linux/net/tls/tls_main.c
Sabrina Dubroca 1cf7fbcee6 tls: validate crypto_info in a separate helper
Simplify do_tls_setsockopt_conf a bit.

Signed-off-by: Sabrina Dubroca <sd@queasysnail.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
2023-10-13 11:26:10 +01:00

1150 lines
28 KiB
C

/*
* Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
* Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/module.h>
#include <net/tcp.h>
#include <net/inet_common.h>
#include <linux/highmem.h>
#include <linux/netdevice.h>
#include <linux/sched/signal.h>
#include <linux/inetdevice.h>
#include <linux/inet_diag.h>
#include <net/snmp.h>
#include <net/tls.h>
#include <net/tls_toe.h>
#include "tls.h"
MODULE_AUTHOR("Mellanox Technologies");
MODULE_DESCRIPTION("Transport Layer Security Support");
MODULE_LICENSE("Dual BSD/GPL");
MODULE_ALIAS_TCP_ULP("tls");
enum {
TLSV4,
TLSV6,
TLS_NUM_PROTS,
};
#define CHECK_CIPHER_DESC(cipher,ci) \
static_assert(cipher ## _IV_SIZE <= TLS_MAX_IV_SIZE); \
static_assert(cipher ## _SALT_SIZE <= TLS_MAX_SALT_SIZE); \
static_assert(cipher ## _REC_SEQ_SIZE <= TLS_MAX_REC_SEQ_SIZE); \
static_assert(cipher ## _TAG_SIZE == TLS_TAG_SIZE); \
static_assert(sizeof_field(struct ci, iv) == cipher ## _IV_SIZE); \
static_assert(sizeof_field(struct ci, key) == cipher ## _KEY_SIZE); \
static_assert(sizeof_field(struct ci, salt) == cipher ## _SALT_SIZE); \
static_assert(sizeof_field(struct ci, rec_seq) == cipher ## _REC_SEQ_SIZE);
#define __CIPHER_DESC(ci) \
.iv_offset = offsetof(struct ci, iv), \
.key_offset = offsetof(struct ci, key), \
.salt_offset = offsetof(struct ci, salt), \
.rec_seq_offset = offsetof(struct ci, rec_seq), \
.crypto_info = sizeof(struct ci)
#define CIPHER_DESC(cipher,ci,algname,_offloadable) [cipher - TLS_CIPHER_MIN] = { \
.nonce = cipher ## _IV_SIZE, \
.iv = cipher ## _IV_SIZE, \
.key = cipher ## _KEY_SIZE, \
.salt = cipher ## _SALT_SIZE, \
.tag = cipher ## _TAG_SIZE, \
.rec_seq = cipher ## _REC_SEQ_SIZE, \
.cipher_name = algname, \
.offloadable = _offloadable, \
__CIPHER_DESC(ci), \
}
#define CIPHER_DESC_NONCE0(cipher,ci,algname,_offloadable) [cipher - TLS_CIPHER_MIN] = { \
.nonce = 0, \
.iv = cipher ## _IV_SIZE, \
.key = cipher ## _KEY_SIZE, \
.salt = cipher ## _SALT_SIZE, \
.tag = cipher ## _TAG_SIZE, \
.rec_seq = cipher ## _REC_SEQ_SIZE, \
.cipher_name = algname, \
.offloadable = _offloadable, \
__CIPHER_DESC(ci), \
}
const struct tls_cipher_desc tls_cipher_desc[TLS_CIPHER_MAX + 1 - TLS_CIPHER_MIN] = {
CIPHER_DESC(TLS_CIPHER_AES_GCM_128, tls12_crypto_info_aes_gcm_128, "gcm(aes)", true),
CIPHER_DESC(TLS_CIPHER_AES_GCM_256, tls12_crypto_info_aes_gcm_256, "gcm(aes)", true),
CIPHER_DESC(TLS_CIPHER_AES_CCM_128, tls12_crypto_info_aes_ccm_128, "ccm(aes)", false),
CIPHER_DESC_NONCE0(TLS_CIPHER_CHACHA20_POLY1305, tls12_crypto_info_chacha20_poly1305, "rfc7539(chacha20,poly1305)", false),
CIPHER_DESC(TLS_CIPHER_SM4_GCM, tls12_crypto_info_sm4_gcm, "gcm(sm4)", false),
CIPHER_DESC(TLS_CIPHER_SM4_CCM, tls12_crypto_info_sm4_ccm, "ccm(sm4)", false),
CIPHER_DESC(TLS_CIPHER_ARIA_GCM_128, tls12_crypto_info_aria_gcm_128, "gcm(aria)", false),
CIPHER_DESC(TLS_CIPHER_ARIA_GCM_256, tls12_crypto_info_aria_gcm_256, "gcm(aria)", false),
};
CHECK_CIPHER_DESC(TLS_CIPHER_AES_GCM_128, tls12_crypto_info_aes_gcm_128);
CHECK_CIPHER_DESC(TLS_CIPHER_AES_GCM_256, tls12_crypto_info_aes_gcm_256);
CHECK_CIPHER_DESC(TLS_CIPHER_AES_CCM_128, tls12_crypto_info_aes_ccm_128);
CHECK_CIPHER_DESC(TLS_CIPHER_CHACHA20_POLY1305, tls12_crypto_info_chacha20_poly1305);
CHECK_CIPHER_DESC(TLS_CIPHER_SM4_GCM, tls12_crypto_info_sm4_gcm);
CHECK_CIPHER_DESC(TLS_CIPHER_SM4_CCM, tls12_crypto_info_sm4_ccm);
CHECK_CIPHER_DESC(TLS_CIPHER_ARIA_GCM_128, tls12_crypto_info_aria_gcm_128);
CHECK_CIPHER_DESC(TLS_CIPHER_ARIA_GCM_256, tls12_crypto_info_aria_gcm_256);
static const struct proto *saved_tcpv6_prot;
static DEFINE_MUTEX(tcpv6_prot_mutex);
static const struct proto *saved_tcpv4_prot;
static DEFINE_MUTEX(tcpv4_prot_mutex);
static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
static struct proto_ops tls_proto_ops[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
const struct proto *base);
void update_sk_prot(struct sock *sk, struct tls_context *ctx)
{
int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
WRITE_ONCE(sk->sk_prot,
&tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]);
WRITE_ONCE(sk->sk_socket->ops,
&tls_proto_ops[ip_ver][ctx->tx_conf][ctx->rx_conf]);
}
int wait_on_pending_writer(struct sock *sk, long *timeo)
{
int rc = 0;
DEFINE_WAIT_FUNC(wait, woken_wake_function);
add_wait_queue(sk_sleep(sk), &wait);
while (1) {
if (!*timeo) {
rc = -EAGAIN;
break;
}
if (signal_pending(current)) {
rc = sock_intr_errno(*timeo);
break;
}
if (sk_wait_event(sk, timeo,
!READ_ONCE(sk->sk_write_pending), &wait))
break;
}
remove_wait_queue(sk_sleep(sk), &wait);
return rc;
}
int tls_push_sg(struct sock *sk,
struct tls_context *ctx,
struct scatterlist *sg,
u16 first_offset,
int flags)
{
struct bio_vec bvec;
struct msghdr msg = {
.msg_flags = MSG_SPLICE_PAGES | flags,
};
int ret = 0;
struct page *p;
size_t size;
int offset = first_offset;
size = sg->length - offset;
offset += sg->offset;
ctx->splicing_pages = true;
while (1) {
/* is sending application-limited? */
tcp_rate_check_app_limited(sk);
p = sg_page(sg);
retry:
bvec_set_page(&bvec, p, size, offset);
iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, size);
ret = tcp_sendmsg_locked(sk, &msg, size);
if (ret != size) {
if (ret > 0) {
offset += ret;
size -= ret;
goto retry;
}
offset -= sg->offset;
ctx->partially_sent_offset = offset;
ctx->partially_sent_record = (void *)sg;
ctx->splicing_pages = false;
return ret;
}
put_page(p);
sk_mem_uncharge(sk, sg->length);
sg = sg_next(sg);
if (!sg)
break;
offset = sg->offset;
size = sg->length;
}
ctx->splicing_pages = false;
return 0;
}
static int tls_handle_open_record(struct sock *sk, int flags)
{
struct tls_context *ctx = tls_get_ctx(sk);
if (tls_is_pending_open_record(ctx))
return ctx->push_pending_record(sk, flags);
return 0;
}
int tls_process_cmsg(struct sock *sk, struct msghdr *msg,
unsigned char *record_type)
{
struct cmsghdr *cmsg;
int rc = -EINVAL;
for_each_cmsghdr(cmsg, msg) {
if (!CMSG_OK(msg, cmsg))
return -EINVAL;
if (cmsg->cmsg_level != SOL_TLS)
continue;
switch (cmsg->cmsg_type) {
case TLS_SET_RECORD_TYPE:
if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
return -EINVAL;
if (msg->msg_flags & MSG_MORE)
return -EINVAL;
rc = tls_handle_open_record(sk, msg->msg_flags);
if (rc)
return rc;
*record_type = *(unsigned char *)CMSG_DATA(cmsg);
rc = 0;
break;
default:
return -EINVAL;
}
}
return rc;
}
int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
int flags)
{
struct scatterlist *sg;
u16 offset;
sg = ctx->partially_sent_record;
offset = ctx->partially_sent_offset;
ctx->partially_sent_record = NULL;
return tls_push_sg(sk, ctx, sg, offset, flags);
}
void tls_free_partial_record(struct sock *sk, struct tls_context *ctx)
{
struct scatterlist *sg;
for (sg = ctx->partially_sent_record; sg; sg = sg_next(sg)) {
put_page(sg_page(sg));
sk_mem_uncharge(sk, sg->length);
}
ctx->partially_sent_record = NULL;
}
static void tls_write_space(struct sock *sk)
{
struct tls_context *ctx = tls_get_ctx(sk);
/* If splicing_pages call lower protocol write space handler
* to ensure we wake up any waiting operations there. For example
* if splicing pages where to call sk_wait_event.
*/
if (ctx->splicing_pages) {
ctx->sk_write_space(sk);
return;
}
#ifdef CONFIG_TLS_DEVICE
if (ctx->tx_conf == TLS_HW)
tls_device_write_space(sk, ctx);
else
#endif
tls_sw_write_space(sk, ctx);
ctx->sk_write_space(sk);
}
/**
* tls_ctx_free() - free TLS ULP context
* @sk: socket to with @ctx is attached
* @ctx: TLS context structure
*
* Free TLS context. If @sk is %NULL caller guarantees that the socket
* to which @ctx was attached has no outstanding references.
*/
void tls_ctx_free(struct sock *sk, struct tls_context *ctx)
{
if (!ctx)
return;
memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
mutex_destroy(&ctx->tx_lock);
if (sk)
kfree_rcu(ctx, rcu);
else
kfree(ctx);
}
static void tls_sk_proto_cleanup(struct sock *sk,
struct tls_context *ctx, long timeo)
{
if (unlikely(sk->sk_write_pending) &&
!wait_on_pending_writer(sk, &timeo))
tls_handle_open_record(sk, 0);
/* We need these for tls_sw_fallback handling of other packets */
if (ctx->tx_conf == TLS_SW) {
tls_sw_release_resources_tx(sk);
TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
} else if (ctx->tx_conf == TLS_HW) {
tls_device_free_resources_tx(sk);
TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
}
if (ctx->rx_conf == TLS_SW) {
tls_sw_release_resources_rx(sk);
TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
} else if (ctx->rx_conf == TLS_HW) {
tls_device_offload_cleanup_rx(sk);
TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
}
}
static void tls_sk_proto_close(struct sock *sk, long timeout)
{
struct inet_connection_sock *icsk = inet_csk(sk);
struct tls_context *ctx = tls_get_ctx(sk);
long timeo = sock_sndtimeo(sk, 0);
bool free_ctx;
if (ctx->tx_conf == TLS_SW)
tls_sw_cancel_work_tx(ctx);
lock_sock(sk);
free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW;
if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE)
tls_sk_proto_cleanup(sk, ctx, timeo);
write_lock_bh(&sk->sk_callback_lock);
if (free_ctx)
rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
WRITE_ONCE(sk->sk_prot, ctx->sk_proto);
if (sk->sk_write_space == tls_write_space)
sk->sk_write_space = ctx->sk_write_space;
write_unlock_bh(&sk->sk_callback_lock);
release_sock(sk);
if (ctx->tx_conf == TLS_SW)
tls_sw_free_ctx_tx(ctx);
if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
tls_sw_strparser_done(ctx);
if (ctx->rx_conf == TLS_SW)
tls_sw_free_ctx_rx(ctx);
ctx->sk_proto->close(sk, timeout);
if (free_ctx)
tls_ctx_free(sk, ctx);
}
static __poll_t tls_sk_poll(struct file *file, struct socket *sock,
struct poll_table_struct *wait)
{
struct tls_sw_context_rx *ctx;
struct tls_context *tls_ctx;
struct sock *sk = sock->sk;
struct sk_psock *psock;
__poll_t mask = 0;
u8 shutdown;
int state;
mask = tcp_poll(file, sock, wait);
state = inet_sk_state_load(sk);
shutdown = READ_ONCE(sk->sk_shutdown);
if (unlikely(state != TCP_ESTABLISHED || shutdown & RCV_SHUTDOWN))
return mask;
tls_ctx = tls_get_ctx(sk);
ctx = tls_sw_ctx_rx(tls_ctx);
psock = sk_psock_get(sk);
if (skb_queue_empty_lockless(&ctx->rx_list) &&
!tls_strp_msg_ready(ctx) &&
sk_psock_queue_empty(psock))
mask &= ~(EPOLLIN | EPOLLRDNORM);
if (psock)
sk_psock_put(sk, psock);
return mask;
}
static int do_tls_getsockopt_conf(struct sock *sk, char __user *optval,
int __user *optlen, int tx)
{
int rc = 0;
const struct tls_cipher_desc *cipher_desc;
struct tls_context *ctx = tls_get_ctx(sk);
struct tls_crypto_info *crypto_info;
struct cipher_context *cctx;
int len;
if (get_user(len, optlen))
return -EFAULT;
if (!optval || (len < sizeof(*crypto_info))) {
rc = -EINVAL;
goto out;
}
if (!ctx) {
rc = -EBUSY;
goto out;
}
/* get user crypto info */
if (tx) {
crypto_info = &ctx->crypto_send.info;
cctx = &ctx->tx;
} else {
crypto_info = &ctx->crypto_recv.info;
cctx = &ctx->rx;
}
if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
rc = -EBUSY;
goto out;
}
if (len == sizeof(*crypto_info)) {
if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
rc = -EFAULT;
goto out;
}
cipher_desc = get_cipher_desc(crypto_info->cipher_type);
if (!cipher_desc || len != cipher_desc->crypto_info) {
rc = -EINVAL;
goto out;
}
memcpy(crypto_info_iv(crypto_info, cipher_desc),
cctx->iv + cipher_desc->salt, cipher_desc->iv);
memcpy(crypto_info_rec_seq(crypto_info, cipher_desc),
cctx->rec_seq, cipher_desc->rec_seq);
if (copy_to_user(optval, crypto_info, cipher_desc->crypto_info))
rc = -EFAULT;
out:
return rc;
}
static int do_tls_getsockopt_tx_zc(struct sock *sk, char __user *optval,
int __user *optlen)
{
struct tls_context *ctx = tls_get_ctx(sk);
unsigned int value;
int len;
if (get_user(len, optlen))
return -EFAULT;
if (len != sizeof(value))
return -EINVAL;
value = ctx->zerocopy_sendfile;
if (copy_to_user(optval, &value, sizeof(value)))
return -EFAULT;
return 0;
}
static int do_tls_getsockopt_no_pad(struct sock *sk, char __user *optval,
int __user *optlen)
{
struct tls_context *ctx = tls_get_ctx(sk);
int value, len;
if (ctx->prot_info.version != TLS_1_3_VERSION)
return -EINVAL;
if (get_user(len, optlen))
return -EFAULT;
if (len < sizeof(value))
return -EINVAL;
value = -EINVAL;
if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
value = ctx->rx_no_pad;
if (value < 0)
return value;
if (put_user(sizeof(value), optlen))
return -EFAULT;
if (copy_to_user(optval, &value, sizeof(value)))
return -EFAULT;
return 0;
}
static int do_tls_getsockopt(struct sock *sk, int optname,
char __user *optval, int __user *optlen)
{
int rc = 0;
lock_sock(sk);
switch (optname) {
case TLS_TX:
case TLS_RX:
rc = do_tls_getsockopt_conf(sk, optval, optlen,
optname == TLS_TX);
break;
case TLS_TX_ZEROCOPY_RO:
rc = do_tls_getsockopt_tx_zc(sk, optval, optlen);
break;
case TLS_RX_EXPECT_NO_PAD:
rc = do_tls_getsockopt_no_pad(sk, optval, optlen);
break;
default:
rc = -ENOPROTOOPT;
break;
}
release_sock(sk);
return rc;
}
static int tls_getsockopt(struct sock *sk, int level, int optname,
char __user *optval, int __user *optlen)
{
struct tls_context *ctx = tls_get_ctx(sk);
if (level != SOL_TLS)
return ctx->sk_proto->getsockopt(sk, level,
optname, optval, optlen);
return do_tls_getsockopt(sk, optname, optval, optlen);
}
static int validate_crypto_info(const struct tls_crypto_info *crypto_info,
const struct tls_crypto_info *alt_crypto_info)
{
if (crypto_info->version != TLS_1_2_VERSION &&
crypto_info->version != TLS_1_3_VERSION)
return -EINVAL;
switch (crypto_info->cipher_type) {
case TLS_CIPHER_ARIA_GCM_128:
case TLS_CIPHER_ARIA_GCM_256:
if (crypto_info->version != TLS_1_2_VERSION)
return -EINVAL;
break;
}
/* Ensure that TLS version and ciphers are same in both directions */
if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
if (alt_crypto_info->version != crypto_info->version ||
alt_crypto_info->cipher_type != crypto_info->cipher_type)
return -EINVAL;
}
return 0;
}
static int do_tls_setsockopt_conf(struct sock *sk, sockptr_t optval,
unsigned int optlen, int tx)
{
struct tls_crypto_info *crypto_info;
struct tls_crypto_info *alt_crypto_info;
struct tls_context *ctx = tls_get_ctx(sk);
const struct tls_cipher_desc *cipher_desc;
int rc = 0;
int conf;
if (sockptr_is_null(optval) || (optlen < sizeof(*crypto_info)))
return -EINVAL;
if (tx) {
crypto_info = &ctx->crypto_send.info;
alt_crypto_info = &ctx->crypto_recv.info;
} else {
crypto_info = &ctx->crypto_recv.info;
alt_crypto_info = &ctx->crypto_send.info;
}
/* Currently we don't support set crypto info more than one time */
if (TLS_CRYPTO_INFO_READY(crypto_info))
return -EBUSY;
rc = copy_from_sockptr(crypto_info, optval, sizeof(*crypto_info));
if (rc) {
rc = -EFAULT;
goto err_crypto_info;
}
rc = validate_crypto_info(crypto_info, alt_crypto_info);
if (rc)
goto err_crypto_info;
cipher_desc = get_cipher_desc(crypto_info->cipher_type);
if (!cipher_desc) {
rc = -EINVAL;
goto err_crypto_info;
}
if (optlen != cipher_desc->crypto_info) {
rc = -EINVAL;
goto err_crypto_info;
}
rc = copy_from_sockptr_offset(crypto_info + 1, optval,
sizeof(*crypto_info),
optlen - sizeof(*crypto_info));
if (rc) {
rc = -EFAULT;
goto err_crypto_info;
}
if (tx) {
rc = tls_set_device_offload(sk);
conf = TLS_HW;
if (!rc) {
TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXDEVICE);
TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
} else {
rc = tls_set_sw_offload(sk, 1);
if (rc)
goto err_crypto_info;
TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXSW);
TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
conf = TLS_SW;
}
} else {
rc = tls_set_device_offload_rx(sk, ctx);
conf = TLS_HW;
if (!rc) {
TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICE);
TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
} else {
rc = tls_set_sw_offload(sk, 0);
if (rc)
goto err_crypto_info;
TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXSW);
TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
conf = TLS_SW;
}
tls_sw_strparser_arm(sk, ctx);
}
if (tx)
ctx->tx_conf = conf;
else
ctx->rx_conf = conf;
update_sk_prot(sk, ctx);
if (tx) {
ctx->sk_write_space = sk->sk_write_space;
sk->sk_write_space = tls_write_space;
} else {
struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(ctx);
tls_strp_check_rcv(&rx_ctx->strp);
}
return 0;
err_crypto_info:
memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
return rc;
}
static int do_tls_setsockopt_tx_zc(struct sock *sk, sockptr_t optval,
unsigned int optlen)
{
struct tls_context *ctx = tls_get_ctx(sk);
unsigned int value;
if (sockptr_is_null(optval) || optlen != sizeof(value))
return -EINVAL;
if (copy_from_sockptr(&value, optval, sizeof(value)))
return -EFAULT;
if (value > 1)
return -EINVAL;
ctx->zerocopy_sendfile = value;
return 0;
}
static int do_tls_setsockopt_no_pad(struct sock *sk, sockptr_t optval,
unsigned int optlen)
{
struct tls_context *ctx = tls_get_ctx(sk);
u32 val;
int rc;
if (ctx->prot_info.version != TLS_1_3_VERSION ||
sockptr_is_null(optval) || optlen < sizeof(val))
return -EINVAL;
rc = copy_from_sockptr(&val, optval, sizeof(val));
if (rc)
return -EFAULT;
if (val > 1)
return -EINVAL;
rc = check_zeroed_sockptr(optval, sizeof(val), optlen - sizeof(val));
if (rc < 1)
return rc == 0 ? -EINVAL : rc;
lock_sock(sk);
rc = -EINVAL;
if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW) {
ctx->rx_no_pad = val;
tls_update_rx_zc_capable(ctx);
rc = 0;
}
release_sock(sk);
return rc;
}
static int do_tls_setsockopt(struct sock *sk, int optname, sockptr_t optval,
unsigned int optlen)
{
int rc = 0;
switch (optname) {
case TLS_TX:
case TLS_RX:
lock_sock(sk);
rc = do_tls_setsockopt_conf(sk, optval, optlen,
optname == TLS_TX);
release_sock(sk);
break;
case TLS_TX_ZEROCOPY_RO:
lock_sock(sk);
rc = do_tls_setsockopt_tx_zc(sk, optval, optlen);
release_sock(sk);
break;
case TLS_RX_EXPECT_NO_PAD:
rc = do_tls_setsockopt_no_pad(sk, optval, optlen);
break;
default:
rc = -ENOPROTOOPT;
break;
}
return rc;
}
static int tls_setsockopt(struct sock *sk, int level, int optname,
sockptr_t optval, unsigned int optlen)
{
struct tls_context *ctx = tls_get_ctx(sk);
if (level != SOL_TLS)
return ctx->sk_proto->setsockopt(sk, level, optname, optval,
optlen);
return do_tls_setsockopt(sk, optname, optval, optlen);
}
struct tls_context *tls_ctx_create(struct sock *sk)
{
struct inet_connection_sock *icsk = inet_csk(sk);
struct tls_context *ctx;
ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
if (!ctx)
return NULL;
mutex_init(&ctx->tx_lock);
rcu_assign_pointer(icsk->icsk_ulp_data, ctx);
ctx->sk_proto = READ_ONCE(sk->sk_prot);
ctx->sk = sk;
return ctx;
}
static void build_proto_ops(struct proto_ops ops[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
const struct proto_ops *base)
{
ops[TLS_BASE][TLS_BASE] = *base;
ops[TLS_SW ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
ops[TLS_SW ][TLS_BASE].splice_eof = tls_sw_splice_eof;
ops[TLS_BASE][TLS_SW ] = ops[TLS_BASE][TLS_BASE];
ops[TLS_BASE][TLS_SW ].splice_read = tls_sw_splice_read;
ops[TLS_BASE][TLS_SW ].poll = tls_sk_poll;
ops[TLS_BASE][TLS_SW ].read_sock = tls_sw_read_sock;
ops[TLS_SW ][TLS_SW ] = ops[TLS_SW ][TLS_BASE];
ops[TLS_SW ][TLS_SW ].splice_read = tls_sw_splice_read;
ops[TLS_SW ][TLS_SW ].poll = tls_sk_poll;
ops[TLS_SW ][TLS_SW ].read_sock = tls_sw_read_sock;
#ifdef CONFIG_TLS_DEVICE
ops[TLS_HW ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
ops[TLS_HW ][TLS_SW ] = ops[TLS_BASE][TLS_SW ];
ops[TLS_BASE][TLS_HW ] = ops[TLS_BASE][TLS_SW ];
ops[TLS_SW ][TLS_HW ] = ops[TLS_SW ][TLS_SW ];
ops[TLS_HW ][TLS_HW ] = ops[TLS_HW ][TLS_SW ];
#endif
#ifdef CONFIG_TLS_TOE
ops[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
#endif
}
static void tls_build_proto(struct sock *sk)
{
int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
struct proto *prot = READ_ONCE(sk->sk_prot);
/* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
if (ip_ver == TLSV6 &&
unlikely(prot != smp_load_acquire(&saved_tcpv6_prot))) {
mutex_lock(&tcpv6_prot_mutex);
if (likely(prot != saved_tcpv6_prot)) {
build_protos(tls_prots[TLSV6], prot);
build_proto_ops(tls_proto_ops[TLSV6],
sk->sk_socket->ops);
smp_store_release(&saved_tcpv6_prot, prot);
}
mutex_unlock(&tcpv6_prot_mutex);
}
if (ip_ver == TLSV4 &&
unlikely(prot != smp_load_acquire(&saved_tcpv4_prot))) {
mutex_lock(&tcpv4_prot_mutex);
if (likely(prot != saved_tcpv4_prot)) {
build_protos(tls_prots[TLSV4], prot);
build_proto_ops(tls_proto_ops[TLSV4],
sk->sk_socket->ops);
smp_store_release(&saved_tcpv4_prot, prot);
}
mutex_unlock(&tcpv4_prot_mutex);
}
}
static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
const struct proto *base)
{
prot[TLS_BASE][TLS_BASE] = *base;
prot[TLS_BASE][TLS_BASE].setsockopt = tls_setsockopt;
prot[TLS_BASE][TLS_BASE].getsockopt = tls_getsockopt;
prot[TLS_BASE][TLS_BASE].close = tls_sk_proto_close;
prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
prot[TLS_SW][TLS_BASE].sendmsg = tls_sw_sendmsg;
prot[TLS_SW][TLS_BASE].splice_eof = tls_sw_splice_eof;
prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
prot[TLS_BASE][TLS_SW].recvmsg = tls_sw_recvmsg;
prot[TLS_BASE][TLS_SW].sock_is_readable = tls_sw_sock_is_readable;
prot[TLS_BASE][TLS_SW].close = tls_sk_proto_close;
prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
prot[TLS_SW][TLS_SW].recvmsg = tls_sw_recvmsg;
prot[TLS_SW][TLS_SW].sock_is_readable = tls_sw_sock_is_readable;
prot[TLS_SW][TLS_SW].close = tls_sk_proto_close;
#ifdef CONFIG_TLS_DEVICE
prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
prot[TLS_HW][TLS_BASE].sendmsg = tls_device_sendmsg;
prot[TLS_HW][TLS_BASE].splice_eof = tls_device_splice_eof;
prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
prot[TLS_HW][TLS_SW].sendmsg = tls_device_sendmsg;
prot[TLS_HW][TLS_SW].splice_eof = tls_device_splice_eof;
prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
#endif
#ifdef CONFIG_TLS_TOE
prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
prot[TLS_HW_RECORD][TLS_HW_RECORD].hash = tls_toe_hash;
prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash = tls_toe_unhash;
#endif
}
static int tls_init(struct sock *sk)
{
struct tls_context *ctx;
int rc = 0;
tls_build_proto(sk);
#ifdef CONFIG_TLS_TOE
if (tls_toe_bypass(sk))
return 0;
#endif
/* The TLS ulp is currently supported only for TCP sockets
* in ESTABLISHED state.
* Supporting sockets in LISTEN state will require us
* to modify the accept implementation to clone rather then
* share the ulp context.
*/
if (sk->sk_state != TCP_ESTABLISHED)
return -ENOTCONN;
/* allocate tls context */
write_lock_bh(&sk->sk_callback_lock);
ctx = tls_ctx_create(sk);
if (!ctx) {
rc = -ENOMEM;
goto out;
}
ctx->tx_conf = TLS_BASE;
ctx->rx_conf = TLS_BASE;
update_sk_prot(sk, ctx);
out:
write_unlock_bh(&sk->sk_callback_lock);
return rc;
}
static void tls_update(struct sock *sk, struct proto *p,
void (*write_space)(struct sock *sk))
{
struct tls_context *ctx;
WARN_ON_ONCE(sk->sk_prot == p);
ctx = tls_get_ctx(sk);
if (likely(ctx)) {
ctx->sk_write_space = write_space;
ctx->sk_proto = p;
} else {
/* Pairs with lockless read in sk_clone_lock(). */
WRITE_ONCE(sk->sk_prot, p);
sk->sk_write_space = write_space;
}
}
static u16 tls_user_config(struct tls_context *ctx, bool tx)
{
u16 config = tx ? ctx->tx_conf : ctx->rx_conf;
switch (config) {
case TLS_BASE:
return TLS_CONF_BASE;
case TLS_SW:
return TLS_CONF_SW;
case TLS_HW:
return TLS_CONF_HW;
case TLS_HW_RECORD:
return TLS_CONF_HW_RECORD;
}
return 0;
}
static int tls_get_info(const struct sock *sk, struct sk_buff *skb)
{
u16 version, cipher_type;
struct tls_context *ctx;
struct nlattr *start;
int err;
start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS);
if (!start)
return -EMSGSIZE;
rcu_read_lock();
ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data);
if (!ctx) {
err = 0;
goto nla_failure;
}
version = ctx->prot_info.version;
if (version) {
err = nla_put_u16(skb, TLS_INFO_VERSION, version);
if (err)
goto nla_failure;
}
cipher_type = ctx->prot_info.cipher_type;
if (cipher_type) {
err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type);
if (err)
goto nla_failure;
}
err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true));
if (err)
goto nla_failure;
err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false));
if (err)
goto nla_failure;
if (ctx->tx_conf == TLS_HW && ctx->zerocopy_sendfile) {
err = nla_put_flag(skb, TLS_INFO_ZC_RO_TX);
if (err)
goto nla_failure;
}
if (ctx->rx_no_pad) {
err = nla_put_flag(skb, TLS_INFO_RX_NO_PAD);
if (err)
goto nla_failure;
}
rcu_read_unlock();
nla_nest_end(skb, start);
return 0;
nla_failure:
rcu_read_unlock();
nla_nest_cancel(skb, start);
return err;
}
static size_t tls_get_info_size(const struct sock *sk)
{
size_t size = 0;
size += nla_total_size(0) + /* INET_ULP_INFO_TLS */
nla_total_size(sizeof(u16)) + /* TLS_INFO_VERSION */
nla_total_size(sizeof(u16)) + /* TLS_INFO_CIPHER */
nla_total_size(sizeof(u16)) + /* TLS_INFO_RXCONF */
nla_total_size(sizeof(u16)) + /* TLS_INFO_TXCONF */
nla_total_size(0) + /* TLS_INFO_ZC_RO_TX */
nla_total_size(0) + /* TLS_INFO_RX_NO_PAD */
0;
return size;
}
static int __net_init tls_init_net(struct net *net)
{
int err;
net->mib.tls_statistics = alloc_percpu(struct linux_tls_mib);
if (!net->mib.tls_statistics)
return -ENOMEM;
err = tls_proc_init(net);
if (err)
goto err_free_stats;
return 0;
err_free_stats:
free_percpu(net->mib.tls_statistics);
return err;
}
static void __net_exit tls_exit_net(struct net *net)
{
tls_proc_fini(net);
free_percpu(net->mib.tls_statistics);
}
static struct pernet_operations tls_proc_ops = {
.init = tls_init_net,
.exit = tls_exit_net,
};
static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
.name = "tls",
.owner = THIS_MODULE,
.init = tls_init,
.update = tls_update,
.get_info = tls_get_info,
.get_info_size = tls_get_info_size,
};
static int __init tls_register(void)
{
int err;
err = register_pernet_subsys(&tls_proc_ops);
if (err)
return err;
err = tls_strp_dev_init();
if (err)
goto err_pernet;
err = tls_device_init();
if (err)
goto err_strp;
tcp_register_ulp(&tcp_tls_ulp_ops);
return 0;
err_strp:
tls_strp_dev_exit();
err_pernet:
unregister_pernet_subsys(&tls_proc_ops);
return err;
}
static void __exit tls_unregister(void)
{
tcp_unregister_ulp(&tcp_tls_ulp_ops);
tls_strp_dev_exit();
tls_device_cleanup();
unregister_pernet_subsys(&tls_proc_ops);
}
module_init(tls_register);
module_exit(tls_unregister);