min_align_mask is non-zero, the allocated bounce buffer space may not start on a granule boundary. The swiotlb memory from the granule boundary to the start of the allocated bounce buffer might belong to some unrelated bounce buffer. So as described in the "second issue" in [1], it can't be zeroed to protect against untrusted devices. But as of commit af133562d5af ("swiotlb: extend buffer pre-padding to alloc_align_mask if necessary"), swiotlb_tbl_map_single() allocates pre-padding slots when necessary to meet min_align_mask requirements, making it possible to zero the pre-padding area as well. Finally, iommu_dma_map_page() uses the swiotlb for untrusted devices and also for certain kmalloc() memory. Current code does the zeroing for both cases, but it is needed only for the untrusted device case. Fix all of this by updating iommu_dma_map_page() to zero both the pre-padding and post-padding areas, but not the actual bounce buffer. Do this only in the case where the bounce buffer is used because of an untrusted device. [1] https://lore.kernel.org/all/20210929023300.335969-1-stevensd@google.com/ Signed-off-by: Michael Kelley <mhklinux@outlook.com> Reviewed-by: Petr Tesarik <petr@tesarici.cz> Signed-off-by: Christoph Hellwig <hch@lst.de>
Linux kernel ============ There are several guides for kernel developers and users. These guides can be rendered in a number of formats, like HTML and PDF. Please read Documentation/admin-guide/README.rst first. In order to build the documentation, use ``make htmldocs`` or ``make pdfdocs``. The formatted documentation can also be read online at: https://www.kernel.org/doc/html/latest/ There are various text files in the Documentation/ subdirectory, several of them using the reStructuredText markup notation. Please read the Documentation/process/changes.rst file, as it contains the requirements for building and running the kernel, and information about the problems which may result by upgrading your kernel.
Description
Languages
C
97.6%
Assembly
1%
Shell
0.5%
Python
0.3%
Makefile
0.3%