linux/drivers/platform/x86/asus-wmi.c
Luke D. Jones 88c0ef69dd platform/x86: asus-wmi: cleanup main struct to avoid some holes
Reorganises some attr-available calls to remove a few unrequired
booleans in the main driver struct which combined with some
reorganisation prevents a series of large holes seen with pahole.

Reviewed-by: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com>
Signed-off-by: Luke D. Jones <luke@ljones.dev>
Link: https://lore.kernel.org/r/20240404001652.86207-10-luke@ljones.dev
Signed-off-by: Hans de Goede <hdegoede@redhat.com>
2024-04-08 18:30:27 +02:00

5023 lines
128 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Asus PC WMI hotkey driver
*
* Copyright(C) 2010 Intel Corporation.
* Copyright(C) 2010-2011 Corentin Chary <corentin.chary@gmail.com>
*
* Portions based on wistron_btns.c:
* Copyright (C) 2005 Miloslav Trmac <mitr@volny.cz>
* Copyright (C) 2005 Bernhard Rosenkraenzer <bero@arklinux.org>
* Copyright (C) 2005 Dmitry Torokhov <dtor@mail.ru>
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/acpi.h>
#include <linux/backlight.h>
#include <linux/debugfs.h>
#include <linux/delay.h>
#include <linux/dmi.h>
#include <linux/fb.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/init.h>
#include <linux/input.h>
#include <linux/input/sparse-keymap.h>
#include <linux/kernel.h>
#include <linux/leds.h>
#include <linux/minmax.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/pci_hotplug.h>
#include <linux/platform_data/x86/asus-wmi.h>
#include <linux/platform_device.h>
#include <linux/platform_profile.h>
#include <linux/power_supply.h>
#include <linux/rfkill.h>
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/units.h>
#include <acpi/battery.h>
#include <acpi/video.h>
#include "asus-wmi.h"
MODULE_AUTHOR("Corentin Chary <corentin.chary@gmail.com>");
MODULE_AUTHOR("Yong Wang <yong.y.wang@intel.com>");
MODULE_DESCRIPTION("Asus Generic WMI Driver");
MODULE_LICENSE("GPL");
static bool fnlock_default = true;
module_param(fnlock_default, bool, 0444);
#define to_asus_wmi_driver(pdrv) \
(container_of((pdrv), struct asus_wmi_driver, platform_driver))
#define ASUS_WMI_MGMT_GUID "97845ED0-4E6D-11DE-8A39-0800200C9A66"
#define NOTIFY_BRNUP_MIN 0x11
#define NOTIFY_BRNUP_MAX 0x1f
#define NOTIFY_BRNDOWN_MIN 0x20
#define NOTIFY_BRNDOWN_MAX 0x2e
#define NOTIFY_FNLOCK_TOGGLE 0x4e
#define NOTIFY_KBD_DOCK_CHANGE 0x75
#define NOTIFY_KBD_BRTUP 0xc4
#define NOTIFY_KBD_BRTDWN 0xc5
#define NOTIFY_KBD_BRTTOGGLE 0xc7
#define NOTIFY_KBD_FBM 0x99
#define NOTIFY_KBD_TTP 0xae
#define NOTIFY_LID_FLIP 0xfa
#define NOTIFY_LID_FLIP_ROG 0xbd
#define ASUS_WMI_FNLOCK_BIOS_DISABLED BIT(0)
#define ASUS_MID_FAN_DESC "mid_fan"
#define ASUS_GPU_FAN_DESC "gpu_fan"
#define ASUS_FAN_DESC "cpu_fan"
#define ASUS_FAN_MFUN 0x13
#define ASUS_FAN_SFUN_READ 0x06
#define ASUS_FAN_SFUN_WRITE 0x07
/* Based on standard hwmon pwmX_enable values */
#define ASUS_FAN_CTRL_FULLSPEED 0
#define ASUS_FAN_CTRL_MANUAL 1
#define ASUS_FAN_CTRL_AUTO 2
#define ASUS_FAN_BOOST_MODE_NORMAL 0
#define ASUS_FAN_BOOST_MODE_OVERBOOST 1
#define ASUS_FAN_BOOST_MODE_OVERBOOST_MASK 0x01
#define ASUS_FAN_BOOST_MODE_SILENT 2
#define ASUS_FAN_BOOST_MODE_SILENT_MASK 0x02
#define ASUS_FAN_BOOST_MODES_MASK 0x03
#define ASUS_THROTTLE_THERMAL_POLICY_DEFAULT 0
#define ASUS_THROTTLE_THERMAL_POLICY_OVERBOOST 1
#define ASUS_THROTTLE_THERMAL_POLICY_SILENT 2
#define USB_INTEL_XUSB2PR 0xD0
#define PCI_DEVICE_ID_INTEL_LYNXPOINT_LP_XHCI 0x9c31
#define ASUS_ACPI_UID_ASUSWMI "ASUSWMI"
#define WMI_EVENT_MASK 0xFFFF
#define FAN_CURVE_POINTS 8
#define FAN_CURVE_BUF_LEN 32
#define FAN_CURVE_DEV_CPU 0x00
#define FAN_CURVE_DEV_GPU 0x01
#define FAN_CURVE_DEV_MID 0x02
/* Mask to determine if setting temperature or percentage */
#define FAN_CURVE_PWM_MASK 0x04
/* Limits for tunables available on ASUS ROG laptops */
#define PPT_TOTAL_MIN 5
#define PPT_TOTAL_MAX 250
#define PPT_CPU_MIN 5
#define PPT_CPU_MAX 130
#define NVIDIA_BOOST_MIN 5
#define NVIDIA_BOOST_MAX 25
#define NVIDIA_TEMP_MIN 75
#define NVIDIA_TEMP_MAX 87
#define ASUS_SCREENPAD_BRIGHT_MIN 20
#define ASUS_SCREENPAD_BRIGHT_MAX 255
#define ASUS_SCREENPAD_BRIGHT_DEFAULT 60
#define ASUS_MINI_LED_MODE_MASK 0x03
/* Standard modes for devices with only on/off */
#define ASUS_MINI_LED_OFF 0x00
#define ASUS_MINI_LED_ON 0x01
/* New mode on some devices, define here to clarify remapping later */
#define ASUS_MINI_LED_STRONG_MODE 0x02
/* New modes for devices with 3 mini-led mode types */
#define ASUS_MINI_LED_2024_WEAK 0x00
#define ASUS_MINI_LED_2024_STRONG 0x01
#define ASUS_MINI_LED_2024_OFF 0x02
/* Controls the power state of the USB0 hub on ROG Ally which input is on */
#define ASUS_USB0_PWR_EC0_CSEE "\\_SB.PCI0.SBRG.EC0.CSEE"
/* 300ms so far seems to produce a reliable result on AC and battery */
#define ASUS_USB0_PWR_EC0_CSEE_WAIT 1500
static const char * const ashs_ids[] = { "ATK4001", "ATK4002", NULL };
static int throttle_thermal_policy_write(struct asus_wmi *);
static bool ashs_present(void)
{
int i = 0;
while (ashs_ids[i]) {
if (acpi_dev_found(ashs_ids[i++]))
return true;
}
return false;
}
struct bios_args {
u32 arg0;
u32 arg1;
u32 arg2; /* At least TUF Gaming series uses 3 dword input buffer. */
u32 arg3;
u32 arg4; /* Some ROG laptops require a full 5 input args */
u32 arg5;
} __packed;
/*
* Struct that's used for all methods called via AGFN. Naming is
* identically to the AML code.
*/
struct agfn_args {
u16 mfun; /* probably "Multi-function" to be called */
u16 sfun; /* probably "Sub-function" to be called */
u16 len; /* size of the hole struct, including subfunction fields */
u8 stas; /* not used by now */
u8 err; /* zero on success */
} __packed;
/* struct used for calling fan read and write methods */
struct agfn_fan_args {
struct agfn_args agfn; /* common fields */
u8 fan; /* fan number: 0: set auto mode 1: 1st fan */
u32 speed; /* read: RPM/100 - write: 0-255 */
} __packed;
/*
* <platform>/ - debugfs root directory
* dev_id - current dev_id
* ctrl_param - current ctrl_param
* method_id - current method_id
* devs - call DEVS(dev_id, ctrl_param) and print result
* dsts - call DSTS(dev_id) and print result
* call - call method_id(dev_id, ctrl_param) and print result
*/
struct asus_wmi_debug {
struct dentry *root;
u32 method_id;
u32 dev_id;
u32 ctrl_param;
};
struct asus_rfkill {
struct asus_wmi *asus;
struct rfkill *rfkill;
u32 dev_id;
};
enum fan_type {
FAN_TYPE_NONE = 0,
FAN_TYPE_AGFN, /* deprecated on newer platforms */
FAN_TYPE_SPEC83, /* starting in Spec 8.3, use CPU_FAN_CTRL */
};
struct fan_curve_data {
bool enabled;
u32 device_id;
u8 temps[FAN_CURVE_POINTS];
u8 percents[FAN_CURVE_POINTS];
};
struct asus_wmi {
int dsts_id;
int spec;
int sfun;
struct input_dev *inputdev;
struct backlight_device *backlight_device;
struct backlight_device *screenpad_backlight_device;
struct platform_device *platform_device;
struct led_classdev wlan_led;
int wlan_led_wk;
struct led_classdev tpd_led;
int tpd_led_wk;
struct led_classdev kbd_led;
int kbd_led_wk;
struct led_classdev lightbar_led;
int lightbar_led_wk;
struct led_classdev micmute_led;
struct workqueue_struct *led_workqueue;
struct work_struct tpd_led_work;
struct work_struct wlan_led_work;
struct work_struct lightbar_led_work;
struct asus_rfkill wlan;
struct asus_rfkill bluetooth;
struct asus_rfkill wimax;
struct asus_rfkill wwan3g;
struct asus_rfkill gps;
struct asus_rfkill uwb;
int tablet_switch_event_code;
u32 tablet_switch_dev_id;
bool tablet_switch_inverted;
/* The ROG Ally device requires the MCU USB device be disconnected before suspend */
bool ally_mcu_usb_switch;
enum fan_type fan_type;
enum fan_type gpu_fan_type;
enum fan_type mid_fan_type;
int fan_pwm_mode;
int gpu_fan_pwm_mode;
int mid_fan_pwm_mode;
int agfn_pwm;
bool fan_boost_mode_available;
u8 fan_boost_mode_mask;
u8 fan_boost_mode;
bool egpu_enable_available;
bool dgpu_disable_available;
u32 gpu_mux_dev;
/* Tunables provided by ASUS for gaming laptops */
u32 ppt_pl2_sppt;
u32 ppt_pl1_spl;
u32 ppt_apu_sppt;
u32 ppt_platform_sppt;
u32 ppt_fppt;
u32 nv_dynamic_boost;
u32 nv_temp_target;
u32 kbd_rgb_dev;
bool kbd_rgb_state_available;
bool throttle_thermal_policy_available;
u8 throttle_thermal_policy_mode;
bool cpu_fan_curve_available;
bool gpu_fan_curve_available;
bool mid_fan_curve_available;
struct fan_curve_data custom_fan_curves[3];
struct platform_profile_handler platform_profile_handler;
bool platform_profile_support;
// The RSOC controls the maximum charging percentage.
bool battery_rsoc_available;
bool panel_overdrive_available;
u32 mini_led_dev_id;
struct hotplug_slot hotplug_slot;
struct mutex hotplug_lock;
struct mutex wmi_lock;
struct workqueue_struct *hotplug_workqueue;
struct work_struct hotplug_work;
bool fnlock_locked;
struct asus_wmi_debug debug;
struct asus_wmi_driver *driver;
};
/* WMI ************************************************************************/
static int asus_wmi_evaluate_method3(u32 method_id,
u32 arg0, u32 arg1, u32 arg2, u32 *retval)
{
struct bios_args args = {
.arg0 = arg0,
.arg1 = arg1,
.arg2 = arg2,
};
struct acpi_buffer input = { (acpi_size) sizeof(args), &args };
struct acpi_buffer output = { ACPI_ALLOCATE_BUFFER, NULL };
acpi_status status;
union acpi_object *obj;
u32 tmp = 0;
status = wmi_evaluate_method(ASUS_WMI_MGMT_GUID, 0, method_id,
&input, &output);
if (ACPI_FAILURE(status))
return -EIO;
obj = (union acpi_object *)output.pointer;
if (obj && obj->type == ACPI_TYPE_INTEGER)
tmp = (u32) obj->integer.value;
if (retval)
*retval = tmp;
kfree(obj);
if (tmp == ASUS_WMI_UNSUPPORTED_METHOD)
return -ENODEV;
return 0;
}
int asus_wmi_evaluate_method(u32 method_id, u32 arg0, u32 arg1, u32 *retval)
{
return asus_wmi_evaluate_method3(method_id, arg0, arg1, 0, retval);
}
EXPORT_SYMBOL_GPL(asus_wmi_evaluate_method);
static int asus_wmi_evaluate_method5(u32 method_id,
u32 arg0, u32 arg1, u32 arg2, u32 arg3, u32 arg4, u32 *retval)
{
struct bios_args args = {
.arg0 = arg0,
.arg1 = arg1,
.arg2 = arg2,
.arg3 = arg3,
.arg4 = arg4,
};
struct acpi_buffer input = { (acpi_size) sizeof(args), &args };
struct acpi_buffer output = { ACPI_ALLOCATE_BUFFER, NULL };
acpi_status status;
union acpi_object *obj;
u32 tmp = 0;
status = wmi_evaluate_method(ASUS_WMI_MGMT_GUID, 0, method_id,
&input, &output);
if (ACPI_FAILURE(status))
return -EIO;
obj = (union acpi_object *)output.pointer;
if (obj && obj->type == ACPI_TYPE_INTEGER)
tmp = (u32) obj->integer.value;
if (retval)
*retval = tmp;
kfree(obj);
if (tmp == ASUS_WMI_UNSUPPORTED_METHOD)
return -ENODEV;
return 0;
}
/*
* Returns as an error if the method output is not a buffer. Typically this
* means that the method called is unsupported.
*/
static int asus_wmi_evaluate_method_buf(u32 method_id,
u32 arg0, u32 arg1, u8 *ret_buffer, size_t size)
{
struct bios_args args = {
.arg0 = arg0,
.arg1 = arg1,
.arg2 = 0,
};
struct acpi_buffer input = { (acpi_size) sizeof(args), &args };
struct acpi_buffer output = { ACPI_ALLOCATE_BUFFER, NULL };
acpi_status status;
union acpi_object *obj;
int err = 0;
status = wmi_evaluate_method(ASUS_WMI_MGMT_GUID, 0, method_id,
&input, &output);
if (ACPI_FAILURE(status))
return -EIO;
obj = (union acpi_object *)output.pointer;
switch (obj->type) {
case ACPI_TYPE_BUFFER:
if (obj->buffer.length > size) {
err = -ENOSPC;
break;
}
if (obj->buffer.length == 0) {
err = -ENODATA;
break;
}
memcpy(ret_buffer, obj->buffer.pointer, obj->buffer.length);
break;
case ACPI_TYPE_INTEGER:
err = (u32)obj->integer.value;
if (err == ASUS_WMI_UNSUPPORTED_METHOD)
err = -ENODEV;
/*
* At least one method returns a 0 with no buffer if no arg
* is provided, such as ASUS_WMI_DEVID_CPU_FAN_CURVE
*/
if (err == 0)
err = -ENODATA;
break;
default:
err = -ENODATA;
break;
}
kfree(obj);
if (err)
return err;
return 0;
}
static int asus_wmi_evaluate_method_agfn(const struct acpi_buffer args)
{
struct acpi_buffer input;
u64 phys_addr;
u32 retval;
u32 status;
/*
* Copy to dma capable address otherwise memory corruption occurs as
* bios has to be able to access it.
*/
input.pointer = kmemdup(args.pointer, args.length, GFP_DMA | GFP_KERNEL);
input.length = args.length;
if (!input.pointer)
return -ENOMEM;
phys_addr = virt_to_phys(input.pointer);
status = asus_wmi_evaluate_method(ASUS_WMI_METHODID_AGFN,
phys_addr, 0, &retval);
if (!status)
memcpy(args.pointer, input.pointer, args.length);
kfree(input.pointer);
if (status)
return -ENXIO;
return retval;
}
static int asus_wmi_get_devstate(struct asus_wmi *asus, u32 dev_id, u32 *retval)
{
int err;
err = asus_wmi_evaluate_method(asus->dsts_id, dev_id, 0, retval);
if (err)
return err;
if (*retval == ~0)
return -ENODEV;
return 0;
}
static int asus_wmi_set_devstate(u32 dev_id, u32 ctrl_param,
u32 *retval)
{
return asus_wmi_evaluate_method(ASUS_WMI_METHODID_DEVS, dev_id,
ctrl_param, retval);
}
/* Helper for special devices with magic return codes */
static int asus_wmi_get_devstate_bits(struct asus_wmi *asus,
u32 dev_id, u32 mask)
{
u32 retval = 0;
int err;
err = asus_wmi_get_devstate(asus, dev_id, &retval);
if (err < 0)
return err;
if (!(retval & ASUS_WMI_DSTS_PRESENCE_BIT))
return -ENODEV;
if (mask == ASUS_WMI_DSTS_STATUS_BIT) {
if (retval & ASUS_WMI_DSTS_UNKNOWN_BIT)
return -ENODEV;
}
return retval & mask;
}
static int asus_wmi_get_devstate_simple(struct asus_wmi *asus, u32 dev_id)
{
return asus_wmi_get_devstate_bits(asus, dev_id,
ASUS_WMI_DSTS_STATUS_BIT);
}
static bool asus_wmi_dev_is_present(struct asus_wmi *asus, u32 dev_id)
{
u32 retval;
int status = asus_wmi_get_devstate(asus, dev_id, &retval);
return status == 0 && (retval & ASUS_WMI_DSTS_PRESENCE_BIT);
}
/* Input **********************************************************************/
static void asus_wmi_tablet_sw_report(struct asus_wmi *asus, bool value)
{
input_report_switch(asus->inputdev, SW_TABLET_MODE,
asus->tablet_switch_inverted ? !value : value);
input_sync(asus->inputdev);
}
static void asus_wmi_tablet_sw_init(struct asus_wmi *asus, u32 dev_id, int event_code)
{
struct device *dev = &asus->platform_device->dev;
int result;
result = asus_wmi_get_devstate_simple(asus, dev_id);
if (result >= 0) {
input_set_capability(asus->inputdev, EV_SW, SW_TABLET_MODE);
asus_wmi_tablet_sw_report(asus, result);
asus->tablet_switch_dev_id = dev_id;
asus->tablet_switch_event_code = event_code;
} else if (result == -ENODEV) {
dev_err(dev, "This device has tablet-mode-switch quirk but got ENODEV checking it. This is a bug.");
} else {
dev_err(dev, "Error checking for tablet-mode-switch: %d\n", result);
}
}
static int asus_wmi_input_init(struct asus_wmi *asus)
{
struct device *dev = &asus->platform_device->dev;
int err;
asus->inputdev = input_allocate_device();
if (!asus->inputdev)
return -ENOMEM;
asus->inputdev->name = asus->driver->input_name;
asus->inputdev->phys = asus->driver->input_phys;
asus->inputdev->id.bustype = BUS_HOST;
asus->inputdev->dev.parent = dev;
set_bit(EV_REP, asus->inputdev->evbit);
err = sparse_keymap_setup(asus->inputdev, asus->driver->keymap, NULL);
if (err)
goto err_free_dev;
switch (asus->driver->quirks->tablet_switch_mode) {
case asus_wmi_no_tablet_switch:
break;
case asus_wmi_kbd_dock_devid:
asus->tablet_switch_inverted = true;
asus_wmi_tablet_sw_init(asus, ASUS_WMI_DEVID_KBD_DOCK, NOTIFY_KBD_DOCK_CHANGE);
break;
case asus_wmi_lid_flip_devid:
asus_wmi_tablet_sw_init(asus, ASUS_WMI_DEVID_LID_FLIP, NOTIFY_LID_FLIP);
break;
case asus_wmi_lid_flip_rog_devid:
asus_wmi_tablet_sw_init(asus, ASUS_WMI_DEVID_LID_FLIP_ROG, NOTIFY_LID_FLIP_ROG);
break;
}
err = input_register_device(asus->inputdev);
if (err)
goto err_free_dev;
return 0;
err_free_dev:
input_free_device(asus->inputdev);
return err;
}
static void asus_wmi_input_exit(struct asus_wmi *asus)
{
if (asus->inputdev)
input_unregister_device(asus->inputdev);
asus->inputdev = NULL;
}
/* Tablet mode ****************************************************************/
static void asus_wmi_tablet_mode_get_state(struct asus_wmi *asus)
{
int result;
if (!asus->tablet_switch_dev_id)
return;
result = asus_wmi_get_devstate_simple(asus, asus->tablet_switch_dev_id);
if (result >= 0)
asus_wmi_tablet_sw_report(asus, result);
}
/* Charging mode, 1=Barrel, 2=USB ******************************************/
static ssize_t charge_mode_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct asus_wmi *asus = dev_get_drvdata(dev);
int result, value;
result = asus_wmi_get_devstate(asus, ASUS_WMI_DEVID_CHARGE_MODE, &value);
if (result < 0)
return result;
return sysfs_emit(buf, "%d\n", value & 0xff);
}
static DEVICE_ATTR_RO(charge_mode);
/* dGPU ********************************************************************/
static ssize_t dgpu_disable_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct asus_wmi *asus = dev_get_drvdata(dev);
int result;
result = asus_wmi_get_devstate_simple(asus, ASUS_WMI_DEVID_DGPU);
if (result < 0)
return result;
return sysfs_emit(buf, "%d\n", result);
}
/*
* A user may be required to store the value twice, typcial store first, then
* rescan PCI bus to activate power, then store a second time to save correctly.
* The reason for this is that an extra code path in the ACPI is enabled when
* the device and bus are powered.
*/
static ssize_t dgpu_disable_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int result, err;
u32 disable;
struct asus_wmi *asus = dev_get_drvdata(dev);
result = kstrtou32(buf, 10, &disable);
if (result)
return result;
if (disable > 1)
return -EINVAL;
if (asus->gpu_mux_dev) {
result = asus_wmi_get_devstate_simple(asus, asus->gpu_mux_dev);
if (result < 0)
/* An error here may signal greater failure of GPU handling */
return result;
if (!result && disable) {
err = -ENODEV;
pr_warn("Can not disable dGPU when the MUX is in dGPU mode: %d\n", err);
return err;
}
}
err = asus_wmi_set_devstate(ASUS_WMI_DEVID_DGPU, disable, &result);
if (err) {
pr_warn("Failed to set dgpu disable: %d\n", err);
return err;
}
if (result > 1) {
pr_warn("Failed to set dgpu disable (result): 0x%x\n", result);
return -EIO;
}
sysfs_notify(&asus->platform_device->dev.kobj, NULL, "dgpu_disable");
return count;
}
static DEVICE_ATTR_RW(dgpu_disable);
/* eGPU ********************************************************************/
static ssize_t egpu_enable_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct asus_wmi *asus = dev_get_drvdata(dev);
int result;
result = asus_wmi_get_devstate_simple(asus, ASUS_WMI_DEVID_EGPU);
if (result < 0)
return result;
return sysfs_emit(buf, "%d\n", result);
}
/* The ACPI call to enable the eGPU also disables the internal dGPU */
static ssize_t egpu_enable_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int result, err;
u32 enable;
struct asus_wmi *asus = dev_get_drvdata(dev);
err = kstrtou32(buf, 10, &enable);
if (err)
return err;
if (enable > 1)
return -EINVAL;
err = asus_wmi_get_devstate_simple(asus, ASUS_WMI_DEVID_EGPU_CONNECTED);
if (err < 0) {
pr_warn("Failed to get egpu connection status: %d\n", err);
return err;
}
if (asus->gpu_mux_dev) {
result = asus_wmi_get_devstate_simple(asus, asus->gpu_mux_dev);
if (result < 0) {
/* An error here may signal greater failure of GPU handling */
pr_warn("Failed to get gpu mux status: %d\n", result);
return result;
}
if (!result && enable) {
err = -ENODEV;
pr_warn("Can not enable eGPU when the MUX is in dGPU mode: %d\n", err);
return err;
}
}
err = asus_wmi_set_devstate(ASUS_WMI_DEVID_EGPU, enable, &result);
if (err) {
pr_warn("Failed to set egpu state: %d\n", err);
return err;
}
if (result > 1) {
pr_warn("Failed to set egpu state (retval): 0x%x\n", result);
return -EIO;
}
sysfs_notify(&asus->platform_device->dev.kobj, NULL, "egpu_enable");
return count;
}
static DEVICE_ATTR_RW(egpu_enable);
/* Is eGPU connected? *********************************************************/
static ssize_t egpu_connected_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct asus_wmi *asus = dev_get_drvdata(dev);
int result;
result = asus_wmi_get_devstate_simple(asus, ASUS_WMI_DEVID_EGPU_CONNECTED);
if (result < 0)
return result;
return sysfs_emit(buf, "%d\n", result);
}
static DEVICE_ATTR_RO(egpu_connected);
/* gpu mux switch *************************************************************/
static ssize_t gpu_mux_mode_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct asus_wmi *asus = dev_get_drvdata(dev);
int result;
result = asus_wmi_get_devstate_simple(asus, asus->gpu_mux_dev);
if (result < 0)
return result;
return sysfs_emit(buf, "%d\n", result);
}
static ssize_t gpu_mux_mode_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct asus_wmi *asus = dev_get_drvdata(dev);
int result, err;
u32 optimus;
err = kstrtou32(buf, 10, &optimus);
if (err)
return err;
if (optimus > 1)
return -EINVAL;
if (asus->dgpu_disable_available) {
result = asus_wmi_get_devstate_simple(asus, ASUS_WMI_DEVID_DGPU);
if (result < 0)
/* An error here may signal greater failure of GPU handling */
return result;
if (result && !optimus) {
err = -ENODEV;
pr_warn("Can not switch MUX to dGPU mode when dGPU is disabled: %d\n", err);
return err;
}
}
if (asus->egpu_enable_available) {
result = asus_wmi_get_devstate_simple(asus, ASUS_WMI_DEVID_EGPU);
if (result < 0)
/* An error here may signal greater failure of GPU handling */
return result;
if (result && !optimus) {
err = -ENODEV;
pr_warn("Can not switch MUX to dGPU mode when eGPU is enabled: %d\n", err);
return err;
}
}
err = asus_wmi_set_devstate(asus->gpu_mux_dev, optimus, &result);
if (err) {
dev_err(dev, "Failed to set GPU MUX mode: %d\n", err);
return err;
}
/* !1 is considered a fail by ASUS */
if (result != 1) {
dev_warn(dev, "Failed to set GPU MUX mode (result): 0x%x\n", result);
return -EIO;
}
sysfs_notify(&asus->platform_device->dev.kobj, NULL, "gpu_mux_mode");
return count;
}
static DEVICE_ATTR_RW(gpu_mux_mode);
/* TUF Laptop Keyboard RGB Modes **********************************************/
static ssize_t kbd_rgb_mode_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct asus_wmi *asus = dev_get_drvdata(dev);
u32 cmd, mode, r, g, b, speed;
int err;
if (sscanf(buf, "%d %d %d %d %d %d", &cmd, &mode, &r, &g, &b, &speed) != 6)
return -EINVAL;
/* B3 is set and B4 is save to BIOS */
switch (cmd) {
case 0:
cmd = 0xb3;
break;
case 1:
cmd = 0xb4;
break;
default:
return -EINVAL;
}
/* These are the known usable modes across all TUF/ROG */
if (mode >= 12 || mode == 9)
mode = 10;
switch (speed) {
case 0:
speed = 0xe1;
break;
case 1:
speed = 0xeb;
break;
case 2:
speed = 0xf5;
break;
default:
speed = 0xeb;
}
err = asus_wmi_evaluate_method3(ASUS_WMI_METHODID_DEVS, asus->kbd_rgb_dev,
cmd | (mode << 8) | (r << 16) | (g << 24), b | (speed << 8), NULL);
if (err)
return err;
return count;
}
static DEVICE_ATTR_WO(kbd_rgb_mode);
static ssize_t kbd_rgb_mode_index_show(struct device *device,
struct device_attribute *attr,
char *buf)
{
return sysfs_emit(buf, "%s\n", "cmd mode red green blue speed");
}
static DEVICE_ATTR_RO(kbd_rgb_mode_index);
static struct attribute *kbd_rgb_mode_attrs[] = {
&dev_attr_kbd_rgb_mode.attr,
&dev_attr_kbd_rgb_mode_index.attr,
NULL,
};
static const struct attribute_group kbd_rgb_mode_group = {
.attrs = kbd_rgb_mode_attrs,
};
/* TUF Laptop Keyboard RGB State **********************************************/
static ssize_t kbd_rgb_state_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
u32 flags, cmd, boot, awake, sleep, keyboard;
int err;
if (sscanf(buf, "%d %d %d %d %d", &cmd, &boot, &awake, &sleep, &keyboard) != 5)
return -EINVAL;
if (cmd)
cmd = BIT(2);
flags = 0;
if (boot)
flags |= BIT(1);
if (awake)
flags |= BIT(3);
if (sleep)
flags |= BIT(5);
if (keyboard)
flags |= BIT(7);
/* 0xbd is the required default arg0 for the method. Nothing happens otherwise */
err = asus_wmi_evaluate_method3(ASUS_WMI_METHODID_DEVS,
ASUS_WMI_DEVID_TUF_RGB_STATE, 0xbd | cmd << 8 | (flags << 16), 0, NULL);
if (err)
return err;
return count;
}
static DEVICE_ATTR_WO(kbd_rgb_state);
static ssize_t kbd_rgb_state_index_show(struct device *device,
struct device_attribute *attr,
char *buf)
{
return sysfs_emit(buf, "%s\n", "cmd boot awake sleep keyboard");
}
static DEVICE_ATTR_RO(kbd_rgb_state_index);
static struct attribute *kbd_rgb_state_attrs[] = {
&dev_attr_kbd_rgb_state.attr,
&dev_attr_kbd_rgb_state_index.attr,
NULL,
};
static const struct attribute_group kbd_rgb_state_group = {
.attrs = kbd_rgb_state_attrs,
};
static const struct attribute_group *kbd_rgb_mode_groups[] = {
NULL,
NULL,
NULL,
};
/* Tunable: PPT: Intel=PL1, AMD=SPPT *****************************************/
static ssize_t ppt_pl2_sppt_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct asus_wmi *asus = dev_get_drvdata(dev);
int result, err;
u32 value;
result = kstrtou32(buf, 10, &value);
if (result)
return result;
if (value < PPT_TOTAL_MIN || value > PPT_TOTAL_MAX)
return -EINVAL;
err = asus_wmi_set_devstate(ASUS_WMI_DEVID_PPT_PL2_SPPT, value, &result);
if (err) {
pr_warn("Failed to set ppt_pl2_sppt: %d\n", err);
return err;
}
if (result > 1) {
pr_warn("Failed to set ppt_pl2_sppt (result): 0x%x\n", result);
return -EIO;
}
asus->ppt_pl2_sppt = value;
sysfs_notify(&asus->platform_device->dev.kobj, NULL, "ppt_pl2_sppt");
return count;
}
static ssize_t ppt_pl2_sppt_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct asus_wmi *asus = dev_get_drvdata(dev);
return sysfs_emit(buf, "%u\n", asus->ppt_pl2_sppt);
}
static DEVICE_ATTR_RW(ppt_pl2_sppt);
/* Tunable: PPT, Intel=PL1, AMD=SPL ******************************************/
static ssize_t ppt_pl1_spl_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct asus_wmi *asus = dev_get_drvdata(dev);
int result, err;
u32 value;
result = kstrtou32(buf, 10, &value);
if (result)
return result;
if (value < PPT_TOTAL_MIN || value > PPT_TOTAL_MAX)
return -EINVAL;
err = asus_wmi_set_devstate(ASUS_WMI_DEVID_PPT_PL1_SPL, value, &result);
if (err) {
pr_warn("Failed to set ppt_pl1_spl: %d\n", err);
return err;
}
if (result > 1) {
pr_warn("Failed to set ppt_pl1_spl (result): 0x%x\n", result);
return -EIO;
}
asus->ppt_pl1_spl = value;
sysfs_notify(&asus->platform_device->dev.kobj, NULL, "ppt_pl1_spl");
return count;
}
static ssize_t ppt_pl1_spl_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct asus_wmi *asus = dev_get_drvdata(dev);
return sysfs_emit(buf, "%u\n", asus->ppt_pl1_spl);
}
static DEVICE_ATTR_RW(ppt_pl1_spl);
/* Tunable: PPT APU FPPT ******************************************************/
static ssize_t ppt_fppt_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct asus_wmi *asus = dev_get_drvdata(dev);
int result, err;
u32 value;
result = kstrtou32(buf, 10, &value);
if (result)
return result;
if (value < PPT_TOTAL_MIN || value > PPT_TOTAL_MAX)
return -EINVAL;
err = asus_wmi_set_devstate(ASUS_WMI_DEVID_PPT_FPPT, value, &result);
if (err) {
pr_warn("Failed to set ppt_fppt: %d\n", err);
return err;
}
if (result > 1) {
pr_warn("Failed to set ppt_fppt (result): 0x%x\n", result);
return -EIO;
}
asus->ppt_fppt = value;
sysfs_notify(&asus->platform_device->dev.kobj, NULL, "ppt_fpu_sppt");
return count;
}
static ssize_t ppt_fppt_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct asus_wmi *asus = dev_get_drvdata(dev);
return sysfs_emit(buf, "%u\n", asus->ppt_fppt);
}
static DEVICE_ATTR_RW(ppt_fppt);
/* Tunable: PPT APU SPPT *****************************************************/
static ssize_t ppt_apu_sppt_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct asus_wmi *asus = dev_get_drvdata(dev);
int result, err;
u32 value;
result = kstrtou32(buf, 10, &value);
if (result)
return result;
if (value < PPT_CPU_MIN || value > PPT_CPU_MAX)
return -EINVAL;
err = asus_wmi_set_devstate(ASUS_WMI_DEVID_PPT_APU_SPPT, value, &result);
if (err) {
pr_warn("Failed to set ppt_apu_sppt: %d\n", err);
return err;
}
if (result > 1) {
pr_warn("Failed to set ppt_apu_sppt (result): 0x%x\n", result);
return -EIO;
}
asus->ppt_apu_sppt = value;
sysfs_notify(&asus->platform_device->dev.kobj, NULL, "ppt_apu_sppt");
return count;
}
static ssize_t ppt_apu_sppt_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct asus_wmi *asus = dev_get_drvdata(dev);
return sysfs_emit(buf, "%u\n", asus->ppt_apu_sppt);
}
static DEVICE_ATTR_RW(ppt_apu_sppt);
/* Tunable: PPT platform SPPT ************************************************/
static ssize_t ppt_platform_sppt_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct asus_wmi *asus = dev_get_drvdata(dev);
int result, err;
u32 value;
result = kstrtou32(buf, 10, &value);
if (result)
return result;
if (value < PPT_CPU_MIN || value > PPT_CPU_MAX)
return -EINVAL;
err = asus_wmi_set_devstate(ASUS_WMI_DEVID_PPT_PLAT_SPPT, value, &result);
if (err) {
pr_warn("Failed to set ppt_platform_sppt: %d\n", err);
return err;
}
if (result > 1) {
pr_warn("Failed to set ppt_platform_sppt (result): 0x%x\n", result);
return -EIO;
}
asus->ppt_platform_sppt = value;
sysfs_notify(&asus->platform_device->dev.kobj, NULL, "ppt_platform_sppt");
return count;
}
static ssize_t ppt_platform_sppt_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct asus_wmi *asus = dev_get_drvdata(dev);
return sysfs_emit(buf, "%u\n", asus->ppt_platform_sppt);
}
static DEVICE_ATTR_RW(ppt_platform_sppt);
/* Tunable: NVIDIA dynamic boost *********************************************/
static ssize_t nv_dynamic_boost_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct asus_wmi *asus = dev_get_drvdata(dev);
int result, err;
u32 value;
result = kstrtou32(buf, 10, &value);
if (result)
return result;
if (value < NVIDIA_BOOST_MIN || value > NVIDIA_BOOST_MAX)
return -EINVAL;
err = asus_wmi_set_devstate(ASUS_WMI_DEVID_NV_DYN_BOOST, value, &result);
if (err) {
pr_warn("Failed to set nv_dynamic_boost: %d\n", err);
return err;
}
if (result > 1) {
pr_warn("Failed to set nv_dynamic_boost (result): 0x%x\n", result);
return -EIO;
}
asus->nv_dynamic_boost = value;
sysfs_notify(&asus->platform_device->dev.kobj, NULL, "nv_dynamic_boost");
return count;
}
static ssize_t nv_dynamic_boost_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct asus_wmi *asus = dev_get_drvdata(dev);
return sysfs_emit(buf, "%u\n", asus->nv_dynamic_boost);
}
static DEVICE_ATTR_RW(nv_dynamic_boost);
/* Tunable: NVIDIA temperature target ****************************************/
static ssize_t nv_temp_target_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct asus_wmi *asus = dev_get_drvdata(dev);
int result, err;
u32 value;
result = kstrtou32(buf, 10, &value);
if (result)
return result;
if (value < NVIDIA_TEMP_MIN || value > NVIDIA_TEMP_MAX)
return -EINVAL;
err = asus_wmi_set_devstate(ASUS_WMI_DEVID_NV_THERM_TARGET, value, &result);
if (err) {
pr_warn("Failed to set nv_temp_target: %d\n", err);
return err;
}
if (result > 1) {
pr_warn("Failed to set nv_temp_target (result): 0x%x\n", result);
return -EIO;
}
asus->nv_temp_target = value;
sysfs_notify(&asus->platform_device->dev.kobj, NULL, "nv_temp_target");
return count;
}
static ssize_t nv_temp_target_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct asus_wmi *asus = dev_get_drvdata(dev);
return sysfs_emit(buf, "%u\n", asus->nv_temp_target);
}
static DEVICE_ATTR_RW(nv_temp_target);
/* Ally MCU Powersave ********************************************************/
static ssize_t mcu_powersave_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct asus_wmi *asus = dev_get_drvdata(dev);
int result;
result = asus_wmi_get_devstate_simple(asus, ASUS_WMI_DEVID_MCU_POWERSAVE);
if (result < 0)
return result;
return sysfs_emit(buf, "%d\n", result);
}
static ssize_t mcu_powersave_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int result, err;
u32 enable;
struct asus_wmi *asus = dev_get_drvdata(dev);
result = kstrtou32(buf, 10, &enable);
if (result)
return result;
if (enable > 1)
return -EINVAL;
err = asus_wmi_set_devstate(ASUS_WMI_DEVID_MCU_POWERSAVE, enable, &result);
if (err) {
pr_warn("Failed to set MCU powersave: %d\n", err);
return err;
}
if (result > 1) {
pr_warn("Failed to set MCU powersave (result): 0x%x\n", result);
return -EIO;
}
sysfs_notify(&asus->platform_device->dev.kobj, NULL, "mcu_powersave");
return count;
}
static DEVICE_ATTR_RW(mcu_powersave);
/* Battery ********************************************************************/
/* The battery maximum charging percentage */
static int charge_end_threshold;
static ssize_t charge_control_end_threshold_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int value, ret, rv;
ret = kstrtouint(buf, 10, &value);
if (ret)
return ret;
if (value < 0 || value > 100)
return -EINVAL;
ret = asus_wmi_set_devstate(ASUS_WMI_DEVID_RSOC, value, &rv);
if (ret)
return ret;
if (rv != 1)
return -EIO;
/* There isn't any method in the DSDT to read the threshold, so we
* save the threshold.
*/
charge_end_threshold = value;
return count;
}
static ssize_t charge_control_end_threshold_show(struct device *device,
struct device_attribute *attr,
char *buf)
{
return sysfs_emit(buf, "%d\n", charge_end_threshold);
}
static DEVICE_ATTR_RW(charge_control_end_threshold);
static int asus_wmi_battery_add(struct power_supply *battery, struct acpi_battery_hook *hook)
{
/* The WMI method does not provide a way to specific a battery, so we
* just assume it is the first battery.
* Note: On some newer ASUS laptops (Zenbook UM431DA), the primary/first
* battery is named BATT.
*/
if (strcmp(battery->desc->name, "BAT0") != 0 &&
strcmp(battery->desc->name, "BAT1") != 0 &&
strcmp(battery->desc->name, "BATC") != 0 &&
strcmp(battery->desc->name, "BATT") != 0)
return -ENODEV;
if (device_create_file(&battery->dev,
&dev_attr_charge_control_end_threshold))
return -ENODEV;
/* The charge threshold is only reset when the system is power cycled,
* and we can't get the current threshold so let set it to 100% when
* a battery is added.
*/
asus_wmi_set_devstate(ASUS_WMI_DEVID_RSOC, 100, NULL);
charge_end_threshold = 100;
return 0;
}
static int asus_wmi_battery_remove(struct power_supply *battery, struct acpi_battery_hook *hook)
{
device_remove_file(&battery->dev,
&dev_attr_charge_control_end_threshold);
return 0;
}
static struct acpi_battery_hook battery_hook = {
.add_battery = asus_wmi_battery_add,
.remove_battery = asus_wmi_battery_remove,
.name = "ASUS Battery Extension",
};
static void asus_wmi_battery_init(struct asus_wmi *asus)
{
asus->battery_rsoc_available = false;
if (asus_wmi_dev_is_present(asus, ASUS_WMI_DEVID_RSOC)) {
asus->battery_rsoc_available = true;
battery_hook_register(&battery_hook);
}
}
static void asus_wmi_battery_exit(struct asus_wmi *asus)
{
if (asus->battery_rsoc_available)
battery_hook_unregister(&battery_hook);
}
/* LEDs ***********************************************************************/
/*
* These functions actually update the LED's, and are called from a
* workqueue. By doing this as separate work rather than when the LED
* subsystem asks, we avoid messing with the Asus ACPI stuff during a
* potentially bad time, such as a timer interrupt.
*/
static void tpd_led_update(struct work_struct *work)
{
int ctrl_param;
struct asus_wmi *asus;
asus = container_of(work, struct asus_wmi, tpd_led_work);
ctrl_param = asus->tpd_led_wk;
asus_wmi_set_devstate(ASUS_WMI_DEVID_TOUCHPAD_LED, ctrl_param, NULL);
}
static void tpd_led_set(struct led_classdev *led_cdev,
enum led_brightness value)
{
struct asus_wmi *asus;
asus = container_of(led_cdev, struct asus_wmi, tpd_led);
asus->tpd_led_wk = !!value;
queue_work(asus->led_workqueue, &asus->tpd_led_work);
}
static int read_tpd_led_state(struct asus_wmi *asus)
{
return asus_wmi_get_devstate_simple(asus, ASUS_WMI_DEVID_TOUCHPAD_LED);
}
static enum led_brightness tpd_led_get(struct led_classdev *led_cdev)
{
struct asus_wmi *asus;
asus = container_of(led_cdev, struct asus_wmi, tpd_led);
return read_tpd_led_state(asus);
}
static void kbd_led_update(struct asus_wmi *asus)
{
int ctrl_param = 0;
ctrl_param = 0x80 | (asus->kbd_led_wk & 0x7F);
asus_wmi_set_devstate(ASUS_WMI_DEVID_KBD_BACKLIGHT, ctrl_param, NULL);
}
static int kbd_led_read(struct asus_wmi *asus, int *level, int *env)
{
int retval;
/*
* bits 0-2: level
* bit 7: light on/off
* bit 8-10: environment (0: dark, 1: normal, 2: light)
* bit 17: status unknown
*/
retval = asus_wmi_get_devstate_bits(asus, ASUS_WMI_DEVID_KBD_BACKLIGHT,
0xFFFF);
/* Unknown status is considered as off */
if (retval == 0x8000)
retval = 0;
if (retval < 0)
return retval;
if (level)
*level = retval & 0x7F;
if (env)
*env = (retval >> 8) & 0x7F;
return 0;
}
static void do_kbd_led_set(struct led_classdev *led_cdev, int value)
{
struct asus_wmi *asus;
int max_level;
asus = container_of(led_cdev, struct asus_wmi, kbd_led);
max_level = asus->kbd_led.max_brightness;
asus->kbd_led_wk = clamp_val(value, 0, max_level);
kbd_led_update(asus);
}
static void kbd_led_set(struct led_classdev *led_cdev,
enum led_brightness value)
{
/* Prevent disabling keyboard backlight on module unregister */
if (led_cdev->flags & LED_UNREGISTERING)
return;
do_kbd_led_set(led_cdev, value);
}
static void kbd_led_set_by_kbd(struct asus_wmi *asus, enum led_brightness value)
{
struct led_classdev *led_cdev = &asus->kbd_led;
do_kbd_led_set(led_cdev, value);
led_classdev_notify_brightness_hw_changed(led_cdev, asus->kbd_led_wk);
}
static enum led_brightness kbd_led_get(struct led_classdev *led_cdev)
{
struct asus_wmi *asus;
int retval, value;
asus = container_of(led_cdev, struct asus_wmi, kbd_led);
retval = kbd_led_read(asus, &value, NULL);
if (retval < 0)
return retval;
return value;
}
static int wlan_led_unknown_state(struct asus_wmi *asus)
{
u32 result;
asus_wmi_get_devstate(asus, ASUS_WMI_DEVID_WIRELESS_LED, &result);
return result & ASUS_WMI_DSTS_UNKNOWN_BIT;
}
static void wlan_led_update(struct work_struct *work)
{
int ctrl_param;
struct asus_wmi *asus;
asus = container_of(work, struct asus_wmi, wlan_led_work);
ctrl_param = asus->wlan_led_wk;
asus_wmi_set_devstate(ASUS_WMI_DEVID_WIRELESS_LED, ctrl_param, NULL);
}
static void wlan_led_set(struct led_classdev *led_cdev,
enum led_brightness value)
{
struct asus_wmi *asus;
asus = container_of(led_cdev, struct asus_wmi, wlan_led);
asus->wlan_led_wk = !!value;
queue_work(asus->led_workqueue, &asus->wlan_led_work);
}
static enum led_brightness wlan_led_get(struct led_classdev *led_cdev)
{
struct asus_wmi *asus;
u32 result;
asus = container_of(led_cdev, struct asus_wmi, wlan_led);
asus_wmi_get_devstate(asus, ASUS_WMI_DEVID_WIRELESS_LED, &result);
return result & ASUS_WMI_DSTS_BRIGHTNESS_MASK;
}
static void lightbar_led_update(struct work_struct *work)
{
struct asus_wmi *asus;
int ctrl_param;
asus = container_of(work, struct asus_wmi, lightbar_led_work);
ctrl_param = asus->lightbar_led_wk;
asus_wmi_set_devstate(ASUS_WMI_DEVID_LIGHTBAR, ctrl_param, NULL);
}
static void lightbar_led_set(struct led_classdev *led_cdev,
enum led_brightness value)
{
struct asus_wmi *asus;
asus = container_of(led_cdev, struct asus_wmi, lightbar_led);
asus->lightbar_led_wk = !!value;
queue_work(asus->led_workqueue, &asus->lightbar_led_work);
}
static enum led_brightness lightbar_led_get(struct led_classdev *led_cdev)
{
struct asus_wmi *asus;
u32 result;
asus = container_of(led_cdev, struct asus_wmi, lightbar_led);
asus_wmi_get_devstate(asus, ASUS_WMI_DEVID_LIGHTBAR, &result);
return result & ASUS_WMI_DSTS_LIGHTBAR_MASK;
}
static int micmute_led_set(struct led_classdev *led_cdev,
enum led_brightness brightness)
{
int state = brightness != LED_OFF;
int err;
err = asus_wmi_set_devstate(ASUS_WMI_DEVID_MICMUTE_LED, state, NULL);
return err < 0 ? err : 0;
}
static void asus_wmi_led_exit(struct asus_wmi *asus)
{
led_classdev_unregister(&asus->kbd_led);
led_classdev_unregister(&asus->tpd_led);
led_classdev_unregister(&asus->wlan_led);
led_classdev_unregister(&asus->lightbar_led);
led_classdev_unregister(&asus->micmute_led);
if (asus->led_workqueue)
destroy_workqueue(asus->led_workqueue);
}
static int asus_wmi_led_init(struct asus_wmi *asus)
{
int rv = 0, num_rgb_groups = 0, led_val;
if (asus->kbd_rgb_dev)
kbd_rgb_mode_groups[num_rgb_groups++] = &kbd_rgb_mode_group;
if (asus->kbd_rgb_state_available)
kbd_rgb_mode_groups[num_rgb_groups++] = &kbd_rgb_state_group;
asus->led_workqueue = create_singlethread_workqueue("led_workqueue");
if (!asus->led_workqueue)
return -ENOMEM;
if (read_tpd_led_state(asus) >= 0) {
INIT_WORK(&asus->tpd_led_work, tpd_led_update);
asus->tpd_led.name = "asus::touchpad";
asus->tpd_led.brightness_set = tpd_led_set;
asus->tpd_led.brightness_get = tpd_led_get;
asus->tpd_led.max_brightness = 1;
rv = led_classdev_register(&asus->platform_device->dev,
&asus->tpd_led);
if (rv)
goto error;
}
if (!kbd_led_read(asus, &led_val, NULL)) {
asus->kbd_led_wk = led_val;
asus->kbd_led.name = "asus::kbd_backlight";
asus->kbd_led.flags = LED_BRIGHT_HW_CHANGED;
asus->kbd_led.brightness_set = kbd_led_set;
asus->kbd_led.brightness_get = kbd_led_get;
asus->kbd_led.max_brightness = 3;
if (num_rgb_groups != 0)
asus->kbd_led.groups = kbd_rgb_mode_groups;
rv = led_classdev_register(&asus->platform_device->dev,
&asus->kbd_led);
if (rv)
goto error;
}
if (asus_wmi_dev_is_present(asus, ASUS_WMI_DEVID_WIRELESS_LED)
&& (asus->driver->quirks->wapf > 0)) {
INIT_WORK(&asus->wlan_led_work, wlan_led_update);
asus->wlan_led.name = "asus::wlan";
asus->wlan_led.brightness_set = wlan_led_set;
if (!wlan_led_unknown_state(asus))
asus->wlan_led.brightness_get = wlan_led_get;
asus->wlan_led.flags = LED_CORE_SUSPENDRESUME;
asus->wlan_led.max_brightness = 1;
asus->wlan_led.default_trigger = "asus-wlan";
rv = led_classdev_register(&asus->platform_device->dev,
&asus->wlan_led);
if (rv)
goto error;
}
if (asus_wmi_dev_is_present(asus, ASUS_WMI_DEVID_LIGHTBAR)) {
INIT_WORK(&asus->lightbar_led_work, lightbar_led_update);
asus->lightbar_led.name = "asus::lightbar";
asus->lightbar_led.brightness_set = lightbar_led_set;
asus->lightbar_led.brightness_get = lightbar_led_get;
asus->lightbar_led.max_brightness = 1;
rv = led_classdev_register(&asus->platform_device->dev,
&asus->lightbar_led);
}
if (asus_wmi_dev_is_present(asus, ASUS_WMI_DEVID_MICMUTE_LED)) {
asus->micmute_led.name = "platform::micmute";
asus->micmute_led.max_brightness = 1;
asus->micmute_led.brightness_set_blocking = micmute_led_set;
asus->micmute_led.default_trigger = "audio-micmute";
rv = led_classdev_register(&asus->platform_device->dev,
&asus->micmute_led);
if (rv)
goto error;
}
error:
if (rv)
asus_wmi_led_exit(asus);
return rv;
}
/* RF *************************************************************************/
/*
* PCI hotplug (for wlan rfkill)
*/
static bool asus_wlan_rfkill_blocked(struct asus_wmi *asus)
{
int result = asus_wmi_get_devstate_simple(asus, ASUS_WMI_DEVID_WLAN);
if (result < 0)
return false;
return !result;
}
static void asus_rfkill_hotplug(struct asus_wmi *asus)
{
struct pci_dev *dev;
struct pci_bus *bus;
bool blocked;
bool absent;
u32 l;
mutex_lock(&asus->wmi_lock);
blocked = asus_wlan_rfkill_blocked(asus);
mutex_unlock(&asus->wmi_lock);
mutex_lock(&asus->hotplug_lock);
pci_lock_rescan_remove();
if (asus->wlan.rfkill)
rfkill_set_sw_state(asus->wlan.rfkill, blocked);
if (asus->hotplug_slot.ops) {
bus = pci_find_bus(0, 1);
if (!bus) {
pr_warn("Unable to find PCI bus 1?\n");
goto out_unlock;
}
if (pci_bus_read_config_dword(bus, 0, PCI_VENDOR_ID, &l)) {
pr_err("Unable to read PCI config space?\n");
goto out_unlock;
}
absent = (l == 0xffffffff);
if (blocked != absent) {
pr_warn("BIOS says wireless lan is %s, but the pci device is %s\n",
blocked ? "blocked" : "unblocked",
absent ? "absent" : "present");
pr_warn("skipped wireless hotplug as probably inappropriate for this model\n");
goto out_unlock;
}
if (!blocked) {
dev = pci_get_slot(bus, 0);
if (dev) {
/* Device already present */
pci_dev_put(dev);
goto out_unlock;
}
dev = pci_scan_single_device(bus, 0);
if (dev) {
pci_bus_assign_resources(bus);
pci_bus_add_device(dev);
}
} else {
dev = pci_get_slot(bus, 0);
if (dev) {
pci_stop_and_remove_bus_device(dev);
pci_dev_put(dev);
}
}
}
out_unlock:
pci_unlock_rescan_remove();
mutex_unlock(&asus->hotplug_lock);
}
static void asus_rfkill_notify(acpi_handle handle, u32 event, void *data)
{
struct asus_wmi *asus = data;
if (event != ACPI_NOTIFY_BUS_CHECK)
return;
/*
* We can't call directly asus_rfkill_hotplug because most
* of the time WMBC is still being executed and not reetrant.
* There is currently no way to tell ACPICA that we want this
* method to be serialized, we schedule a asus_rfkill_hotplug
* call later, in a safer context.
*/
queue_work(asus->hotplug_workqueue, &asus->hotplug_work);
}
static int asus_register_rfkill_notifier(struct asus_wmi *asus, char *node)
{
acpi_status status;
acpi_handle handle;
status = acpi_get_handle(NULL, node, &handle);
if (ACPI_FAILURE(status))
return -ENODEV;
status = acpi_install_notify_handler(handle, ACPI_SYSTEM_NOTIFY,
asus_rfkill_notify, asus);
if (ACPI_FAILURE(status))
pr_warn("Failed to register notify on %s\n", node);
return 0;
}
static void asus_unregister_rfkill_notifier(struct asus_wmi *asus, char *node)
{
acpi_status status = AE_OK;
acpi_handle handle;
status = acpi_get_handle(NULL, node, &handle);
if (ACPI_FAILURE(status))
return;
status = acpi_remove_notify_handler(handle, ACPI_SYSTEM_NOTIFY,
asus_rfkill_notify);
if (ACPI_FAILURE(status))
pr_err("Error removing rfkill notify handler %s\n", node);
}
static int asus_get_adapter_status(struct hotplug_slot *hotplug_slot,
u8 *value)
{
struct asus_wmi *asus = container_of(hotplug_slot,
struct asus_wmi, hotplug_slot);
int result = asus_wmi_get_devstate_simple(asus, ASUS_WMI_DEVID_WLAN);
if (result < 0)
return result;
*value = !!result;
return 0;
}
static const struct hotplug_slot_ops asus_hotplug_slot_ops = {
.get_adapter_status = asus_get_adapter_status,
.get_power_status = asus_get_adapter_status,
};
static void asus_hotplug_work(struct work_struct *work)
{
struct asus_wmi *asus;
asus = container_of(work, struct asus_wmi, hotplug_work);
asus_rfkill_hotplug(asus);
}
static int asus_setup_pci_hotplug(struct asus_wmi *asus)
{
int ret = -ENOMEM;
struct pci_bus *bus = pci_find_bus(0, 1);
if (!bus) {
pr_err("Unable to find wifi PCI bus\n");
return -ENODEV;
}
asus->hotplug_workqueue =
create_singlethread_workqueue("hotplug_workqueue");
if (!asus->hotplug_workqueue)
goto error_workqueue;
INIT_WORK(&asus->hotplug_work, asus_hotplug_work);
asus->hotplug_slot.ops = &asus_hotplug_slot_ops;
ret = pci_hp_register(&asus->hotplug_slot, bus, 0, "asus-wifi");
if (ret) {
pr_err("Unable to register hotplug slot - %d\n", ret);
goto error_register;
}
return 0;
error_register:
asus->hotplug_slot.ops = NULL;
destroy_workqueue(asus->hotplug_workqueue);
error_workqueue:
return ret;
}
/*
* Rfkill devices
*/
static int asus_rfkill_set(void *data, bool blocked)
{
struct asus_rfkill *priv = data;
u32 ctrl_param = !blocked;
u32 dev_id = priv->dev_id;
/*
* If the user bit is set, BIOS can't set and record the wlan status,
* it will report the value read from id ASUS_WMI_DEVID_WLAN_LED
* while we query the wlan status through WMI(ASUS_WMI_DEVID_WLAN).
* So, we have to record wlan status in id ASUS_WMI_DEVID_WLAN_LED
* while setting the wlan status through WMI.
* This is also the behavior that windows app will do.
*/
if ((dev_id == ASUS_WMI_DEVID_WLAN) &&
priv->asus->driver->wlan_ctrl_by_user)
dev_id = ASUS_WMI_DEVID_WLAN_LED;
return asus_wmi_set_devstate(dev_id, ctrl_param, NULL);
}
static void asus_rfkill_query(struct rfkill *rfkill, void *data)
{
struct asus_rfkill *priv = data;
int result;
result = asus_wmi_get_devstate_simple(priv->asus, priv->dev_id);
if (result < 0)
return;
rfkill_set_sw_state(priv->rfkill, !result);
}
static int asus_rfkill_wlan_set(void *data, bool blocked)
{
struct asus_rfkill *priv = data;
struct asus_wmi *asus = priv->asus;
int ret;
/*
* This handler is enabled only if hotplug is enabled.
* In this case, the asus_wmi_set_devstate() will
* trigger a wmi notification and we need to wait
* this call to finish before being able to call
* any wmi method
*/
mutex_lock(&asus->wmi_lock);
ret = asus_rfkill_set(data, blocked);
mutex_unlock(&asus->wmi_lock);
return ret;
}
static const struct rfkill_ops asus_rfkill_wlan_ops = {
.set_block = asus_rfkill_wlan_set,
.query = asus_rfkill_query,
};
static const struct rfkill_ops asus_rfkill_ops = {
.set_block = asus_rfkill_set,
.query = asus_rfkill_query,
};
static int asus_new_rfkill(struct asus_wmi *asus,
struct asus_rfkill *arfkill,
const char *name, enum rfkill_type type, int dev_id)
{
int result = asus_wmi_get_devstate_simple(asus, dev_id);
struct rfkill **rfkill = &arfkill->rfkill;
if (result < 0)
return result;
arfkill->dev_id = dev_id;
arfkill->asus = asus;
if (dev_id == ASUS_WMI_DEVID_WLAN &&
asus->driver->quirks->hotplug_wireless)
*rfkill = rfkill_alloc(name, &asus->platform_device->dev, type,
&asus_rfkill_wlan_ops, arfkill);
else
*rfkill = rfkill_alloc(name, &asus->platform_device->dev, type,
&asus_rfkill_ops, arfkill);
if (!*rfkill)
return -EINVAL;
if ((dev_id == ASUS_WMI_DEVID_WLAN) &&
(asus->driver->quirks->wapf > 0))
rfkill_set_led_trigger_name(*rfkill, "asus-wlan");
rfkill_init_sw_state(*rfkill, !result);
result = rfkill_register(*rfkill);
if (result) {
rfkill_destroy(*rfkill);
*rfkill = NULL;
return result;
}
return 0;
}
static void asus_wmi_rfkill_exit(struct asus_wmi *asus)
{
if (asus->driver->wlan_ctrl_by_user && ashs_present())
return;
asus_unregister_rfkill_notifier(asus, "\\_SB.PCI0.P0P5");
asus_unregister_rfkill_notifier(asus, "\\_SB.PCI0.P0P6");
asus_unregister_rfkill_notifier(asus, "\\_SB.PCI0.P0P7");
if (asus->wlan.rfkill) {
rfkill_unregister(asus->wlan.rfkill);
rfkill_destroy(asus->wlan.rfkill);
asus->wlan.rfkill = NULL;
}
/*
* Refresh pci hotplug in case the rfkill state was changed after
* asus_unregister_rfkill_notifier()
*/
asus_rfkill_hotplug(asus);
if (asus->hotplug_slot.ops)
pci_hp_deregister(&asus->hotplug_slot);
if (asus->hotplug_workqueue)
destroy_workqueue(asus->hotplug_workqueue);
if (asus->bluetooth.rfkill) {
rfkill_unregister(asus->bluetooth.rfkill);
rfkill_destroy(asus->bluetooth.rfkill);
asus->bluetooth.rfkill = NULL;
}
if (asus->wimax.rfkill) {
rfkill_unregister(asus->wimax.rfkill);
rfkill_destroy(asus->wimax.rfkill);
asus->wimax.rfkill = NULL;
}
if (asus->wwan3g.rfkill) {
rfkill_unregister(asus->wwan3g.rfkill);
rfkill_destroy(asus->wwan3g.rfkill);
asus->wwan3g.rfkill = NULL;
}
if (asus->gps.rfkill) {
rfkill_unregister(asus->gps.rfkill);
rfkill_destroy(asus->gps.rfkill);
asus->gps.rfkill = NULL;
}
if (asus->uwb.rfkill) {
rfkill_unregister(asus->uwb.rfkill);
rfkill_destroy(asus->uwb.rfkill);
asus->uwb.rfkill = NULL;
}
}
static int asus_wmi_rfkill_init(struct asus_wmi *asus)
{
int result = 0;
mutex_init(&asus->hotplug_lock);
mutex_init(&asus->wmi_lock);
result = asus_new_rfkill(asus, &asus->wlan, "asus-wlan",
RFKILL_TYPE_WLAN, ASUS_WMI_DEVID_WLAN);
if (result && result != -ENODEV)
goto exit;
result = asus_new_rfkill(asus, &asus->bluetooth,
"asus-bluetooth", RFKILL_TYPE_BLUETOOTH,
ASUS_WMI_DEVID_BLUETOOTH);
if (result && result != -ENODEV)
goto exit;
result = asus_new_rfkill(asus, &asus->wimax, "asus-wimax",
RFKILL_TYPE_WIMAX, ASUS_WMI_DEVID_WIMAX);
if (result && result != -ENODEV)
goto exit;
result = asus_new_rfkill(asus, &asus->wwan3g, "asus-wwan3g",
RFKILL_TYPE_WWAN, ASUS_WMI_DEVID_WWAN3G);
if (result && result != -ENODEV)
goto exit;
result = asus_new_rfkill(asus, &asus->gps, "asus-gps",
RFKILL_TYPE_GPS, ASUS_WMI_DEVID_GPS);
if (result && result != -ENODEV)
goto exit;
result = asus_new_rfkill(asus, &asus->uwb, "asus-uwb",
RFKILL_TYPE_UWB, ASUS_WMI_DEVID_UWB);
if (result && result != -ENODEV)
goto exit;
if (!asus->driver->quirks->hotplug_wireless)
goto exit;
result = asus_setup_pci_hotplug(asus);
/*
* If we get -EBUSY then something else is handling the PCI hotplug -
* don't fail in this case
*/
if (result == -EBUSY)
result = 0;
asus_register_rfkill_notifier(asus, "\\_SB.PCI0.P0P5");
asus_register_rfkill_notifier(asus, "\\_SB.PCI0.P0P6");
asus_register_rfkill_notifier(asus, "\\_SB.PCI0.P0P7");
/*
* Refresh pci hotplug in case the rfkill state was changed during
* setup.
*/
asus_rfkill_hotplug(asus);
exit:
if (result && result != -ENODEV)
asus_wmi_rfkill_exit(asus);
if (result == -ENODEV)
result = 0;
return result;
}
/* Panel Overdrive ************************************************************/
static ssize_t panel_od_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct asus_wmi *asus = dev_get_drvdata(dev);
int result;
result = asus_wmi_get_devstate_simple(asus, ASUS_WMI_DEVID_PANEL_OD);
if (result < 0)
return result;
return sysfs_emit(buf, "%d\n", result);
}
static ssize_t panel_od_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int result, err;
u32 overdrive;
struct asus_wmi *asus = dev_get_drvdata(dev);
result = kstrtou32(buf, 10, &overdrive);
if (result)
return result;
if (overdrive > 1)
return -EINVAL;
err = asus_wmi_set_devstate(ASUS_WMI_DEVID_PANEL_OD, overdrive, &result);
if (err) {
pr_warn("Failed to set panel overdrive: %d\n", err);
return err;
}
if (result > 1) {
pr_warn("Failed to set panel overdrive (result): 0x%x\n", result);
return -EIO;
}
sysfs_notify(&asus->platform_device->dev.kobj, NULL, "panel_od");
return count;
}
static DEVICE_ATTR_RW(panel_od);
/* Bootup sound ***************************************************************/
static ssize_t boot_sound_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct asus_wmi *asus = dev_get_drvdata(dev);
int result;
result = asus_wmi_get_devstate_simple(asus, ASUS_WMI_DEVID_BOOT_SOUND);
if (result < 0)
return result;
return sysfs_emit(buf, "%d\n", result);
}
static ssize_t boot_sound_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int result, err;
u32 snd;
struct asus_wmi *asus = dev_get_drvdata(dev);
result = kstrtou32(buf, 10, &snd);
if (result)
return result;
if (snd > 1)
return -EINVAL;
err = asus_wmi_set_devstate(ASUS_WMI_DEVID_BOOT_SOUND, snd, &result);
if (err) {
pr_warn("Failed to set boot sound: %d\n", err);
return err;
}
if (result > 1) {
pr_warn("Failed to set panel boot sound (result): 0x%x\n", result);
return -EIO;
}
sysfs_notify(&asus->platform_device->dev.kobj, NULL, "boot_sound");
return count;
}
static DEVICE_ATTR_RW(boot_sound);
/* Mini-LED mode **************************************************************/
static ssize_t mini_led_mode_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct asus_wmi *asus = dev_get_drvdata(dev);
u32 value;
int err;
err = asus_wmi_get_devstate(asus, asus->mini_led_dev_id, &value);
if (err < 0)
return err;
value = value & ASUS_MINI_LED_MODE_MASK;
/*
* Remap the mode values to match previous generation mini-led. The last gen
* WMI 0 == off, while on this version WMI 2 ==off (flipped).
*/
if (asus->mini_led_dev_id == ASUS_WMI_DEVID_MINI_LED_MODE2) {
switch (value) {
case ASUS_MINI_LED_2024_WEAK:
value = ASUS_MINI_LED_ON;
break;
case ASUS_MINI_LED_2024_STRONG:
value = ASUS_MINI_LED_STRONG_MODE;
break;
case ASUS_MINI_LED_2024_OFF:
value = ASUS_MINI_LED_OFF;
break;
}
}
return sysfs_emit(buf, "%d\n", value);
}
static ssize_t mini_led_mode_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int result, err;
u32 mode;
struct asus_wmi *asus = dev_get_drvdata(dev);
result = kstrtou32(buf, 10, &mode);
if (result)
return result;
if (asus->mini_led_dev_id == ASUS_WMI_DEVID_MINI_LED_MODE &&
mode > ASUS_MINI_LED_ON)
return -EINVAL;
if (asus->mini_led_dev_id == ASUS_WMI_DEVID_MINI_LED_MODE2 &&
mode > ASUS_MINI_LED_STRONG_MODE)
return -EINVAL;
/*
* Remap the mode values so expected behaviour is the same as the last
* generation of mini-LED with 0 == off, 1 == on.
*/
if (asus->mini_led_dev_id == ASUS_WMI_DEVID_MINI_LED_MODE2) {
switch (mode) {
case ASUS_MINI_LED_OFF:
mode = ASUS_MINI_LED_2024_OFF;
break;
case ASUS_MINI_LED_ON:
mode = ASUS_MINI_LED_2024_WEAK;
break;
case ASUS_MINI_LED_STRONG_MODE:
mode = ASUS_MINI_LED_2024_STRONG;
break;
}
}
err = asus_wmi_set_devstate(asus->mini_led_dev_id, mode, &result);
if (err) {
pr_warn("Failed to set mini-LED: %d\n", err);
return err;
}
if (result > 1) {
pr_warn("Failed to set mini-LED mode (result): 0x%x\n", result);
return -EIO;
}
sysfs_notify(&asus->platform_device->dev.kobj, NULL, "mini_led_mode");
return count;
}
static DEVICE_ATTR_RW(mini_led_mode);
static ssize_t available_mini_led_mode_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct asus_wmi *asus = dev_get_drvdata(dev);
switch (asus->mini_led_dev_id) {
case ASUS_WMI_DEVID_MINI_LED_MODE:
return sysfs_emit(buf, "0 1\n");
case ASUS_WMI_DEVID_MINI_LED_MODE2:
return sysfs_emit(buf, "0 1 2\n");
}
return sysfs_emit(buf, "0\n");
}
static DEVICE_ATTR_RO(available_mini_led_mode);
/* Quirks *********************************************************************/
static void asus_wmi_set_xusb2pr(struct asus_wmi *asus)
{
struct pci_dev *xhci_pdev;
u32 orig_ports_available;
u32 ports_available = asus->driver->quirks->xusb2pr;
xhci_pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
PCI_DEVICE_ID_INTEL_LYNXPOINT_LP_XHCI,
NULL);
if (!xhci_pdev)
return;
pci_read_config_dword(xhci_pdev, USB_INTEL_XUSB2PR,
&orig_ports_available);
pci_write_config_dword(xhci_pdev, USB_INTEL_XUSB2PR,
cpu_to_le32(ports_available));
pci_dev_put(xhci_pdev);
pr_info("set USB_INTEL_XUSB2PR old: 0x%04x, new: 0x%04x\n",
orig_ports_available, ports_available);
}
/*
* Some devices dont support or have borcken get_als method
* but still support set method.
*/
static void asus_wmi_set_als(void)
{
asus_wmi_set_devstate(ASUS_WMI_DEVID_ALS_ENABLE, 1, NULL);
}
/* Hwmon device ***************************************************************/
static int asus_agfn_fan_speed_read(struct asus_wmi *asus, int fan,
int *speed)
{
struct agfn_fan_args args = {
.agfn.len = sizeof(args),
.agfn.mfun = ASUS_FAN_MFUN,
.agfn.sfun = ASUS_FAN_SFUN_READ,
.fan = fan,
.speed = 0,
};
struct acpi_buffer input = { (acpi_size) sizeof(args), &args };
int status;
if (fan != 1)
return -EINVAL;
status = asus_wmi_evaluate_method_agfn(input);
if (status || args.agfn.err)
return -ENXIO;
if (speed)
*speed = args.speed;
return 0;
}
static int asus_agfn_fan_speed_write(struct asus_wmi *asus, int fan,
int *speed)
{
struct agfn_fan_args args = {
.agfn.len = sizeof(args),
.agfn.mfun = ASUS_FAN_MFUN,
.agfn.sfun = ASUS_FAN_SFUN_WRITE,
.fan = fan,
.speed = speed ? *speed : 0,
};
struct acpi_buffer input = { (acpi_size) sizeof(args), &args };
int status;
/* 1: for setting 1st fan's speed 0: setting auto mode */
if (fan != 1 && fan != 0)
return -EINVAL;
status = asus_wmi_evaluate_method_agfn(input);
if (status || args.agfn.err)
return -ENXIO;
if (speed && fan == 1)
asus->agfn_pwm = *speed;
return 0;
}
/*
* Check if we can read the speed of one fan. If true we assume we can also
* control it.
*/
static bool asus_wmi_has_agfn_fan(struct asus_wmi *asus)
{
int status;
int speed;
u32 value;
status = asus_agfn_fan_speed_read(asus, 1, &speed);
if (status != 0)
return false;
status = asus_wmi_get_devstate(asus, ASUS_WMI_DEVID_FAN_CTRL, &value);
if (status != 0)
return false;
/*
* We need to find a better way, probably using sfun,
* bits or spec ...
* Currently we disable it if:
* - ASUS_WMI_UNSUPPORTED_METHOD is returned
* - reverved bits are non-zero
* - sfun and presence bit are not set
*/
return !(value == ASUS_WMI_UNSUPPORTED_METHOD || value & 0xFFF80000
|| (!asus->sfun && !(value & ASUS_WMI_DSTS_PRESENCE_BIT)));
}
static int asus_fan_set_auto(struct asus_wmi *asus)
{
int status;
u32 retval;
switch (asus->fan_type) {
case FAN_TYPE_SPEC83:
status = asus_wmi_set_devstate(ASUS_WMI_DEVID_CPU_FAN_CTRL,
0, &retval);
if (status)
return status;
if (retval != 1)
return -EIO;
break;
case FAN_TYPE_AGFN:
status = asus_agfn_fan_speed_write(asus, 0, NULL);
if (status)
return -ENXIO;
break;
default:
return -ENXIO;
}
/*
* Modern models like the G713 also have GPU fan control (this is not AGFN)
*/
if (asus->gpu_fan_type == FAN_TYPE_SPEC83) {
status = asus_wmi_set_devstate(ASUS_WMI_DEVID_GPU_FAN_CTRL,
0, &retval);
if (status)
return status;
if (retval != 1)
return -EIO;
}
return 0;
}
static ssize_t pwm1_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct asus_wmi *asus = dev_get_drvdata(dev);
int err;
int value;
/* If we already set a value then just return it */
if (asus->agfn_pwm >= 0)
return sysfs_emit(buf, "%d\n", asus->agfn_pwm);
/*
* If we haven't set already set a value through the AGFN interface,
* we read a current value through the (now-deprecated) FAN_CTRL device.
*/
err = asus_wmi_get_devstate(asus, ASUS_WMI_DEVID_FAN_CTRL, &value);
if (err < 0)
return err;
value &= 0xFF;
if (value == 1) /* Low Speed */
value = 85;
else if (value == 2)
value = 170;
else if (value == 3)
value = 255;
else if (value) {
pr_err("Unknown fan speed %#x\n", value);
value = -1;
}
return sysfs_emit(buf, "%d\n", value);
}
static ssize_t pwm1_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count) {
struct asus_wmi *asus = dev_get_drvdata(dev);
int value;
int state;
int ret;
ret = kstrtouint(buf, 10, &value);
if (ret)
return ret;
value = clamp(value, 0, 255);
state = asus_agfn_fan_speed_write(asus, 1, &value);
if (state)
pr_warn("Setting fan speed failed: %d\n", state);
else
asus->fan_pwm_mode = ASUS_FAN_CTRL_MANUAL;
return count;
}
static ssize_t fan1_input_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct asus_wmi *asus = dev_get_drvdata(dev);
int value;
int ret;
switch (asus->fan_type) {
case FAN_TYPE_SPEC83:
ret = asus_wmi_get_devstate(asus, ASUS_WMI_DEVID_CPU_FAN_CTRL,
&value);
if (ret < 0)
return ret;
value &= 0xffff;
break;
case FAN_TYPE_AGFN:
/* no speed readable on manual mode */
if (asus->fan_pwm_mode == ASUS_FAN_CTRL_MANUAL)
return -ENXIO;
ret = asus_agfn_fan_speed_read(asus, 1, &value);
if (ret) {
pr_warn("reading fan speed failed: %d\n", ret);
return -ENXIO;
}
break;
default:
return -ENXIO;
}
return sysfs_emit(buf, "%d\n", value < 0 ? -1 : value * 100);
}
static ssize_t pwm1_enable_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct asus_wmi *asus = dev_get_drvdata(dev);
/*
* Just read back the cached pwm mode.
*
* For the CPU_FAN device, the spec indicates that we should be
* able to read the device status and consult bit 19 to see if we
* are in Full On or Automatic mode. However, this does not work
* in practice on X532FL at least (the bit is always 0) and there's
* also nothing in the DSDT to indicate that this behaviour exists.
*/
return sysfs_emit(buf, "%d\n", asus->fan_pwm_mode);
}
static ssize_t pwm1_enable_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct asus_wmi *asus = dev_get_drvdata(dev);
int status = 0;
int state;
int value;
int ret;
u32 retval;
ret = kstrtouint(buf, 10, &state);
if (ret)
return ret;
if (asus->fan_type == FAN_TYPE_SPEC83) {
switch (state) { /* standard documented hwmon values */
case ASUS_FAN_CTRL_FULLSPEED:
value = 1;
break;
case ASUS_FAN_CTRL_AUTO:
value = 0;
break;
default:
return -EINVAL;
}
ret = asus_wmi_set_devstate(ASUS_WMI_DEVID_CPU_FAN_CTRL,
value, &retval);
if (ret)
return ret;
if (retval != 1)
return -EIO;
} else if (asus->fan_type == FAN_TYPE_AGFN) {
switch (state) {
case ASUS_FAN_CTRL_MANUAL:
break;
case ASUS_FAN_CTRL_AUTO:
status = asus_fan_set_auto(asus);
if (status)
return status;
break;
default:
return -EINVAL;
}
}
asus->fan_pwm_mode = state;
/* Must set to disabled if mode is toggled */
if (asus->cpu_fan_curve_available)
asus->custom_fan_curves[FAN_CURVE_DEV_CPU].enabled = false;
if (asus->gpu_fan_curve_available)
asus->custom_fan_curves[FAN_CURVE_DEV_GPU].enabled = false;
if (asus->mid_fan_curve_available)
asus->custom_fan_curves[FAN_CURVE_DEV_MID].enabled = false;
return count;
}
static ssize_t fan1_label_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return sysfs_emit(buf, "%s\n", ASUS_FAN_DESC);
}
static ssize_t asus_hwmon_temp1(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct asus_wmi *asus = dev_get_drvdata(dev);
u32 value;
int err;
err = asus_wmi_get_devstate(asus, ASUS_WMI_DEVID_THERMAL_CTRL, &value);
if (err < 0)
return err;
return sysfs_emit(buf, "%ld\n",
deci_kelvin_to_millicelsius(value & 0xFFFF));
}
/* GPU fan on modern ROG laptops */
static ssize_t fan2_input_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct asus_wmi *asus = dev_get_drvdata(dev);
int value;
int ret;
ret = asus_wmi_get_devstate(asus, ASUS_WMI_DEVID_GPU_FAN_CTRL, &value);
if (ret < 0)
return ret;
value &= 0xffff;
return sysfs_emit(buf, "%d\n", value * 100);
}
static ssize_t fan2_label_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return sysfs_emit(buf, "%s\n", ASUS_GPU_FAN_DESC);
}
/* Middle/Center fan on modern ROG laptops */
static ssize_t fan3_input_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct asus_wmi *asus = dev_get_drvdata(dev);
int value;
int ret;
ret = asus_wmi_get_devstate(asus, ASUS_WMI_DEVID_MID_FAN_CTRL, &value);
if (ret < 0)
return ret;
value &= 0xffff;
return sysfs_emit(buf, "%d\n", value * 100);
}
static ssize_t fan3_label_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return sysfs_emit(buf, "%s\n", ASUS_MID_FAN_DESC);
}
static ssize_t pwm2_enable_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct asus_wmi *asus = dev_get_drvdata(dev);
return sysfs_emit(buf, "%d\n", asus->gpu_fan_pwm_mode);
}
static ssize_t pwm2_enable_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct asus_wmi *asus = dev_get_drvdata(dev);
int state;
int value;
int ret;
u32 retval;
ret = kstrtouint(buf, 10, &state);
if (ret)
return ret;
switch (state) { /* standard documented hwmon values */
case ASUS_FAN_CTRL_FULLSPEED:
value = 1;
break;
case ASUS_FAN_CTRL_AUTO:
value = 0;
break;
default:
return -EINVAL;
}
ret = asus_wmi_set_devstate(ASUS_WMI_DEVID_GPU_FAN_CTRL,
value, &retval);
if (ret)
return ret;
if (retval != 1)
return -EIO;
asus->gpu_fan_pwm_mode = state;
return count;
}
static ssize_t pwm3_enable_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct asus_wmi *asus = dev_get_drvdata(dev);
return sysfs_emit(buf, "%d\n", asus->mid_fan_pwm_mode);
}
static ssize_t pwm3_enable_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct asus_wmi *asus = dev_get_drvdata(dev);
int state;
int value;
int ret;
u32 retval;
ret = kstrtouint(buf, 10, &state);
if (ret)
return ret;
switch (state) { /* standard documented hwmon values */
case ASUS_FAN_CTRL_FULLSPEED:
value = 1;
break;
case ASUS_FAN_CTRL_AUTO:
value = 0;
break;
default:
return -EINVAL;
}
ret = asus_wmi_set_devstate(ASUS_WMI_DEVID_MID_FAN_CTRL,
value, &retval);
if (ret)
return ret;
if (retval != 1)
return -EIO;
asus->mid_fan_pwm_mode = state;
return count;
}
/* Fan1 */
static DEVICE_ATTR_RW(pwm1);
static DEVICE_ATTR_RW(pwm1_enable);
static DEVICE_ATTR_RO(fan1_input);
static DEVICE_ATTR_RO(fan1_label);
/* Fan2 - GPU fan */
static DEVICE_ATTR_RW(pwm2_enable);
static DEVICE_ATTR_RO(fan2_input);
static DEVICE_ATTR_RO(fan2_label);
/* Fan3 - Middle/center fan */
static DEVICE_ATTR_RW(pwm3_enable);
static DEVICE_ATTR_RO(fan3_input);
static DEVICE_ATTR_RO(fan3_label);
/* Temperature */
static DEVICE_ATTR(temp1_input, S_IRUGO, asus_hwmon_temp1, NULL);
static struct attribute *hwmon_attributes[] = {
&dev_attr_pwm1.attr,
&dev_attr_pwm1_enable.attr,
&dev_attr_pwm2_enable.attr,
&dev_attr_pwm3_enable.attr,
&dev_attr_fan1_input.attr,
&dev_attr_fan1_label.attr,
&dev_attr_fan2_input.attr,
&dev_attr_fan2_label.attr,
&dev_attr_fan3_input.attr,
&dev_attr_fan3_label.attr,
&dev_attr_temp1_input.attr,
NULL
};
static umode_t asus_hwmon_sysfs_is_visible(struct kobject *kobj,
struct attribute *attr, int idx)
{
struct device *dev = kobj_to_dev(kobj);
struct asus_wmi *asus = dev_get_drvdata(dev->parent);
u32 value = ASUS_WMI_UNSUPPORTED_METHOD;
if (attr == &dev_attr_pwm1.attr) {
if (asus->fan_type != FAN_TYPE_AGFN)
return 0;
} else if (attr == &dev_attr_fan1_input.attr
|| attr == &dev_attr_fan1_label.attr
|| attr == &dev_attr_pwm1_enable.attr) {
if (asus->fan_type == FAN_TYPE_NONE)
return 0;
} else if (attr == &dev_attr_fan2_input.attr
|| attr == &dev_attr_fan2_label.attr
|| attr == &dev_attr_pwm2_enable.attr) {
if (asus->gpu_fan_type == FAN_TYPE_NONE)
return 0;
} else if (attr == &dev_attr_fan3_input.attr
|| attr == &dev_attr_fan3_label.attr
|| attr == &dev_attr_pwm3_enable.attr) {
if (asus->mid_fan_type == FAN_TYPE_NONE)
return 0;
} else if (attr == &dev_attr_temp1_input.attr) {
int err = asus_wmi_get_devstate(asus,
ASUS_WMI_DEVID_THERMAL_CTRL,
&value);
if (err < 0)
return 0; /* can't return negative here */
/*
* If the temperature value in deci-Kelvin is near the absolute
* zero temperature, something is clearly wrong
*/
if (value == 0 || value == 1)
return 0;
}
return attr->mode;
}
static const struct attribute_group hwmon_attribute_group = {
.is_visible = asus_hwmon_sysfs_is_visible,
.attrs = hwmon_attributes
};
__ATTRIBUTE_GROUPS(hwmon_attribute);
static int asus_wmi_hwmon_init(struct asus_wmi *asus)
{
struct device *dev = &asus->platform_device->dev;
struct device *hwmon;
hwmon = devm_hwmon_device_register_with_groups(dev, "asus", asus,
hwmon_attribute_groups);
if (IS_ERR(hwmon)) {
pr_err("Could not register asus hwmon device\n");
return PTR_ERR(hwmon);
}
return 0;
}
static int asus_wmi_fan_init(struct asus_wmi *asus)
{
asus->gpu_fan_type = FAN_TYPE_NONE;
asus->mid_fan_type = FAN_TYPE_NONE;
asus->fan_type = FAN_TYPE_NONE;
asus->agfn_pwm = -1;
if (asus->driver->quirks->wmi_ignore_fan)
asus->fan_type = FAN_TYPE_NONE;
else if (asus_wmi_dev_is_present(asus, ASUS_WMI_DEVID_CPU_FAN_CTRL))
asus->fan_type = FAN_TYPE_SPEC83;
else if (asus_wmi_has_agfn_fan(asus))
asus->fan_type = FAN_TYPE_AGFN;
/* Modern models like G713 also have GPU fan control */
if (asus_wmi_dev_is_present(asus, ASUS_WMI_DEVID_GPU_FAN_CTRL))
asus->gpu_fan_type = FAN_TYPE_SPEC83;
/* Some models also have a center/middle fan */
if (asus_wmi_dev_is_present(asus, ASUS_WMI_DEVID_MID_FAN_CTRL))
asus->mid_fan_type = FAN_TYPE_SPEC83;
if (asus->fan_type == FAN_TYPE_NONE)
return -ENODEV;
asus_fan_set_auto(asus);
asus->fan_pwm_mode = ASUS_FAN_CTRL_AUTO;
return 0;
}
/* Fan mode *******************************************************************/
static int fan_boost_mode_check_present(struct asus_wmi *asus)
{
u32 result;
int err;
asus->fan_boost_mode_available = false;
err = asus_wmi_get_devstate(asus, ASUS_WMI_DEVID_FAN_BOOST_MODE,
&result);
if (err) {
if (err == -ENODEV)
return 0;
else
return err;
}
if ((result & ASUS_WMI_DSTS_PRESENCE_BIT) &&
(result & ASUS_FAN_BOOST_MODES_MASK)) {
asus->fan_boost_mode_available = true;
asus->fan_boost_mode_mask = result & ASUS_FAN_BOOST_MODES_MASK;
}
return 0;
}
static int fan_boost_mode_write(struct asus_wmi *asus)
{
u32 retval;
u8 value;
int err;
value = asus->fan_boost_mode;
pr_info("Set fan boost mode: %u\n", value);
err = asus_wmi_set_devstate(ASUS_WMI_DEVID_FAN_BOOST_MODE, value,
&retval);
sysfs_notify(&asus->platform_device->dev.kobj, NULL,
"fan_boost_mode");
if (err) {
pr_warn("Failed to set fan boost mode: %d\n", err);
return err;
}
if (retval != 1) {
pr_warn("Failed to set fan boost mode (retval): 0x%x\n",
retval);
return -EIO;
}
return 0;
}
static int fan_boost_mode_switch_next(struct asus_wmi *asus)
{
u8 mask = asus->fan_boost_mode_mask;
if (asus->fan_boost_mode == ASUS_FAN_BOOST_MODE_NORMAL) {
if (mask & ASUS_FAN_BOOST_MODE_OVERBOOST_MASK)
asus->fan_boost_mode = ASUS_FAN_BOOST_MODE_OVERBOOST;
else if (mask & ASUS_FAN_BOOST_MODE_SILENT_MASK)
asus->fan_boost_mode = ASUS_FAN_BOOST_MODE_SILENT;
} else if (asus->fan_boost_mode == ASUS_FAN_BOOST_MODE_OVERBOOST) {
if (mask & ASUS_FAN_BOOST_MODE_SILENT_MASK)
asus->fan_boost_mode = ASUS_FAN_BOOST_MODE_SILENT;
else
asus->fan_boost_mode = ASUS_FAN_BOOST_MODE_NORMAL;
} else {
asus->fan_boost_mode = ASUS_FAN_BOOST_MODE_NORMAL;
}
return fan_boost_mode_write(asus);
}
static ssize_t fan_boost_mode_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct asus_wmi *asus = dev_get_drvdata(dev);
return sysfs_emit(buf, "%d\n", asus->fan_boost_mode);
}
static ssize_t fan_boost_mode_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct asus_wmi *asus = dev_get_drvdata(dev);
u8 mask = asus->fan_boost_mode_mask;
u8 new_mode;
int result;
result = kstrtou8(buf, 10, &new_mode);
if (result < 0) {
pr_warn("Trying to store invalid value\n");
return result;
}
if (new_mode == ASUS_FAN_BOOST_MODE_OVERBOOST) {
if (!(mask & ASUS_FAN_BOOST_MODE_OVERBOOST_MASK))
return -EINVAL;
} else if (new_mode == ASUS_FAN_BOOST_MODE_SILENT) {
if (!(mask & ASUS_FAN_BOOST_MODE_SILENT_MASK))
return -EINVAL;
} else if (new_mode != ASUS_FAN_BOOST_MODE_NORMAL) {
return -EINVAL;
}
asus->fan_boost_mode = new_mode;
fan_boost_mode_write(asus);
return count;
}
// Fan boost mode: 0 - normal, 1 - overboost, 2 - silent
static DEVICE_ATTR_RW(fan_boost_mode);
/* Custom fan curves **********************************************************/
static void fan_curve_copy_from_buf(struct fan_curve_data *data, u8 *buf)
{
int i;
for (i = 0; i < FAN_CURVE_POINTS; i++) {
data->temps[i] = buf[i];
}
for (i = 0; i < FAN_CURVE_POINTS; i++) {
data->percents[i] =
255 * buf[i + FAN_CURVE_POINTS] / 100;
}
}
static int fan_curve_get_factory_default(struct asus_wmi *asus, u32 fan_dev)
{
struct fan_curve_data *curves;
u8 buf[FAN_CURVE_BUF_LEN];
int err, fan_idx;
u8 mode = 0;
if (asus->throttle_thermal_policy_available)
mode = asus->throttle_thermal_policy_mode;
/* DEVID_<C/G>PU_FAN_CURVE is switched for OVERBOOST vs SILENT */
if (mode == 2)
mode = 1;
else if (mode == 1)
mode = 2;
err = asus_wmi_evaluate_method_buf(asus->dsts_id, fan_dev, mode, buf,
FAN_CURVE_BUF_LEN);
if (err) {
pr_warn("%s (0x%08x) failed: %d\n", __func__, fan_dev, err);
return err;
}
fan_idx = FAN_CURVE_DEV_CPU;
if (fan_dev == ASUS_WMI_DEVID_GPU_FAN_CURVE)
fan_idx = FAN_CURVE_DEV_GPU;
if (fan_dev == ASUS_WMI_DEVID_MID_FAN_CURVE)
fan_idx = FAN_CURVE_DEV_MID;
curves = &asus->custom_fan_curves[fan_idx];
curves->device_id = fan_dev;
fan_curve_copy_from_buf(curves, buf);
return 0;
}
/* Check if capability exists, and populate defaults */
static int fan_curve_check_present(struct asus_wmi *asus, bool *available,
u32 fan_dev)
{
int err;
*available = false;
if (asus->fan_type == FAN_TYPE_NONE)
return 0;
err = fan_curve_get_factory_default(asus, fan_dev);
if (err) {
return 0;
}
*available = true;
return 0;
}
/* Determine which fan the attribute is for if SENSOR_ATTR */
static struct fan_curve_data *fan_curve_attr_select(struct asus_wmi *asus,
struct device_attribute *attr)
{
int index = to_sensor_dev_attr(attr)->index;
return &asus->custom_fan_curves[index];
}
/* Determine which fan the attribute is for if SENSOR_ATTR_2 */
static struct fan_curve_data *fan_curve_attr_2_select(struct asus_wmi *asus,
struct device_attribute *attr)
{
int nr = to_sensor_dev_attr_2(attr)->nr;
return &asus->custom_fan_curves[nr & ~FAN_CURVE_PWM_MASK];
}
static ssize_t fan_curve_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct sensor_device_attribute_2 *dev_attr = to_sensor_dev_attr_2(attr);
struct asus_wmi *asus = dev_get_drvdata(dev);
struct fan_curve_data *data;
int value, pwm, index;
data = fan_curve_attr_2_select(asus, attr);
pwm = dev_attr->nr & FAN_CURVE_PWM_MASK;
index = dev_attr->index;
if (pwm)
value = data->percents[index];
else
value = data->temps[index];
return sysfs_emit(buf, "%d\n", value);
}
/*
* "fan_dev" is the related WMI method such as ASUS_WMI_DEVID_CPU_FAN_CURVE.
*/
static int fan_curve_write(struct asus_wmi *asus,
struct fan_curve_data *data)
{
u32 arg1 = 0, arg2 = 0, arg3 = 0, arg4 = 0;
u8 *percents = data->percents;
u8 *temps = data->temps;
int ret, i, shift = 0;
if (!data->enabled)
return 0;
for (i = 0; i < FAN_CURVE_POINTS / 2; i++) {
arg1 += (temps[i]) << shift;
arg2 += (temps[i + 4]) << shift;
/* Scale to percentage for device */
arg3 += (100 * percents[i] / 255) << shift;
arg4 += (100 * percents[i + 4] / 255) << shift;
shift += 8;
}
return asus_wmi_evaluate_method5(ASUS_WMI_METHODID_DEVS,
data->device_id,
arg1, arg2, arg3, arg4, &ret);
}
static ssize_t fan_curve_store(struct device *dev,
struct device_attribute *attr, const char *buf,
size_t count)
{
struct sensor_device_attribute_2 *dev_attr = to_sensor_dev_attr_2(attr);
struct asus_wmi *asus = dev_get_drvdata(dev);
struct fan_curve_data *data;
int err, pwm, index;
u8 value;
data = fan_curve_attr_2_select(asus, attr);
pwm = dev_attr->nr & FAN_CURVE_PWM_MASK;
index = dev_attr->index;
err = kstrtou8(buf, 10, &value);
if (err < 0)
return err;
if (pwm)
data->percents[index] = value;
else
data->temps[index] = value;
/*
* Mark as disabled so the user has to explicitly enable to apply a
* changed fan curve. This prevents potential lockups from writing out
* many changes as one-write-per-change.
*/
data->enabled = false;
return count;
}
static ssize_t fan_curve_enable_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct asus_wmi *asus = dev_get_drvdata(dev);
struct fan_curve_data *data;
int out = 2;
data = fan_curve_attr_select(asus, attr);
if (data->enabled)
out = 1;
return sysfs_emit(buf, "%d\n", out);
}
static ssize_t fan_curve_enable_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct asus_wmi *asus = dev_get_drvdata(dev);
struct fan_curve_data *data;
int value, err;
data = fan_curve_attr_select(asus, attr);
err = kstrtoint(buf, 10, &value);
if (err < 0)
return err;
switch (value) {
case 1:
data->enabled = true;
break;
case 2:
data->enabled = false;
break;
/*
* Auto + reset the fan curve data to defaults. Make it an explicit
* option so that users don't accidentally overwrite a set fan curve.
*/
case 3:
err = fan_curve_get_factory_default(asus, data->device_id);
if (err)
return err;
data->enabled = false;
break;
default:
return -EINVAL;
}
if (data->enabled) {
err = fan_curve_write(asus, data);
if (err)
return err;
} else {
/*
* For machines with throttle this is the only way to reset fans
* to default mode of operation (does not erase curve data).
*/
if (asus->throttle_thermal_policy_available) {
err = throttle_thermal_policy_write(asus);
if (err)
return err;
/* Similar is true for laptops with this fan */
} else if (asus->fan_type == FAN_TYPE_SPEC83) {
err = asus_fan_set_auto(asus);
if (err)
return err;
} else {
/* Safeguard against fautly ACPI tables */
err = fan_curve_get_factory_default(asus, data->device_id);
if (err)
return err;
err = fan_curve_write(asus, data);
if (err)
return err;
}
}
return count;
}
/* CPU */
static SENSOR_DEVICE_ATTR_RW(pwm1_enable, fan_curve_enable, FAN_CURVE_DEV_CPU);
static SENSOR_DEVICE_ATTR_2_RW(pwm1_auto_point1_temp, fan_curve,
FAN_CURVE_DEV_CPU, 0);
static SENSOR_DEVICE_ATTR_2_RW(pwm1_auto_point2_temp, fan_curve,
FAN_CURVE_DEV_CPU, 1);
static SENSOR_DEVICE_ATTR_2_RW(pwm1_auto_point3_temp, fan_curve,
FAN_CURVE_DEV_CPU, 2);
static SENSOR_DEVICE_ATTR_2_RW(pwm1_auto_point4_temp, fan_curve,
FAN_CURVE_DEV_CPU, 3);
static SENSOR_DEVICE_ATTR_2_RW(pwm1_auto_point5_temp, fan_curve,
FAN_CURVE_DEV_CPU, 4);
static SENSOR_DEVICE_ATTR_2_RW(pwm1_auto_point6_temp, fan_curve,
FAN_CURVE_DEV_CPU, 5);
static SENSOR_DEVICE_ATTR_2_RW(pwm1_auto_point7_temp, fan_curve,
FAN_CURVE_DEV_CPU, 6);
static SENSOR_DEVICE_ATTR_2_RW(pwm1_auto_point8_temp, fan_curve,
FAN_CURVE_DEV_CPU, 7);
static SENSOR_DEVICE_ATTR_2_RW(pwm1_auto_point1_pwm, fan_curve,
FAN_CURVE_DEV_CPU | FAN_CURVE_PWM_MASK, 0);
static SENSOR_DEVICE_ATTR_2_RW(pwm1_auto_point2_pwm, fan_curve,
FAN_CURVE_DEV_CPU | FAN_CURVE_PWM_MASK, 1);
static SENSOR_DEVICE_ATTR_2_RW(pwm1_auto_point3_pwm, fan_curve,
FAN_CURVE_DEV_CPU | FAN_CURVE_PWM_MASK, 2);
static SENSOR_DEVICE_ATTR_2_RW(pwm1_auto_point4_pwm, fan_curve,
FAN_CURVE_DEV_CPU | FAN_CURVE_PWM_MASK, 3);
static SENSOR_DEVICE_ATTR_2_RW(pwm1_auto_point5_pwm, fan_curve,
FAN_CURVE_DEV_CPU | FAN_CURVE_PWM_MASK, 4);
static SENSOR_DEVICE_ATTR_2_RW(pwm1_auto_point6_pwm, fan_curve,
FAN_CURVE_DEV_CPU | FAN_CURVE_PWM_MASK, 5);
static SENSOR_DEVICE_ATTR_2_RW(pwm1_auto_point7_pwm, fan_curve,
FAN_CURVE_DEV_CPU | FAN_CURVE_PWM_MASK, 6);
static SENSOR_DEVICE_ATTR_2_RW(pwm1_auto_point8_pwm, fan_curve,
FAN_CURVE_DEV_CPU | FAN_CURVE_PWM_MASK, 7);
/* GPU */
static SENSOR_DEVICE_ATTR_RW(pwm2_enable, fan_curve_enable, FAN_CURVE_DEV_GPU);
static SENSOR_DEVICE_ATTR_2_RW(pwm2_auto_point1_temp, fan_curve,
FAN_CURVE_DEV_GPU, 0);
static SENSOR_DEVICE_ATTR_2_RW(pwm2_auto_point2_temp, fan_curve,
FAN_CURVE_DEV_GPU, 1);
static SENSOR_DEVICE_ATTR_2_RW(pwm2_auto_point3_temp, fan_curve,
FAN_CURVE_DEV_GPU, 2);
static SENSOR_DEVICE_ATTR_2_RW(pwm2_auto_point4_temp, fan_curve,
FAN_CURVE_DEV_GPU, 3);
static SENSOR_DEVICE_ATTR_2_RW(pwm2_auto_point5_temp, fan_curve,
FAN_CURVE_DEV_GPU, 4);
static SENSOR_DEVICE_ATTR_2_RW(pwm2_auto_point6_temp, fan_curve,
FAN_CURVE_DEV_GPU, 5);
static SENSOR_DEVICE_ATTR_2_RW(pwm2_auto_point7_temp, fan_curve,
FAN_CURVE_DEV_GPU, 6);
static SENSOR_DEVICE_ATTR_2_RW(pwm2_auto_point8_temp, fan_curve,
FAN_CURVE_DEV_GPU, 7);
static SENSOR_DEVICE_ATTR_2_RW(pwm2_auto_point1_pwm, fan_curve,
FAN_CURVE_DEV_GPU | FAN_CURVE_PWM_MASK, 0);
static SENSOR_DEVICE_ATTR_2_RW(pwm2_auto_point2_pwm, fan_curve,
FAN_CURVE_DEV_GPU | FAN_CURVE_PWM_MASK, 1);
static SENSOR_DEVICE_ATTR_2_RW(pwm2_auto_point3_pwm, fan_curve,
FAN_CURVE_DEV_GPU | FAN_CURVE_PWM_MASK, 2);
static SENSOR_DEVICE_ATTR_2_RW(pwm2_auto_point4_pwm, fan_curve,
FAN_CURVE_DEV_GPU | FAN_CURVE_PWM_MASK, 3);
static SENSOR_DEVICE_ATTR_2_RW(pwm2_auto_point5_pwm, fan_curve,
FAN_CURVE_DEV_GPU | FAN_CURVE_PWM_MASK, 4);
static SENSOR_DEVICE_ATTR_2_RW(pwm2_auto_point6_pwm, fan_curve,
FAN_CURVE_DEV_GPU | FAN_CURVE_PWM_MASK, 5);
static SENSOR_DEVICE_ATTR_2_RW(pwm2_auto_point7_pwm, fan_curve,
FAN_CURVE_DEV_GPU | FAN_CURVE_PWM_MASK, 6);
static SENSOR_DEVICE_ATTR_2_RW(pwm2_auto_point8_pwm, fan_curve,
FAN_CURVE_DEV_GPU | FAN_CURVE_PWM_MASK, 7);
/* MID */
static SENSOR_DEVICE_ATTR_RW(pwm3_enable, fan_curve_enable, FAN_CURVE_DEV_MID);
static SENSOR_DEVICE_ATTR_2_RW(pwm3_auto_point1_temp, fan_curve,
FAN_CURVE_DEV_MID, 0);
static SENSOR_DEVICE_ATTR_2_RW(pwm3_auto_point2_temp, fan_curve,
FAN_CURVE_DEV_MID, 1);
static SENSOR_DEVICE_ATTR_2_RW(pwm3_auto_point3_temp, fan_curve,
FAN_CURVE_DEV_MID, 2);
static SENSOR_DEVICE_ATTR_2_RW(pwm3_auto_point4_temp, fan_curve,
FAN_CURVE_DEV_MID, 3);
static SENSOR_DEVICE_ATTR_2_RW(pwm3_auto_point5_temp, fan_curve,
FAN_CURVE_DEV_MID, 4);
static SENSOR_DEVICE_ATTR_2_RW(pwm3_auto_point6_temp, fan_curve,
FAN_CURVE_DEV_MID, 5);
static SENSOR_DEVICE_ATTR_2_RW(pwm3_auto_point7_temp, fan_curve,
FAN_CURVE_DEV_MID, 6);
static SENSOR_DEVICE_ATTR_2_RW(pwm3_auto_point8_temp, fan_curve,
FAN_CURVE_DEV_MID, 7);
static SENSOR_DEVICE_ATTR_2_RW(pwm3_auto_point1_pwm, fan_curve,
FAN_CURVE_DEV_MID | FAN_CURVE_PWM_MASK, 0);
static SENSOR_DEVICE_ATTR_2_RW(pwm3_auto_point2_pwm, fan_curve,
FAN_CURVE_DEV_MID | FAN_CURVE_PWM_MASK, 1);
static SENSOR_DEVICE_ATTR_2_RW(pwm3_auto_point3_pwm, fan_curve,
FAN_CURVE_DEV_MID | FAN_CURVE_PWM_MASK, 2);
static SENSOR_DEVICE_ATTR_2_RW(pwm3_auto_point4_pwm, fan_curve,
FAN_CURVE_DEV_MID | FAN_CURVE_PWM_MASK, 3);
static SENSOR_DEVICE_ATTR_2_RW(pwm3_auto_point5_pwm, fan_curve,
FAN_CURVE_DEV_MID | FAN_CURVE_PWM_MASK, 4);
static SENSOR_DEVICE_ATTR_2_RW(pwm3_auto_point6_pwm, fan_curve,
FAN_CURVE_DEV_MID | FAN_CURVE_PWM_MASK, 5);
static SENSOR_DEVICE_ATTR_2_RW(pwm3_auto_point7_pwm, fan_curve,
FAN_CURVE_DEV_MID | FAN_CURVE_PWM_MASK, 6);
static SENSOR_DEVICE_ATTR_2_RW(pwm3_auto_point8_pwm, fan_curve,
FAN_CURVE_DEV_MID | FAN_CURVE_PWM_MASK, 7);
static struct attribute *asus_fan_curve_attr[] = {
/* CPU */
&sensor_dev_attr_pwm1_enable.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point1_temp.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point2_temp.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point3_temp.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point4_temp.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point5_temp.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point6_temp.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point7_temp.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point8_temp.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point1_pwm.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point2_pwm.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point3_pwm.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point4_pwm.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point5_pwm.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point6_pwm.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point7_pwm.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point8_pwm.dev_attr.attr,
/* GPU */
&sensor_dev_attr_pwm2_enable.dev_attr.attr,
&sensor_dev_attr_pwm2_auto_point1_temp.dev_attr.attr,
&sensor_dev_attr_pwm2_auto_point2_temp.dev_attr.attr,
&sensor_dev_attr_pwm2_auto_point3_temp.dev_attr.attr,
&sensor_dev_attr_pwm2_auto_point4_temp.dev_attr.attr,
&sensor_dev_attr_pwm2_auto_point5_temp.dev_attr.attr,
&sensor_dev_attr_pwm2_auto_point6_temp.dev_attr.attr,
&sensor_dev_attr_pwm2_auto_point7_temp.dev_attr.attr,
&sensor_dev_attr_pwm2_auto_point8_temp.dev_attr.attr,
&sensor_dev_attr_pwm2_auto_point1_pwm.dev_attr.attr,
&sensor_dev_attr_pwm2_auto_point2_pwm.dev_attr.attr,
&sensor_dev_attr_pwm2_auto_point3_pwm.dev_attr.attr,
&sensor_dev_attr_pwm2_auto_point4_pwm.dev_attr.attr,
&sensor_dev_attr_pwm2_auto_point5_pwm.dev_attr.attr,
&sensor_dev_attr_pwm2_auto_point6_pwm.dev_attr.attr,
&sensor_dev_attr_pwm2_auto_point7_pwm.dev_attr.attr,
&sensor_dev_attr_pwm2_auto_point8_pwm.dev_attr.attr,
/* MID */
&sensor_dev_attr_pwm3_enable.dev_attr.attr,
&sensor_dev_attr_pwm3_auto_point1_temp.dev_attr.attr,
&sensor_dev_attr_pwm3_auto_point2_temp.dev_attr.attr,
&sensor_dev_attr_pwm3_auto_point3_temp.dev_attr.attr,
&sensor_dev_attr_pwm3_auto_point4_temp.dev_attr.attr,
&sensor_dev_attr_pwm3_auto_point5_temp.dev_attr.attr,
&sensor_dev_attr_pwm3_auto_point6_temp.dev_attr.attr,
&sensor_dev_attr_pwm3_auto_point7_temp.dev_attr.attr,
&sensor_dev_attr_pwm3_auto_point8_temp.dev_attr.attr,
&sensor_dev_attr_pwm3_auto_point1_pwm.dev_attr.attr,
&sensor_dev_attr_pwm3_auto_point2_pwm.dev_attr.attr,
&sensor_dev_attr_pwm3_auto_point3_pwm.dev_attr.attr,
&sensor_dev_attr_pwm3_auto_point4_pwm.dev_attr.attr,
&sensor_dev_attr_pwm3_auto_point5_pwm.dev_attr.attr,
&sensor_dev_attr_pwm3_auto_point6_pwm.dev_attr.attr,
&sensor_dev_attr_pwm3_auto_point7_pwm.dev_attr.attr,
&sensor_dev_attr_pwm3_auto_point8_pwm.dev_attr.attr,
NULL
};
static umode_t asus_fan_curve_is_visible(struct kobject *kobj,
struct attribute *attr, int idx)
{
struct device *dev = kobj_to_dev(kobj);
struct asus_wmi *asus = dev_get_drvdata(dev->parent);
/*
* Check the char instead of casting attr as there are two attr types
* involved here (attr1 and attr2)
*/
if (asus->cpu_fan_curve_available && attr->name[3] == '1')
return 0644;
if (asus->gpu_fan_curve_available && attr->name[3] == '2')
return 0644;
if (asus->mid_fan_curve_available && attr->name[3] == '3')
return 0644;
return 0;
}
static const struct attribute_group asus_fan_curve_attr_group = {
.is_visible = asus_fan_curve_is_visible,
.attrs = asus_fan_curve_attr,
};
__ATTRIBUTE_GROUPS(asus_fan_curve_attr);
/*
* Must be initialised after throttle_thermal_policy_check_present() as
* we check the status of throttle_thermal_policy_available during init.
*/
static int asus_wmi_custom_fan_curve_init(struct asus_wmi *asus)
{
struct device *dev = &asus->platform_device->dev;
struct device *hwmon;
int err;
err = fan_curve_check_present(asus, &asus->cpu_fan_curve_available,
ASUS_WMI_DEVID_CPU_FAN_CURVE);
if (err)
return err;
err = fan_curve_check_present(asus, &asus->gpu_fan_curve_available,
ASUS_WMI_DEVID_GPU_FAN_CURVE);
if (err)
return err;
err = fan_curve_check_present(asus, &asus->mid_fan_curve_available,
ASUS_WMI_DEVID_MID_FAN_CURVE);
if (err)
return err;
if (!asus->cpu_fan_curve_available
&& !asus->gpu_fan_curve_available
&& !asus->mid_fan_curve_available)
return 0;
hwmon = devm_hwmon_device_register_with_groups(
dev, "asus_custom_fan_curve", asus, asus_fan_curve_attr_groups);
if (IS_ERR(hwmon)) {
dev_err(dev,
"Could not register asus_custom_fan_curve device\n");
return PTR_ERR(hwmon);
}
return 0;
}
/* Throttle thermal policy ****************************************************/
static int throttle_thermal_policy_check_present(struct asus_wmi *asus)
{
u32 result;
int err;
asus->throttle_thermal_policy_available = false;
err = asus_wmi_get_devstate(asus,
ASUS_WMI_DEVID_THROTTLE_THERMAL_POLICY,
&result);
if (err) {
if (err == -ENODEV)
return 0;
return err;
}
if (result & ASUS_WMI_DSTS_PRESENCE_BIT)
asus->throttle_thermal_policy_available = true;
return 0;
}
static int throttle_thermal_policy_write(struct asus_wmi *asus)
{
int err;
u8 value;
u32 retval;
value = asus->throttle_thermal_policy_mode;
err = asus_wmi_set_devstate(ASUS_WMI_DEVID_THROTTLE_THERMAL_POLICY,
value, &retval);
sysfs_notify(&asus->platform_device->dev.kobj, NULL,
"throttle_thermal_policy");
if (err) {
pr_warn("Failed to set throttle thermal policy: %d\n", err);
return err;
}
if (retval != 1) {
pr_warn("Failed to set throttle thermal policy (retval): 0x%x\n",
retval);
return -EIO;
}
/* Must set to disabled if mode is toggled */
if (asus->cpu_fan_curve_available)
asus->custom_fan_curves[FAN_CURVE_DEV_CPU].enabled = false;
if (asus->gpu_fan_curve_available)
asus->custom_fan_curves[FAN_CURVE_DEV_GPU].enabled = false;
if (asus->mid_fan_curve_available)
asus->custom_fan_curves[FAN_CURVE_DEV_MID].enabled = false;
return 0;
}
static int throttle_thermal_policy_set_default(struct asus_wmi *asus)
{
if (!asus->throttle_thermal_policy_available)
return 0;
asus->throttle_thermal_policy_mode = ASUS_THROTTLE_THERMAL_POLICY_DEFAULT;
return throttle_thermal_policy_write(asus);
}
static int throttle_thermal_policy_switch_next(struct asus_wmi *asus)
{
u8 new_mode = asus->throttle_thermal_policy_mode + 1;
int err;
if (new_mode > ASUS_THROTTLE_THERMAL_POLICY_SILENT)
new_mode = ASUS_THROTTLE_THERMAL_POLICY_DEFAULT;
asus->throttle_thermal_policy_mode = new_mode;
err = throttle_thermal_policy_write(asus);
if (err)
return err;
/*
* Ensure that platform_profile updates userspace with the change to ensure
* that platform_profile and throttle_thermal_policy_mode are in sync.
*/
platform_profile_notify();
return 0;
}
static ssize_t throttle_thermal_policy_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct asus_wmi *asus = dev_get_drvdata(dev);
u8 mode = asus->throttle_thermal_policy_mode;
return sysfs_emit(buf, "%d\n", mode);
}
static ssize_t throttle_thermal_policy_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct asus_wmi *asus = dev_get_drvdata(dev);
u8 new_mode;
int result;
int err;
result = kstrtou8(buf, 10, &new_mode);
if (result < 0)
return result;
if (new_mode > ASUS_THROTTLE_THERMAL_POLICY_SILENT)
return -EINVAL;
asus->throttle_thermal_policy_mode = new_mode;
err = throttle_thermal_policy_write(asus);
if (err)
return err;
/*
* Ensure that platform_profile updates userspace with the change to ensure
* that platform_profile and throttle_thermal_policy_mode are in sync.
*/
platform_profile_notify();
return count;
}
// Throttle thermal policy: 0 - default, 1 - overboost, 2 - silent
static DEVICE_ATTR_RW(throttle_thermal_policy);
/* Platform profile ***********************************************************/
static int asus_wmi_platform_profile_get(struct platform_profile_handler *pprof,
enum platform_profile_option *profile)
{
struct asus_wmi *asus;
int tp;
asus = container_of(pprof, struct asus_wmi, platform_profile_handler);
tp = asus->throttle_thermal_policy_mode;
switch (tp) {
case ASUS_THROTTLE_THERMAL_POLICY_DEFAULT:
*profile = PLATFORM_PROFILE_BALANCED;
break;
case ASUS_THROTTLE_THERMAL_POLICY_OVERBOOST:
*profile = PLATFORM_PROFILE_PERFORMANCE;
break;
case ASUS_THROTTLE_THERMAL_POLICY_SILENT:
*profile = PLATFORM_PROFILE_QUIET;
break;
default:
return -EINVAL;
}
return 0;
}
static int asus_wmi_platform_profile_set(struct platform_profile_handler *pprof,
enum platform_profile_option profile)
{
struct asus_wmi *asus;
int tp;
asus = container_of(pprof, struct asus_wmi, platform_profile_handler);
switch (profile) {
case PLATFORM_PROFILE_PERFORMANCE:
tp = ASUS_THROTTLE_THERMAL_POLICY_OVERBOOST;
break;
case PLATFORM_PROFILE_BALANCED:
tp = ASUS_THROTTLE_THERMAL_POLICY_DEFAULT;
break;
case PLATFORM_PROFILE_QUIET:
tp = ASUS_THROTTLE_THERMAL_POLICY_SILENT;
break;
default:
return -EOPNOTSUPP;
}
asus->throttle_thermal_policy_mode = tp;
return throttle_thermal_policy_write(asus);
}
static int platform_profile_setup(struct asus_wmi *asus)
{
struct device *dev = &asus->platform_device->dev;
int err;
/*
* Not an error if a component platform_profile relies on is unavailable
* so early return, skipping the setup of platform_profile.
*/
if (!asus->throttle_thermal_policy_available)
return 0;
dev_info(dev, "Using throttle_thermal_policy for platform_profile support\n");
asus->platform_profile_handler.profile_get = asus_wmi_platform_profile_get;
asus->platform_profile_handler.profile_set = asus_wmi_platform_profile_set;
set_bit(PLATFORM_PROFILE_QUIET, asus->platform_profile_handler.choices);
set_bit(PLATFORM_PROFILE_BALANCED,
asus->platform_profile_handler.choices);
set_bit(PLATFORM_PROFILE_PERFORMANCE,
asus->platform_profile_handler.choices);
err = platform_profile_register(&asus->platform_profile_handler);
if (err)
return err;
asus->platform_profile_support = true;
return 0;
}
/* Backlight ******************************************************************/
static int read_backlight_power(struct asus_wmi *asus)
{
int ret;
if (asus->driver->quirks->store_backlight_power)
ret = !asus->driver->panel_power;
else
ret = asus_wmi_get_devstate_simple(asus,
ASUS_WMI_DEVID_BACKLIGHT);
if (ret < 0)
return ret;
return ret ? FB_BLANK_UNBLANK : FB_BLANK_POWERDOWN;
}
static int read_brightness_max(struct asus_wmi *asus)
{
u32 retval;
int err;
err = asus_wmi_get_devstate(asus, ASUS_WMI_DEVID_BRIGHTNESS, &retval);
if (err < 0)
return err;
retval = retval & ASUS_WMI_DSTS_MAX_BRIGTH_MASK;
retval >>= 8;
if (!retval)
return -ENODEV;
return retval;
}
static int read_brightness(struct backlight_device *bd)
{
struct asus_wmi *asus = bl_get_data(bd);
u32 retval;
int err;
err = asus_wmi_get_devstate(asus, ASUS_WMI_DEVID_BRIGHTNESS, &retval);
if (err < 0)
return err;
return retval & ASUS_WMI_DSTS_BRIGHTNESS_MASK;
}
static u32 get_scalar_command(struct backlight_device *bd)
{
struct asus_wmi *asus = bl_get_data(bd);
u32 ctrl_param = 0;
if ((asus->driver->brightness < bd->props.brightness) ||
bd->props.brightness == bd->props.max_brightness)
ctrl_param = 0x00008001;
else if ((asus->driver->brightness > bd->props.brightness) ||
bd->props.brightness == 0)
ctrl_param = 0x00008000;
asus->driver->brightness = bd->props.brightness;
return ctrl_param;
}
static int update_bl_status(struct backlight_device *bd)
{
struct asus_wmi *asus = bl_get_data(bd);
u32 ctrl_param;
int power, err = 0;
power = read_backlight_power(asus);
if (power != -ENODEV && bd->props.power != power) {
ctrl_param = !!(bd->props.power == FB_BLANK_UNBLANK);
err = asus_wmi_set_devstate(ASUS_WMI_DEVID_BACKLIGHT,
ctrl_param, NULL);
if (asus->driver->quirks->store_backlight_power)
asus->driver->panel_power = bd->props.power;
/* When using scalar brightness, updating the brightness
* will mess with the backlight power */
if (asus->driver->quirks->scalar_panel_brightness)
return err;
}
if (asus->driver->quirks->scalar_panel_brightness)
ctrl_param = get_scalar_command(bd);
else
ctrl_param = bd->props.brightness;
err = asus_wmi_set_devstate(ASUS_WMI_DEVID_BRIGHTNESS,
ctrl_param, NULL);
return err;
}
static const struct backlight_ops asus_wmi_bl_ops = {
.get_brightness = read_brightness,
.update_status = update_bl_status,
};
static int asus_wmi_backlight_notify(struct asus_wmi *asus, int code)
{
struct backlight_device *bd = asus->backlight_device;
int old = bd->props.brightness;
int new = old;
if (code >= NOTIFY_BRNUP_MIN && code <= NOTIFY_BRNUP_MAX)
new = code - NOTIFY_BRNUP_MIN + 1;
else if (code >= NOTIFY_BRNDOWN_MIN && code <= NOTIFY_BRNDOWN_MAX)
new = code - NOTIFY_BRNDOWN_MIN;
bd->props.brightness = new;
backlight_update_status(bd);
backlight_force_update(bd, BACKLIGHT_UPDATE_HOTKEY);
return old;
}
static int asus_wmi_backlight_init(struct asus_wmi *asus)
{
struct backlight_device *bd;
struct backlight_properties props;
int max;
int power;
max = read_brightness_max(asus);
if (max < 0)
return max;
power = read_backlight_power(asus);
if (power == -ENODEV)
power = FB_BLANK_UNBLANK;
else if (power < 0)
return power;
memset(&props, 0, sizeof(struct backlight_properties));
props.type = BACKLIGHT_PLATFORM;
props.max_brightness = max;
bd = backlight_device_register(asus->driver->name,
&asus->platform_device->dev, asus,
&asus_wmi_bl_ops, &props);
if (IS_ERR(bd)) {
pr_err("Could not register backlight device\n");
return PTR_ERR(bd);
}
asus->backlight_device = bd;
if (asus->driver->quirks->store_backlight_power)
asus->driver->panel_power = power;
bd->props.brightness = read_brightness(bd);
bd->props.power = power;
backlight_update_status(bd);
asus->driver->brightness = bd->props.brightness;
return 0;
}
static void asus_wmi_backlight_exit(struct asus_wmi *asus)
{
backlight_device_unregister(asus->backlight_device);
asus->backlight_device = NULL;
}
static int is_display_toggle(int code)
{
/* display toggle keys */
if ((code >= 0x61 && code <= 0x67) ||
(code >= 0x8c && code <= 0x93) ||
(code >= 0xa0 && code <= 0xa7) ||
(code >= 0xd0 && code <= 0xd5))
return 1;
return 0;
}
/* Screenpad backlight *******************************************************/
static int read_screenpad_backlight_power(struct asus_wmi *asus)
{
int ret;
ret = asus_wmi_get_devstate_simple(asus, ASUS_WMI_DEVID_SCREENPAD_POWER);
if (ret < 0)
return ret;
/* 1 == powered */
return ret ? FB_BLANK_UNBLANK : FB_BLANK_POWERDOWN;
}
static int read_screenpad_brightness(struct backlight_device *bd)
{
struct asus_wmi *asus = bl_get_data(bd);
u32 retval;
int err;
err = read_screenpad_backlight_power(asus);
if (err < 0)
return err;
/* The device brightness can only be read if powered, so return stored */
if (err == FB_BLANK_POWERDOWN)
return asus->driver->screenpad_brightness - ASUS_SCREENPAD_BRIGHT_MIN;
err = asus_wmi_get_devstate(asus, ASUS_WMI_DEVID_SCREENPAD_LIGHT, &retval);
if (err < 0)
return err;
return (retval & ASUS_WMI_DSTS_BRIGHTNESS_MASK) - ASUS_SCREENPAD_BRIGHT_MIN;
}
static int update_screenpad_bl_status(struct backlight_device *bd)
{
struct asus_wmi *asus = bl_get_data(bd);
int power, err = 0;
u32 ctrl_param;
power = read_screenpad_backlight_power(asus);
if (power < 0)
return power;
if (bd->props.power != power) {
if (power != FB_BLANK_UNBLANK) {
/* Only brightness > 0 can power it back on */
ctrl_param = asus->driver->screenpad_brightness - ASUS_SCREENPAD_BRIGHT_MIN;
err = asus_wmi_set_devstate(ASUS_WMI_DEVID_SCREENPAD_LIGHT,
ctrl_param, NULL);
} else {
err = asus_wmi_set_devstate(ASUS_WMI_DEVID_SCREENPAD_POWER, 0, NULL);
}
} else if (power == FB_BLANK_UNBLANK) {
/* Only set brightness if powered on or we get invalid/unsync state */
ctrl_param = bd->props.brightness + ASUS_SCREENPAD_BRIGHT_MIN;
err = asus_wmi_set_devstate(ASUS_WMI_DEVID_SCREENPAD_LIGHT, ctrl_param, NULL);
}
/* Ensure brightness is stored to turn back on with */
if (err == 0)
asus->driver->screenpad_brightness = bd->props.brightness + ASUS_SCREENPAD_BRIGHT_MIN;
return err;
}
static const struct backlight_ops asus_screenpad_bl_ops = {
.get_brightness = read_screenpad_brightness,
.update_status = update_screenpad_bl_status,
.options = BL_CORE_SUSPENDRESUME,
};
static int asus_screenpad_init(struct asus_wmi *asus)
{
struct backlight_device *bd;
struct backlight_properties props;
int err, power;
int brightness = 0;
power = read_screenpad_backlight_power(asus);
if (power < 0)
return power;
if (power != FB_BLANK_POWERDOWN) {
err = asus_wmi_get_devstate(asus, ASUS_WMI_DEVID_SCREENPAD_LIGHT, &brightness);
if (err < 0)
return err;
}
/* default to an acceptable min brightness on boot if too low */
if (brightness < ASUS_SCREENPAD_BRIGHT_MIN)
brightness = ASUS_SCREENPAD_BRIGHT_DEFAULT;
memset(&props, 0, sizeof(struct backlight_properties));
props.type = BACKLIGHT_RAW; /* ensure this bd is last to be picked */
props.max_brightness = ASUS_SCREENPAD_BRIGHT_MAX - ASUS_SCREENPAD_BRIGHT_MIN;
bd = backlight_device_register("asus_screenpad",
&asus->platform_device->dev, asus,
&asus_screenpad_bl_ops, &props);
if (IS_ERR(bd)) {
pr_err("Could not register backlight device\n");
return PTR_ERR(bd);
}
asus->screenpad_backlight_device = bd;
asus->driver->screenpad_brightness = brightness;
bd->props.brightness = brightness - ASUS_SCREENPAD_BRIGHT_MIN;
bd->props.power = power;
backlight_update_status(bd);
return 0;
}
static void asus_screenpad_exit(struct asus_wmi *asus)
{
backlight_device_unregister(asus->screenpad_backlight_device);
asus->screenpad_backlight_device = NULL;
}
/* Fn-lock ********************************************************************/
static bool asus_wmi_has_fnlock_key(struct asus_wmi *asus)
{
u32 result;
asus_wmi_get_devstate(asus, ASUS_WMI_DEVID_FNLOCK, &result);
return (result & ASUS_WMI_DSTS_PRESENCE_BIT) &&
!(result & ASUS_WMI_FNLOCK_BIOS_DISABLED);
}
static void asus_wmi_fnlock_update(struct asus_wmi *asus)
{
int mode = asus->fnlock_locked;
asus_wmi_set_devstate(ASUS_WMI_DEVID_FNLOCK, mode, NULL);
}
/* WMI events *****************************************************************/
static int asus_wmi_get_event_code(u32 value)
{
struct acpi_buffer response = { ACPI_ALLOCATE_BUFFER, NULL };
union acpi_object *obj;
acpi_status status;
int code;
status = wmi_get_event_data(value, &response);
if (ACPI_FAILURE(status)) {
pr_warn("Failed to get WMI notify code: %s\n",
acpi_format_exception(status));
return -EIO;
}
obj = (union acpi_object *)response.pointer;
if (obj && obj->type == ACPI_TYPE_INTEGER)
code = (int)(obj->integer.value & WMI_EVENT_MASK);
else
code = -EIO;
kfree(obj);
return code;
}
static void asus_wmi_handle_event_code(int code, struct asus_wmi *asus)
{
unsigned int key_value = 1;
bool autorelease = 1;
if (asus->driver->key_filter) {
asus->driver->key_filter(asus->driver, &code, &key_value,
&autorelease);
if (code == ASUS_WMI_KEY_IGNORE)
return;
}
if (acpi_video_get_backlight_type() == acpi_backlight_vendor &&
code >= NOTIFY_BRNUP_MIN && code <= NOTIFY_BRNDOWN_MAX) {
asus_wmi_backlight_notify(asus, code);
return;
}
if (code == NOTIFY_KBD_BRTUP) {
kbd_led_set_by_kbd(asus, asus->kbd_led_wk + 1);
return;
}
if (code == NOTIFY_KBD_BRTDWN) {
kbd_led_set_by_kbd(asus, asus->kbd_led_wk - 1);
return;
}
if (code == NOTIFY_KBD_BRTTOGGLE) {
if (asus->kbd_led_wk == asus->kbd_led.max_brightness)
kbd_led_set_by_kbd(asus, 0);
else
kbd_led_set_by_kbd(asus, asus->kbd_led_wk + 1);
return;
}
if (code == NOTIFY_FNLOCK_TOGGLE) {
asus->fnlock_locked = !asus->fnlock_locked;
asus_wmi_fnlock_update(asus);
return;
}
if (code == asus->tablet_switch_event_code) {
asus_wmi_tablet_mode_get_state(asus);
return;
}
if (code == NOTIFY_KBD_FBM || code == NOTIFY_KBD_TTP) {
if (asus->fan_boost_mode_available)
fan_boost_mode_switch_next(asus);
if (asus->throttle_thermal_policy_available)
throttle_thermal_policy_switch_next(asus);
return;
}
if (is_display_toggle(code) && asus->driver->quirks->no_display_toggle)
return;
if (!sparse_keymap_report_event(asus->inputdev, code,
key_value, autorelease))
pr_info("Unknown key code 0x%x\n", code);
}
static void asus_wmi_notify(u32 value, void *context)
{
struct asus_wmi *asus = context;
int code = asus_wmi_get_event_code(value);
if (code < 0) {
pr_warn("Failed to get notify code: %d\n", code);
return;
}
asus_wmi_handle_event_code(code, asus);
}
/* Sysfs **********************************************************************/
static ssize_t store_sys_wmi(struct asus_wmi *asus, int devid,
const char *buf, size_t count)
{
u32 retval;
int err, value;
value = asus_wmi_get_devstate_simple(asus, devid);
if (value < 0)
return value;
err = kstrtoint(buf, 0, &value);
if (err)
return err;
err = asus_wmi_set_devstate(devid, value, &retval);
if (err < 0)
return err;
return count;
}
static ssize_t show_sys_wmi(struct asus_wmi *asus, int devid, char *buf)
{
int value = asus_wmi_get_devstate_simple(asus, devid);
if (value < 0)
return value;
return sysfs_emit(buf, "%d\n", value);
}
#define ASUS_WMI_CREATE_DEVICE_ATTR(_name, _mode, _cm) \
static ssize_t show_##_name(struct device *dev, \
struct device_attribute *attr, \
char *buf) \
{ \
struct asus_wmi *asus = dev_get_drvdata(dev); \
\
return show_sys_wmi(asus, _cm, buf); \
} \
static ssize_t store_##_name(struct device *dev, \
struct device_attribute *attr, \
const char *buf, size_t count) \
{ \
struct asus_wmi *asus = dev_get_drvdata(dev); \
\
return store_sys_wmi(asus, _cm, buf, count); \
} \
static struct device_attribute dev_attr_##_name = { \
.attr = { \
.name = __stringify(_name), \
.mode = _mode }, \
.show = show_##_name, \
.store = store_##_name, \
}
ASUS_WMI_CREATE_DEVICE_ATTR(touchpad, 0644, ASUS_WMI_DEVID_TOUCHPAD);
ASUS_WMI_CREATE_DEVICE_ATTR(camera, 0644, ASUS_WMI_DEVID_CAMERA);
ASUS_WMI_CREATE_DEVICE_ATTR(cardr, 0644, ASUS_WMI_DEVID_CARDREADER);
ASUS_WMI_CREATE_DEVICE_ATTR(lid_resume, 0644, ASUS_WMI_DEVID_LID_RESUME);
ASUS_WMI_CREATE_DEVICE_ATTR(als_enable, 0644, ASUS_WMI_DEVID_ALS_ENABLE);
static ssize_t cpufv_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
int value, rv;
rv = kstrtoint(buf, 0, &value);
if (rv)
return rv;
if (value < 0 || value > 2)
return -EINVAL;
rv = asus_wmi_evaluate_method(ASUS_WMI_METHODID_CFVS, value, 0, NULL);
if (rv < 0)
return rv;
return count;
}
static DEVICE_ATTR_WO(cpufv);
static struct attribute *platform_attributes[] = {
&dev_attr_cpufv.attr,
&dev_attr_camera.attr,
&dev_attr_cardr.attr,
&dev_attr_touchpad.attr,
&dev_attr_charge_mode.attr,
&dev_attr_egpu_enable.attr,
&dev_attr_egpu_connected.attr,
&dev_attr_dgpu_disable.attr,
&dev_attr_gpu_mux_mode.attr,
&dev_attr_lid_resume.attr,
&dev_attr_als_enable.attr,
&dev_attr_fan_boost_mode.attr,
&dev_attr_throttle_thermal_policy.attr,
&dev_attr_ppt_pl2_sppt.attr,
&dev_attr_ppt_pl1_spl.attr,
&dev_attr_ppt_fppt.attr,
&dev_attr_ppt_apu_sppt.attr,
&dev_attr_ppt_platform_sppt.attr,
&dev_attr_nv_dynamic_boost.attr,
&dev_attr_nv_temp_target.attr,
&dev_attr_mcu_powersave.attr,
&dev_attr_boot_sound.attr,
&dev_attr_panel_od.attr,
&dev_attr_mini_led_mode.attr,
&dev_attr_available_mini_led_mode.attr,
NULL
};
static umode_t asus_sysfs_is_visible(struct kobject *kobj,
struct attribute *attr, int idx)
{
struct device *dev = kobj_to_dev(kobj);
struct asus_wmi *asus = dev_get_drvdata(dev);
bool ok = true;
int devid = -1;
if (attr == &dev_attr_camera.attr)
devid = ASUS_WMI_DEVID_CAMERA;
else if (attr == &dev_attr_cardr.attr)
devid = ASUS_WMI_DEVID_CARDREADER;
else if (attr == &dev_attr_touchpad.attr)
devid = ASUS_WMI_DEVID_TOUCHPAD;
else if (attr == &dev_attr_lid_resume.attr)
devid = ASUS_WMI_DEVID_LID_RESUME;
else if (attr == &dev_attr_als_enable.attr)
devid = ASUS_WMI_DEVID_ALS_ENABLE;
else if (attr == &dev_attr_charge_mode.attr)
devid = ASUS_WMI_DEVID_CHARGE_MODE;
else if (attr == &dev_attr_egpu_enable.attr)
ok = asus->egpu_enable_available;
else if (attr == &dev_attr_egpu_connected.attr)
devid = ASUS_WMI_DEVID_EGPU_CONNECTED;
else if (attr == &dev_attr_dgpu_disable.attr)
ok = asus->dgpu_disable_available;
else if (attr == &dev_attr_gpu_mux_mode.attr)
ok = asus->gpu_mux_dev != 0;
else if (attr == &dev_attr_fan_boost_mode.attr)
ok = asus->fan_boost_mode_available;
else if (attr == &dev_attr_throttle_thermal_policy.attr)
ok = asus->throttle_thermal_policy_available;
else if (attr == &dev_attr_ppt_pl2_sppt.attr)
devid = ASUS_WMI_DEVID_PPT_PL2_SPPT;
else if (attr == &dev_attr_ppt_pl1_spl.attr)
devid = ASUS_WMI_DEVID_PPT_PL1_SPL;
else if (attr == &dev_attr_ppt_fppt.attr)
devid = ASUS_WMI_DEVID_PPT_FPPT;
else if (attr == &dev_attr_ppt_apu_sppt.attr)
devid = ASUS_WMI_DEVID_PPT_APU_SPPT;
else if (attr == &dev_attr_ppt_platform_sppt.attr)
devid = ASUS_WMI_DEVID_PPT_PLAT_SPPT;
else if (attr == &dev_attr_nv_dynamic_boost.attr)
devid = ASUS_WMI_DEVID_NV_DYN_BOOST;
else if (attr == &dev_attr_nv_temp_target.attr)
devid = ASUS_WMI_DEVID_NV_THERM_TARGET;
else if (attr == &dev_attr_mcu_powersave.attr)
devid = ASUS_WMI_DEVID_MCU_POWERSAVE;
else if (attr == &dev_attr_boot_sound.attr)
devid = ASUS_WMI_DEVID_BOOT_SOUND;
else if (attr == &dev_attr_panel_od.attr)
devid = ASUS_WMI_DEVID_PANEL_OD;
else if (attr == &dev_attr_mini_led_mode.attr)
ok = asus->mini_led_dev_id != 0;
else if (attr == &dev_attr_available_mini_led_mode.attr)
ok = asus->mini_led_dev_id != 0;
if (devid != -1)
ok = !(asus_wmi_get_devstate_simple(asus, devid) < 0);
return ok ? attr->mode : 0;
}
static const struct attribute_group platform_attribute_group = {
.is_visible = asus_sysfs_is_visible,
.attrs = platform_attributes
};
static void asus_wmi_sysfs_exit(struct platform_device *device)
{
sysfs_remove_group(&device->dev.kobj, &platform_attribute_group);
}
static int asus_wmi_sysfs_init(struct platform_device *device)
{
return sysfs_create_group(&device->dev.kobj, &platform_attribute_group);
}
/* Platform device ************************************************************/
static int asus_wmi_platform_init(struct asus_wmi *asus)
{
struct device *dev = &asus->platform_device->dev;
char *wmi_uid;
int rv;
/* INIT enable hotkeys on some models */
if (!asus_wmi_evaluate_method(ASUS_WMI_METHODID_INIT, 0, 0, &rv))
pr_info("Initialization: %#x\n", rv);
/* We don't know yet what to do with this version... */
if (!asus_wmi_evaluate_method(ASUS_WMI_METHODID_SPEC, 0, 0x9, &rv)) {
pr_info("BIOS WMI version: %d.%d\n", rv >> 16, rv & 0xFF);
asus->spec = rv;
}
/*
* The SFUN method probably allows the original driver to get the list
* of features supported by a given model. For now, 0x0100 or 0x0800
* bit signifies that the laptop is equipped with a Wi-Fi MiniPCI card.
* The significance of others is yet to be found.
*/
if (!asus_wmi_evaluate_method(ASUS_WMI_METHODID_SFUN, 0, 0, &rv)) {
pr_info("SFUN value: %#x\n", rv);
asus->sfun = rv;
}
/*
* Eee PC and Notebooks seems to have different method_id for DSTS,
* but it may also be related to the BIOS's SPEC.
* Note, on most Eeepc, there is no way to check if a method exist
* or note, while on notebooks, they returns 0xFFFFFFFE on failure,
* but once again, SPEC may probably be used for that kind of things.
*
* Additionally at least TUF Gaming series laptops return nothing for
* unknown methods, so the detection in this way is not possible.
*
* There is strong indication that only ACPI WMI devices that have _UID
* equal to "ASUSWMI" use DCTS whereas those with "ATK" use DSTS.
*/
wmi_uid = wmi_get_acpi_device_uid(ASUS_WMI_MGMT_GUID);
if (!wmi_uid)
return -ENODEV;
if (!strcmp(wmi_uid, ASUS_ACPI_UID_ASUSWMI)) {
dev_info(dev, "Detected ASUSWMI, use DCTS\n");
asus->dsts_id = ASUS_WMI_METHODID_DCTS;
} else {
dev_info(dev, "Detected %s, not ASUSWMI, use DSTS\n", wmi_uid);
asus->dsts_id = ASUS_WMI_METHODID_DSTS;
}
/* CWAP allow to define the behavior of the Fn+F2 key,
* this method doesn't seems to be present on Eee PCs */
if (asus->driver->quirks->wapf >= 0)
asus_wmi_set_devstate(ASUS_WMI_DEVID_CWAP,
asus->driver->quirks->wapf, NULL);
return 0;
}
/* debugfs ********************************************************************/
struct asus_wmi_debugfs_node {
struct asus_wmi *asus;
char *name;
int (*show) (struct seq_file *m, void *data);
};
static int show_dsts(struct seq_file *m, void *data)
{
struct asus_wmi *asus = m->private;
int err;
u32 retval = -1;
err = asus_wmi_get_devstate(asus, asus->debug.dev_id, &retval);
if (err < 0)
return err;
seq_printf(m, "DSTS(%#x) = %#x\n", asus->debug.dev_id, retval);
return 0;
}
static int show_devs(struct seq_file *m, void *data)
{
struct asus_wmi *asus = m->private;
int err;
u32 retval = -1;
err = asus_wmi_set_devstate(asus->debug.dev_id, asus->debug.ctrl_param,
&retval);
if (err < 0)
return err;
seq_printf(m, "DEVS(%#x, %#x) = %#x\n", asus->debug.dev_id,
asus->debug.ctrl_param, retval);
return 0;
}
static int show_call(struct seq_file *m, void *data)
{
struct asus_wmi *asus = m->private;
struct bios_args args = {
.arg0 = asus->debug.dev_id,
.arg1 = asus->debug.ctrl_param,
};
struct acpi_buffer input = { (acpi_size) sizeof(args), &args };
struct acpi_buffer output = { ACPI_ALLOCATE_BUFFER, NULL };
union acpi_object *obj;
acpi_status status;
status = wmi_evaluate_method(ASUS_WMI_MGMT_GUID,
0, asus->debug.method_id,
&input, &output);
if (ACPI_FAILURE(status))
return -EIO;
obj = (union acpi_object *)output.pointer;
if (obj && obj->type == ACPI_TYPE_INTEGER)
seq_printf(m, "%#x(%#x, %#x) = %#x\n", asus->debug.method_id,
asus->debug.dev_id, asus->debug.ctrl_param,
(u32) obj->integer.value);
else
seq_printf(m, "%#x(%#x, %#x) = t:%d\n", asus->debug.method_id,
asus->debug.dev_id, asus->debug.ctrl_param,
obj ? obj->type : -1);
kfree(obj);
return 0;
}
static struct asus_wmi_debugfs_node asus_wmi_debug_files[] = {
{NULL, "devs", show_devs},
{NULL, "dsts", show_dsts},
{NULL, "call", show_call},
};
static int asus_wmi_debugfs_open(struct inode *inode, struct file *file)
{
struct asus_wmi_debugfs_node *node = inode->i_private;
return single_open(file, node->show, node->asus);
}
static const struct file_operations asus_wmi_debugfs_io_ops = {
.owner = THIS_MODULE,
.open = asus_wmi_debugfs_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static void asus_wmi_debugfs_exit(struct asus_wmi *asus)
{
debugfs_remove_recursive(asus->debug.root);
}
static void asus_wmi_debugfs_init(struct asus_wmi *asus)
{
int i;
asus->debug.root = debugfs_create_dir(asus->driver->name, NULL);
debugfs_create_x32("method_id", S_IRUGO | S_IWUSR, asus->debug.root,
&asus->debug.method_id);
debugfs_create_x32("dev_id", S_IRUGO | S_IWUSR, asus->debug.root,
&asus->debug.dev_id);
debugfs_create_x32("ctrl_param", S_IRUGO | S_IWUSR, asus->debug.root,
&asus->debug.ctrl_param);
for (i = 0; i < ARRAY_SIZE(asus_wmi_debug_files); i++) {
struct asus_wmi_debugfs_node *node = &asus_wmi_debug_files[i];
node->asus = asus;
debugfs_create_file(node->name, S_IFREG | S_IRUGO,
asus->debug.root, node,
&asus_wmi_debugfs_io_ops);
}
}
/* Init / exit ****************************************************************/
static int asus_wmi_add(struct platform_device *pdev)
{
struct platform_driver *pdrv = to_platform_driver(pdev->dev.driver);
struct asus_wmi_driver *wdrv = to_asus_wmi_driver(pdrv);
struct asus_wmi *asus;
acpi_status status;
int err;
u32 result;
asus = kzalloc(sizeof(struct asus_wmi), GFP_KERNEL);
if (!asus)
return -ENOMEM;
asus->driver = wdrv;
asus->platform_device = pdev;
wdrv->platform_device = pdev;
platform_set_drvdata(asus->platform_device, asus);
if (wdrv->detect_quirks)
wdrv->detect_quirks(asus->driver);
err = asus_wmi_platform_init(asus);
if (err)
goto fail_platform;
/* ensure defaults for tunables */
asus->ppt_pl2_sppt = 5;
asus->ppt_pl1_spl = 5;
asus->ppt_apu_sppt = 5;
asus->ppt_platform_sppt = 5;
asus->ppt_fppt = 5;
asus->nv_dynamic_boost = 5;
asus->nv_temp_target = 75;
asus->egpu_enable_available = asus_wmi_dev_is_present(asus, ASUS_WMI_DEVID_EGPU);
asus->dgpu_disable_available = asus_wmi_dev_is_present(asus, ASUS_WMI_DEVID_DGPU);
asus->kbd_rgb_state_available = asus_wmi_dev_is_present(asus, ASUS_WMI_DEVID_TUF_RGB_STATE);
asus->ally_mcu_usb_switch = acpi_has_method(NULL, ASUS_USB0_PWR_EC0_CSEE)
&& dmi_match(DMI_BOARD_NAME, "RC71L");
if (asus_wmi_dev_is_present(asus, ASUS_WMI_DEVID_MINI_LED_MODE))
asus->mini_led_dev_id = ASUS_WMI_DEVID_MINI_LED_MODE;
else if (asus_wmi_dev_is_present(asus, ASUS_WMI_DEVID_MINI_LED_MODE2))
asus->mini_led_dev_id = ASUS_WMI_DEVID_MINI_LED_MODE2;
if (asus_wmi_dev_is_present(asus, ASUS_WMI_DEVID_GPU_MUX))
asus->gpu_mux_dev = ASUS_WMI_DEVID_GPU_MUX;
else if (asus_wmi_dev_is_present(asus, ASUS_WMI_DEVID_GPU_MUX_VIVO))
asus->gpu_mux_dev = ASUS_WMI_DEVID_GPU_MUX_VIVO;
if (asus_wmi_dev_is_present(asus, ASUS_WMI_DEVID_TUF_RGB_MODE))
asus->kbd_rgb_dev = ASUS_WMI_DEVID_TUF_RGB_MODE;
else if (asus_wmi_dev_is_present(asus, ASUS_WMI_DEVID_TUF_RGB_MODE2))
asus->kbd_rgb_dev = ASUS_WMI_DEVID_TUF_RGB_MODE2;
err = fan_boost_mode_check_present(asus);
if (err)
goto fail_fan_boost_mode;
err = throttle_thermal_policy_check_present(asus);
if (err)
goto fail_throttle_thermal_policy;
else
throttle_thermal_policy_set_default(asus);
err = platform_profile_setup(asus);
if (err)
goto fail_platform_profile_setup;
err = asus_wmi_sysfs_init(asus->platform_device);
if (err)
goto fail_sysfs;
err = asus_wmi_input_init(asus);
if (err)
goto fail_input;
err = asus_wmi_fan_init(asus); /* probably no problems on error */
err = asus_wmi_hwmon_init(asus);
if (err)
goto fail_hwmon;
err = asus_wmi_custom_fan_curve_init(asus);
if (err)
goto fail_custom_fan_curve;
err = asus_wmi_led_init(asus);
if (err)
goto fail_leds;
asus_wmi_get_devstate(asus, ASUS_WMI_DEVID_WLAN, &result);
if (result & (ASUS_WMI_DSTS_PRESENCE_BIT | ASUS_WMI_DSTS_USER_BIT))
asus->driver->wlan_ctrl_by_user = 1;
if (!(asus->driver->wlan_ctrl_by_user && ashs_present())) {
err = asus_wmi_rfkill_init(asus);
if (err)
goto fail_rfkill;
}
if (asus->driver->quirks->wmi_force_als_set)
asus_wmi_set_als();
if (asus->driver->quirks->xusb2pr)
asus_wmi_set_xusb2pr(asus);
if (acpi_video_get_backlight_type() == acpi_backlight_vendor) {
err = asus_wmi_backlight_init(asus);
if (err && err != -ENODEV)
goto fail_backlight;
} else if (asus->driver->quirks->wmi_backlight_set_devstate)
err = asus_wmi_set_devstate(ASUS_WMI_DEVID_BACKLIGHT, 2, NULL);
if (asus_wmi_dev_is_present(asus, ASUS_WMI_DEVID_SCREENPAD_LIGHT)) {
err = asus_screenpad_init(asus);
if (err && err != -ENODEV)
goto fail_screenpad;
}
if (asus_wmi_has_fnlock_key(asus)) {
asus->fnlock_locked = fnlock_default;
asus_wmi_fnlock_update(asus);
}
status = wmi_install_notify_handler(asus->driver->event_guid,
asus_wmi_notify, asus);
if (ACPI_FAILURE(status)) {
pr_err("Unable to register notify handler - %d\n", status);
err = -ENODEV;
goto fail_wmi_handler;
}
if (asus->driver->i8042_filter) {
err = i8042_install_filter(asus->driver->i8042_filter);
if (err)
pr_warn("Unable to install key filter - %d\n", err);
}
asus_wmi_battery_init(asus);
asus_wmi_debugfs_init(asus);
return 0;
fail_wmi_handler:
asus_wmi_backlight_exit(asus);
fail_backlight:
asus_wmi_rfkill_exit(asus);
fail_screenpad:
asus_screenpad_exit(asus);
fail_rfkill:
asus_wmi_led_exit(asus);
fail_leds:
fail_hwmon:
asus_wmi_input_exit(asus);
fail_input:
asus_wmi_sysfs_exit(asus->platform_device);
fail_sysfs:
fail_throttle_thermal_policy:
fail_custom_fan_curve:
fail_platform_profile_setup:
if (asus->platform_profile_support)
platform_profile_remove();
fail_fan_boost_mode:
fail_platform:
kfree(asus);
return err;
}
static void asus_wmi_remove(struct platform_device *device)
{
struct asus_wmi *asus;
asus = platform_get_drvdata(device);
if (asus->driver->i8042_filter)
i8042_remove_filter(asus->driver->i8042_filter);
wmi_remove_notify_handler(asus->driver->event_guid);
asus_wmi_backlight_exit(asus);
asus_screenpad_exit(asus);
asus_wmi_input_exit(asus);
asus_wmi_led_exit(asus);
asus_wmi_rfkill_exit(asus);
asus_wmi_debugfs_exit(asus);
asus_wmi_sysfs_exit(asus->platform_device);
asus_fan_set_auto(asus);
throttle_thermal_policy_set_default(asus);
asus_wmi_battery_exit(asus);
if (asus->platform_profile_support)
platform_profile_remove();
kfree(asus);
}
/* Platform driver - hibernate/resume callbacks *******************************/
static int asus_hotk_thaw(struct device *device)
{
struct asus_wmi *asus = dev_get_drvdata(device);
if (asus->wlan.rfkill) {
bool wlan;
/*
* Work around bios bug - acpi _PTS turns off the wireless led
* during suspend. Normally it restores it on resume, but
* we should kick it ourselves in case hibernation is aborted.
*/
wlan = asus_wmi_get_devstate_simple(asus, ASUS_WMI_DEVID_WLAN);
asus_wmi_set_devstate(ASUS_WMI_DEVID_WLAN, wlan, NULL);
}
return 0;
}
static int asus_hotk_resume(struct device *device)
{
struct asus_wmi *asus = dev_get_drvdata(device);
if (!IS_ERR_OR_NULL(asus->kbd_led.dev))
kbd_led_update(asus);
if (asus_wmi_has_fnlock_key(asus))
asus_wmi_fnlock_update(asus);
asus_wmi_tablet_mode_get_state(asus);
return 0;
}
static int asus_hotk_resume_early(struct device *device)
{
struct asus_wmi *asus = dev_get_drvdata(device);
if (asus->ally_mcu_usb_switch) {
/* sleep required to prevent USB0 being yanked then reappearing rapidly */
if (ACPI_FAILURE(acpi_execute_simple_method(NULL, ASUS_USB0_PWR_EC0_CSEE, 0xB8)))
dev_err(device, "ROG Ally MCU failed to connect USB dev\n");
else
msleep(ASUS_USB0_PWR_EC0_CSEE_WAIT);
}
return 0;
}
static int asus_hotk_prepare(struct device *device)
{
struct asus_wmi *asus = dev_get_drvdata(device);
if (asus->ally_mcu_usb_switch) {
/* sleep required to ensure USB0 is disabled before sleep continues */
if (ACPI_FAILURE(acpi_execute_simple_method(NULL, ASUS_USB0_PWR_EC0_CSEE, 0xB7)))
dev_err(device, "ROG Ally MCU failed to disconnect USB dev\n");
else
msleep(ASUS_USB0_PWR_EC0_CSEE_WAIT);
}
return 0;
}
static int asus_hotk_restore(struct device *device)
{
struct asus_wmi *asus = dev_get_drvdata(device);
int bl;
/* Refresh both wlan rfkill state and pci hotplug */
if (asus->wlan.rfkill)
asus_rfkill_hotplug(asus);
if (asus->bluetooth.rfkill) {
bl = !asus_wmi_get_devstate_simple(asus,
ASUS_WMI_DEVID_BLUETOOTH);
rfkill_set_sw_state(asus->bluetooth.rfkill, bl);
}
if (asus->wimax.rfkill) {
bl = !asus_wmi_get_devstate_simple(asus, ASUS_WMI_DEVID_WIMAX);
rfkill_set_sw_state(asus->wimax.rfkill, bl);
}
if (asus->wwan3g.rfkill) {
bl = !asus_wmi_get_devstate_simple(asus, ASUS_WMI_DEVID_WWAN3G);
rfkill_set_sw_state(asus->wwan3g.rfkill, bl);
}
if (asus->gps.rfkill) {
bl = !asus_wmi_get_devstate_simple(asus, ASUS_WMI_DEVID_GPS);
rfkill_set_sw_state(asus->gps.rfkill, bl);
}
if (asus->uwb.rfkill) {
bl = !asus_wmi_get_devstate_simple(asus, ASUS_WMI_DEVID_UWB);
rfkill_set_sw_state(asus->uwb.rfkill, bl);
}
if (!IS_ERR_OR_NULL(asus->kbd_led.dev))
kbd_led_update(asus);
if (asus_wmi_has_fnlock_key(asus))
asus_wmi_fnlock_update(asus);
asus_wmi_tablet_mode_get_state(asus);
return 0;
}
static const struct dev_pm_ops asus_pm_ops = {
.thaw = asus_hotk_thaw,
.restore = asus_hotk_restore,
.resume = asus_hotk_resume,
.resume_early = asus_hotk_resume_early,
.prepare = asus_hotk_prepare,
};
/* Registration ***************************************************************/
static int asus_wmi_probe(struct platform_device *pdev)
{
struct platform_driver *pdrv = to_platform_driver(pdev->dev.driver);
struct asus_wmi_driver *wdrv = to_asus_wmi_driver(pdrv);
int ret;
if (!wmi_has_guid(ASUS_WMI_MGMT_GUID)) {
pr_warn("ASUS Management GUID not found\n");
return -ENODEV;
}
if (wdrv->event_guid && !wmi_has_guid(wdrv->event_guid)) {
pr_warn("ASUS Event GUID not found\n");
return -ENODEV;
}
if (wdrv->probe) {
ret = wdrv->probe(pdev);
if (ret)
return ret;
}
return asus_wmi_add(pdev);
}
static bool used;
int __init_or_module asus_wmi_register_driver(struct asus_wmi_driver *driver)
{
struct platform_driver *platform_driver;
struct platform_device *platform_device;
if (used)
return -EBUSY;
platform_driver = &driver->platform_driver;
platform_driver->remove_new = asus_wmi_remove;
platform_driver->driver.owner = driver->owner;
platform_driver->driver.name = driver->name;
platform_driver->driver.pm = &asus_pm_ops;
platform_device = platform_create_bundle(platform_driver,
asus_wmi_probe,
NULL, 0, NULL, 0);
if (IS_ERR(platform_device))
return PTR_ERR(platform_device);
used = true;
return 0;
}
EXPORT_SYMBOL_GPL(asus_wmi_register_driver);
void asus_wmi_unregister_driver(struct asus_wmi_driver *driver)
{
platform_device_unregister(driver->platform_device);
platform_driver_unregister(&driver->platform_driver);
used = false;
}
EXPORT_SYMBOL_GPL(asus_wmi_unregister_driver);
static int __init asus_wmi_init(void)
{
pr_info("ASUS WMI generic driver loaded\n");
return 0;
}
static void __exit asus_wmi_exit(void)
{
pr_info("ASUS WMI generic driver unloaded\n");
}
module_init(asus_wmi_init);
module_exit(asus_wmi_exit);