linux/net/core/flow_dissector.c
Sasha Neftin 75ad80ed88 net/core: Fix ETH_P_1588 flow dissector
When a PTP ethernet raw frame with a size of more than 256 bytes followed
by a 0xff pattern is sent to __skb_flow_dissect, nhoff value calculation
is wrong. For example: hdr->message_length takes the wrong value (0xffff)
and it does not replicate real header length. In this case, 'nhoff' value
was overridden and the PTP header was badly dissected. This leads to a
kernel crash.

net/core: flow_dissector
net/core flow dissector nhoff = 0x0000000e
net/core flow dissector hdr->message_length = 0x0000ffff
net/core flow dissector nhoff = 0x0001000d (u16 overflow)
...
skb linear:   00000000: 00 a0 c9 00 00 00 00 a0 c9 00 00 00 88
skb frag:     00000000: f7 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

Using the size of the ptp_header struct will allow the corrected
calculation of the nhoff value.

net/core flow dissector nhoff = 0x0000000e
net/core flow dissector nhoff = 0x00000030 (sizeof ptp_header)
...
skb linear:   00000000: 00 a0 c9 00 00 00 00 a0 c9 00 00 00 88 f7 ff ff
skb linear:   00000010: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
skb linear:   00000020: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
skb frag:     00000000: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

Kernel trace:
[   74.984279] ------------[ cut here ]------------
[   74.989471] kernel BUG at include/linux/skbuff.h:2440!
[   74.995237] invalid opcode: 0000 [#1] PREEMPT SMP NOPTI
[   75.001098] CPU: 4 PID: 0 Comm: swapper/4 Tainted: G     U            5.15.85-intel-ese-standard-lts #1
[   75.011629] Hardware name: Intel Corporation A-Island (CPU:AlderLake)/A-Island (ID:06), BIOS SB_ADLP.01.01.00.01.03.008.D-6A9D9E73-dirty Mar 30 2023
[   75.026507] RIP: 0010:eth_type_trans+0xd0/0x130
[   75.031594] Code: 03 88 47 78 eb c7 8b 47 68 2b 47 6c 48 8b 97 c0 00 00 00 83 f8 01 7e 1b 48 85 d2 74 06 66 83 3a ff 74 09 b8 00 04 00 00 eb ab <0f> 0b b8 00 01 00 00 eb a2 48 85 ff 74 eb 48 8d 54 24 06 31 f6 b9
[   75.052612] RSP: 0018:ffff9948c0228de0 EFLAGS: 00010297
[   75.058473] RAX: 00000000000003f2 RBX: ffff8e47047dc300 RCX: 0000000000001003
[   75.066462] RDX: ffff8e4e8c9ea040 RSI: ffff8e4704e0a000 RDI: ffff8e47047dc300
[   75.074458] RBP: ffff8e4704e2acc0 R08: 00000000000003f3 R09: 0000000000000800
[   75.082466] R10: 000000000000000d R11: ffff9948c0228dec R12: ffff8e4715e4e010
[   75.090461] R13: ffff9948c0545018 R14: 0000000000000001 R15: 0000000000000800
[   75.098464] FS:  0000000000000000(0000) GS:ffff8e4e8fb00000(0000) knlGS:0000000000000000
[   75.107530] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[   75.113982] CR2: 00007f5eb35934a0 CR3: 0000000150e0a002 CR4: 0000000000770ee0
[   75.121980] PKRU: 55555554
[   75.125035] Call Trace:
[   75.127792]  <IRQ>
[   75.130063]  ? eth_get_headlen+0xa4/0xc0
[   75.134472]  igc_process_skb_fields+0xcd/0x150
[   75.139461]  igc_poll+0xc80/0x17b0
[   75.143272]  __napi_poll+0x27/0x170
[   75.147192]  net_rx_action+0x234/0x280
[   75.151409]  __do_softirq+0xef/0x2f4
[   75.155424]  irq_exit_rcu+0xc7/0x110
[   75.159432]  common_interrupt+0xb8/0xd0
[   75.163748]  </IRQ>
[   75.166112]  <TASK>
[   75.168473]  asm_common_interrupt+0x22/0x40
[   75.173175] RIP: 0010:cpuidle_enter_state+0xe2/0x350
[   75.178749] Code: 85 c0 0f 8f 04 02 00 00 31 ff e8 39 6c 67 ff 45 84 ff 74 12 9c 58 f6 c4 02 0f 85 50 02 00 00 31 ff e8 52 b0 6d ff fb 45 85 f6 <0f> 88 b1 00 00 00 49 63 ce 4c 2b 2c 24 48 89 c8 48 6b d1 68 48 c1
[   75.199757] RSP: 0018:ffff9948c013bea8 EFLAGS: 00000202
[   75.205614] RAX: ffff8e4e8fb00000 RBX: ffffb948bfd23900 RCX: 000000000000001f
[   75.213619] RDX: 0000000000000004 RSI: ffffffff94206161 RDI: ffffffff94212e20
[   75.221620] RBP: 0000000000000004 R08: 000000117568973a R09: 0000000000000001
[   75.229622] R10: 000000000000afc8 R11: ffff8e4e8fb29ce4 R12: ffffffff945ae980
[   75.237628] R13: 000000117568973a R14: 0000000000000004 R15: 0000000000000000
[   75.245635]  ? cpuidle_enter_state+0xc7/0x350
[   75.250518]  cpuidle_enter+0x29/0x40
[   75.254539]  do_idle+0x1d9/0x260
[   75.258166]  cpu_startup_entry+0x19/0x20
[   75.262582]  secondary_startup_64_no_verify+0xc2/0xcb
[   75.268259]  </TASK>
[   75.270721] Modules linked in: 8021q snd_sof_pci_intel_tgl snd_sof_intel_hda_common tpm_crb snd_soc_hdac_hda snd_sof_intel_hda snd_hda_ext_core snd_sof_pci snd_sof snd_sof_xtensa_dsp snd_soc_acpi_intel_match snd_soc_acpi snd_soc_core snd_compress iTCO_wdt ac97_bus intel_pmc_bxt mei_hdcp iTCO_vendor_support snd_hda_codec_hdmi pmt_telemetry intel_pmc_core pmt_class snd_hda_intel x86_pkg_temp_thermal snd_intel_dspcfg snd_hda_codec snd_hda_core kvm_intel snd_pcm snd_timer kvm snd mei_me soundcore tpm_tis irqbypass i2c_i801 mei tpm_tis_core pcspkr intel_rapl_msr tpm i2c_smbus intel_pmt thermal sch_fq_codel uio uhid i915 drm_buddy video drm_display_helper drm_kms_helper syscopyarea sysfillrect sysimgblt fb_sys_fops ttm fuse configfs
[   75.342736] ---[ end trace 3785f9f360400e3a ]---
[   75.347913] RIP: 0010:eth_type_trans+0xd0/0x130
[   75.352984] Code: 03 88 47 78 eb c7 8b 47 68 2b 47 6c 48 8b 97 c0 00 00 00 83 f8 01 7e 1b 48 85 d2 74 06 66 83 3a ff 74 09 b8 00 04 00 00 eb ab <0f> 0b b8 00 01 00 00 eb a2 48 85 ff 74 eb 48 8d 54 24 06 31 f6 b9
[   75.373994] RSP: 0018:ffff9948c0228de0 EFLAGS: 00010297
[   75.379860] RAX: 00000000000003f2 RBX: ffff8e47047dc300 RCX: 0000000000001003
[   75.387856] RDX: ffff8e4e8c9ea040 RSI: ffff8e4704e0a000 RDI: ffff8e47047dc300
[   75.395864] RBP: ffff8e4704e2acc0 R08: 00000000000003f3 R09: 0000000000000800
[   75.403857] R10: 000000000000000d R11: ffff9948c0228dec R12: ffff8e4715e4e010
[   75.411863] R13: ffff9948c0545018 R14: 0000000000000001 R15: 0000000000000800
[   75.419875] FS:  0000000000000000(0000) GS:ffff8e4e8fb00000(0000) knlGS:0000000000000000
[   75.428946] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[   75.435403] CR2: 00007f5eb35934a0 CR3: 0000000150e0a002 CR4: 0000000000770ee0
[   75.443410] PKRU: 55555554
[   75.446477] Kernel panic - not syncing: Fatal exception in interrupt
[   75.453738] Kernel Offset: 0x11c00000 from 0xffffffff81000000 (relocation range: 0xffffffff80000000-0xffffffffbfffffff)
[   75.465794] ---[ end Kernel panic - not syncing: Fatal exception in interrupt ]---

Fixes: 4f1cc51f3488 ("net: flow_dissector: Parse PTP L2 packet header")
Signed-off-by: Sasha Neftin <sasha.neftin@intel.com>
Reviewed-by: Jiri Pirko <jiri@nvidia.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2023-09-15 10:40:04 +01:00

2054 lines
55 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
#include <linux/kernel.h>
#include <linux/skbuff.h>
#include <linux/export.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/if_vlan.h>
#include <linux/filter.h>
#include <net/dsa.h>
#include <net/dst_metadata.h>
#include <net/ip.h>
#include <net/ipv6.h>
#include <net/gre.h>
#include <net/pptp.h>
#include <net/tipc.h>
#include <linux/igmp.h>
#include <linux/icmp.h>
#include <linux/sctp.h>
#include <linux/dccp.h>
#include <linux/if_tunnel.h>
#include <linux/if_pppox.h>
#include <linux/ppp_defs.h>
#include <linux/stddef.h>
#include <linux/if_ether.h>
#include <linux/if_hsr.h>
#include <linux/mpls.h>
#include <linux/tcp.h>
#include <linux/ptp_classify.h>
#include <net/flow_dissector.h>
#include <net/pkt_cls.h>
#include <scsi/fc/fc_fcoe.h>
#include <uapi/linux/batadv_packet.h>
#include <linux/bpf.h>
#if IS_ENABLED(CONFIG_NF_CONNTRACK)
#include <net/netfilter/nf_conntrack_core.h>
#include <net/netfilter/nf_conntrack_labels.h>
#endif
#include <linux/bpf-netns.h>
static void dissector_set_key(struct flow_dissector *flow_dissector,
enum flow_dissector_key_id key_id)
{
flow_dissector->used_keys |= (1ULL << key_id);
}
void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
const struct flow_dissector_key *key,
unsigned int key_count)
{
unsigned int i;
memset(flow_dissector, 0, sizeof(*flow_dissector));
for (i = 0; i < key_count; i++, key++) {
/* User should make sure that every key target offset is within
* boundaries of unsigned short.
*/
BUG_ON(key->offset > USHRT_MAX);
BUG_ON(dissector_uses_key(flow_dissector,
key->key_id));
dissector_set_key(flow_dissector, key->key_id);
flow_dissector->offset[key->key_id] = key->offset;
}
/* Ensure that the dissector always includes control and basic key.
* That way we are able to avoid handling lack of these in fast path.
*/
BUG_ON(!dissector_uses_key(flow_dissector,
FLOW_DISSECTOR_KEY_CONTROL));
BUG_ON(!dissector_uses_key(flow_dissector,
FLOW_DISSECTOR_KEY_BASIC));
}
EXPORT_SYMBOL(skb_flow_dissector_init);
#ifdef CONFIG_BPF_SYSCALL
int flow_dissector_bpf_prog_attach_check(struct net *net,
struct bpf_prog *prog)
{
enum netns_bpf_attach_type type = NETNS_BPF_FLOW_DISSECTOR;
if (net == &init_net) {
/* BPF flow dissector in the root namespace overrides
* any per-net-namespace one. When attaching to root,
* make sure we don't have any BPF program attached
* to the non-root namespaces.
*/
struct net *ns;
for_each_net(ns) {
if (ns == &init_net)
continue;
if (rcu_access_pointer(ns->bpf.run_array[type]))
return -EEXIST;
}
} else {
/* Make sure root flow dissector is not attached
* when attaching to the non-root namespace.
*/
if (rcu_access_pointer(init_net.bpf.run_array[type]))
return -EEXIST;
}
return 0;
}
#endif /* CONFIG_BPF_SYSCALL */
/**
* __skb_flow_get_ports - extract the upper layer ports and return them
* @skb: sk_buff to extract the ports from
* @thoff: transport header offset
* @ip_proto: protocol for which to get port offset
* @data: raw buffer pointer to the packet, if NULL use skb->data
* @hlen: packet header length, if @data is NULL use skb_headlen(skb)
*
* The function will try to retrieve the ports at offset thoff + poff where poff
* is the protocol port offset returned from proto_ports_offset
*/
__be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
const void *data, int hlen)
{
int poff = proto_ports_offset(ip_proto);
if (!data) {
data = skb->data;
hlen = skb_headlen(skb);
}
if (poff >= 0) {
__be32 *ports, _ports;
ports = __skb_header_pointer(skb, thoff + poff,
sizeof(_ports), data, hlen, &_ports);
if (ports)
return *ports;
}
return 0;
}
EXPORT_SYMBOL(__skb_flow_get_ports);
static bool icmp_has_id(u8 type)
{
switch (type) {
case ICMP_ECHO:
case ICMP_ECHOREPLY:
case ICMP_TIMESTAMP:
case ICMP_TIMESTAMPREPLY:
case ICMPV6_ECHO_REQUEST:
case ICMPV6_ECHO_REPLY:
return true;
}
return false;
}
/**
* skb_flow_get_icmp_tci - extract ICMP(6) Type, Code and Identifier fields
* @skb: sk_buff to extract from
* @key_icmp: struct flow_dissector_key_icmp to fill
* @data: raw buffer pointer to the packet
* @thoff: offset to extract at
* @hlen: packet header length
*/
void skb_flow_get_icmp_tci(const struct sk_buff *skb,
struct flow_dissector_key_icmp *key_icmp,
const void *data, int thoff, int hlen)
{
struct icmphdr *ih, _ih;
ih = __skb_header_pointer(skb, thoff, sizeof(_ih), data, hlen, &_ih);
if (!ih)
return;
key_icmp->type = ih->type;
key_icmp->code = ih->code;
/* As we use 0 to signal that the Id field is not present,
* avoid confusion with packets without such field
*/
if (icmp_has_id(ih->type))
key_icmp->id = ih->un.echo.id ? ntohs(ih->un.echo.id) : 1;
else
key_icmp->id = 0;
}
EXPORT_SYMBOL(skb_flow_get_icmp_tci);
/* If FLOW_DISSECTOR_KEY_ICMP is set, dissect an ICMP packet
* using skb_flow_get_icmp_tci().
*/
static void __skb_flow_dissect_icmp(const struct sk_buff *skb,
struct flow_dissector *flow_dissector,
void *target_container, const void *data,
int thoff, int hlen)
{
struct flow_dissector_key_icmp *key_icmp;
if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ICMP))
return;
key_icmp = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_ICMP,
target_container);
skb_flow_get_icmp_tci(skb, key_icmp, data, thoff, hlen);
}
static void __skb_flow_dissect_ah(const struct sk_buff *skb,
struct flow_dissector *flow_dissector,
void *target_container, const void *data,
int nhoff, int hlen)
{
struct flow_dissector_key_ipsec *key_ah;
struct ip_auth_hdr _hdr, *hdr;
if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IPSEC))
return;
hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
if (!hdr)
return;
key_ah = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_IPSEC,
target_container);
key_ah->spi = hdr->spi;
}
static void __skb_flow_dissect_esp(const struct sk_buff *skb,
struct flow_dissector *flow_dissector,
void *target_container, const void *data,
int nhoff, int hlen)
{
struct flow_dissector_key_ipsec *key_esp;
struct ip_esp_hdr _hdr, *hdr;
if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IPSEC))
return;
hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
if (!hdr)
return;
key_esp = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_IPSEC,
target_container);
key_esp->spi = hdr->spi;
}
static void __skb_flow_dissect_l2tpv3(const struct sk_buff *skb,
struct flow_dissector *flow_dissector,
void *target_container, const void *data,
int nhoff, int hlen)
{
struct flow_dissector_key_l2tpv3 *key_l2tpv3;
struct {
__be32 session_id;
} *hdr, _hdr;
if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_L2TPV3))
return;
hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
if (!hdr)
return;
key_l2tpv3 = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_L2TPV3,
target_container);
key_l2tpv3->session_id = hdr->session_id;
}
void skb_flow_dissect_meta(const struct sk_buff *skb,
struct flow_dissector *flow_dissector,
void *target_container)
{
struct flow_dissector_key_meta *meta;
if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_META))
return;
meta = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_META,
target_container);
meta->ingress_ifindex = skb->skb_iif;
#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
if (tc_skb_ext_tc_enabled()) {
struct tc_skb_ext *ext;
ext = skb_ext_find(skb, TC_SKB_EXT);
if (ext)
meta->l2_miss = ext->l2_miss;
}
#endif
}
EXPORT_SYMBOL(skb_flow_dissect_meta);
static void
skb_flow_dissect_set_enc_addr_type(enum flow_dissector_key_id type,
struct flow_dissector *flow_dissector,
void *target_container)
{
struct flow_dissector_key_control *ctrl;
if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_CONTROL))
return;
ctrl = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_ENC_CONTROL,
target_container);
ctrl->addr_type = type;
}
void
skb_flow_dissect_ct(const struct sk_buff *skb,
struct flow_dissector *flow_dissector,
void *target_container, u16 *ctinfo_map,
size_t mapsize, bool post_ct, u16 zone)
{
#if IS_ENABLED(CONFIG_NF_CONNTRACK)
struct flow_dissector_key_ct *key;
enum ip_conntrack_info ctinfo;
struct nf_conn_labels *cl;
struct nf_conn *ct;
if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_CT))
return;
ct = nf_ct_get(skb, &ctinfo);
if (!ct && !post_ct)
return;
key = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_CT,
target_container);
if (!ct) {
key->ct_state = TCA_FLOWER_KEY_CT_FLAGS_TRACKED |
TCA_FLOWER_KEY_CT_FLAGS_INVALID;
key->ct_zone = zone;
return;
}
if (ctinfo < mapsize)
key->ct_state = ctinfo_map[ctinfo];
#if IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES)
key->ct_zone = ct->zone.id;
#endif
#if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
key->ct_mark = READ_ONCE(ct->mark);
#endif
cl = nf_ct_labels_find(ct);
if (cl)
memcpy(key->ct_labels, cl->bits, sizeof(key->ct_labels));
#endif /* CONFIG_NF_CONNTRACK */
}
EXPORT_SYMBOL(skb_flow_dissect_ct);
void
skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
struct flow_dissector *flow_dissector,
void *target_container)
{
struct ip_tunnel_info *info;
struct ip_tunnel_key *key;
/* A quick check to see if there might be something to do. */
if (!dissector_uses_key(flow_dissector,
FLOW_DISSECTOR_KEY_ENC_KEYID) &&
!dissector_uses_key(flow_dissector,
FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS) &&
!dissector_uses_key(flow_dissector,
FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS) &&
!dissector_uses_key(flow_dissector,
FLOW_DISSECTOR_KEY_ENC_CONTROL) &&
!dissector_uses_key(flow_dissector,
FLOW_DISSECTOR_KEY_ENC_PORTS) &&
!dissector_uses_key(flow_dissector,
FLOW_DISSECTOR_KEY_ENC_IP) &&
!dissector_uses_key(flow_dissector,
FLOW_DISSECTOR_KEY_ENC_OPTS))
return;
info = skb_tunnel_info(skb);
if (!info)
return;
key = &info->key;
switch (ip_tunnel_info_af(info)) {
case AF_INET:
skb_flow_dissect_set_enc_addr_type(FLOW_DISSECTOR_KEY_IPV4_ADDRS,
flow_dissector,
target_container);
if (dissector_uses_key(flow_dissector,
FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS)) {
struct flow_dissector_key_ipv4_addrs *ipv4;
ipv4 = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS,
target_container);
ipv4->src = key->u.ipv4.src;
ipv4->dst = key->u.ipv4.dst;
}
break;
case AF_INET6:
skb_flow_dissect_set_enc_addr_type(FLOW_DISSECTOR_KEY_IPV6_ADDRS,
flow_dissector,
target_container);
if (dissector_uses_key(flow_dissector,
FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS)) {
struct flow_dissector_key_ipv6_addrs *ipv6;
ipv6 = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS,
target_container);
ipv6->src = key->u.ipv6.src;
ipv6->dst = key->u.ipv6.dst;
}
break;
}
if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
struct flow_dissector_key_keyid *keyid;
keyid = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_ENC_KEYID,
target_container);
keyid->keyid = tunnel_id_to_key32(key->tun_id);
}
if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_PORTS)) {
struct flow_dissector_key_ports *tp;
tp = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_ENC_PORTS,
target_container);
tp->src = key->tp_src;
tp->dst = key->tp_dst;
}
if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_IP)) {
struct flow_dissector_key_ip *ip;
ip = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_ENC_IP,
target_container);
ip->tos = key->tos;
ip->ttl = key->ttl;
}
if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_OPTS)) {
struct flow_dissector_key_enc_opts *enc_opt;
enc_opt = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_ENC_OPTS,
target_container);
if (info->options_len) {
enc_opt->len = info->options_len;
ip_tunnel_info_opts_get(enc_opt->data, info);
enc_opt->dst_opt_type = info->key.tun_flags &
TUNNEL_OPTIONS_PRESENT;
}
}
}
EXPORT_SYMBOL(skb_flow_dissect_tunnel_info);
void skb_flow_dissect_hash(const struct sk_buff *skb,
struct flow_dissector *flow_dissector,
void *target_container)
{
struct flow_dissector_key_hash *key;
if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_HASH))
return;
key = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_HASH,
target_container);
key->hash = skb_get_hash_raw(skb);
}
EXPORT_SYMBOL(skb_flow_dissect_hash);
static enum flow_dissect_ret
__skb_flow_dissect_mpls(const struct sk_buff *skb,
struct flow_dissector *flow_dissector,
void *target_container, const void *data, int nhoff,
int hlen, int lse_index, bool *entropy_label)
{
struct mpls_label *hdr, _hdr;
u32 entry, label, bos;
if (!dissector_uses_key(flow_dissector,
FLOW_DISSECTOR_KEY_MPLS_ENTROPY) &&
!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS))
return FLOW_DISSECT_RET_OUT_GOOD;
if (lse_index >= FLOW_DIS_MPLS_MAX)
return FLOW_DISSECT_RET_OUT_GOOD;
hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data,
hlen, &_hdr);
if (!hdr)
return FLOW_DISSECT_RET_OUT_BAD;
entry = ntohl(hdr->entry);
label = (entry & MPLS_LS_LABEL_MASK) >> MPLS_LS_LABEL_SHIFT;
bos = (entry & MPLS_LS_S_MASK) >> MPLS_LS_S_SHIFT;
if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS)) {
struct flow_dissector_key_mpls *key_mpls;
struct flow_dissector_mpls_lse *lse;
key_mpls = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_MPLS,
target_container);
lse = &key_mpls->ls[lse_index];
lse->mpls_ttl = (entry & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
lse->mpls_bos = bos;
lse->mpls_tc = (entry & MPLS_LS_TC_MASK) >> MPLS_LS_TC_SHIFT;
lse->mpls_label = label;
dissector_set_mpls_lse(key_mpls, lse_index);
}
if (*entropy_label &&
dissector_uses_key(flow_dissector,
FLOW_DISSECTOR_KEY_MPLS_ENTROPY)) {
struct flow_dissector_key_keyid *key_keyid;
key_keyid = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_MPLS_ENTROPY,
target_container);
key_keyid->keyid = cpu_to_be32(label);
}
*entropy_label = label == MPLS_LABEL_ENTROPY;
return bos ? FLOW_DISSECT_RET_OUT_GOOD : FLOW_DISSECT_RET_PROTO_AGAIN;
}
static enum flow_dissect_ret
__skb_flow_dissect_arp(const struct sk_buff *skb,
struct flow_dissector *flow_dissector,
void *target_container, const void *data,
int nhoff, int hlen)
{
struct flow_dissector_key_arp *key_arp;
struct {
unsigned char ar_sha[ETH_ALEN];
unsigned char ar_sip[4];
unsigned char ar_tha[ETH_ALEN];
unsigned char ar_tip[4];
} *arp_eth, _arp_eth;
const struct arphdr *arp;
struct arphdr _arp;
if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ARP))
return FLOW_DISSECT_RET_OUT_GOOD;
arp = __skb_header_pointer(skb, nhoff, sizeof(_arp), data,
hlen, &_arp);
if (!arp)
return FLOW_DISSECT_RET_OUT_BAD;
if (arp->ar_hrd != htons(ARPHRD_ETHER) ||
arp->ar_pro != htons(ETH_P_IP) ||
arp->ar_hln != ETH_ALEN ||
arp->ar_pln != 4 ||
(arp->ar_op != htons(ARPOP_REPLY) &&
arp->ar_op != htons(ARPOP_REQUEST)))
return FLOW_DISSECT_RET_OUT_BAD;
arp_eth = __skb_header_pointer(skb, nhoff + sizeof(_arp),
sizeof(_arp_eth), data,
hlen, &_arp_eth);
if (!arp_eth)
return FLOW_DISSECT_RET_OUT_BAD;
key_arp = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_ARP,
target_container);
memcpy(&key_arp->sip, arp_eth->ar_sip, sizeof(key_arp->sip));
memcpy(&key_arp->tip, arp_eth->ar_tip, sizeof(key_arp->tip));
/* Only store the lower byte of the opcode;
* this covers ARPOP_REPLY and ARPOP_REQUEST.
*/
key_arp->op = ntohs(arp->ar_op) & 0xff;
ether_addr_copy(key_arp->sha, arp_eth->ar_sha);
ether_addr_copy(key_arp->tha, arp_eth->ar_tha);
return FLOW_DISSECT_RET_OUT_GOOD;
}
static enum flow_dissect_ret
__skb_flow_dissect_cfm(const struct sk_buff *skb,
struct flow_dissector *flow_dissector,
void *target_container, const void *data,
int nhoff, int hlen)
{
struct flow_dissector_key_cfm *key, *hdr, _hdr;
if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_CFM))
return FLOW_DISSECT_RET_OUT_GOOD;
hdr = __skb_header_pointer(skb, nhoff, sizeof(*key), data, hlen, &_hdr);
if (!hdr)
return FLOW_DISSECT_RET_OUT_BAD;
key = skb_flow_dissector_target(flow_dissector, FLOW_DISSECTOR_KEY_CFM,
target_container);
key->mdl_ver = hdr->mdl_ver;
key->opcode = hdr->opcode;
return FLOW_DISSECT_RET_OUT_GOOD;
}
static enum flow_dissect_ret
__skb_flow_dissect_gre(const struct sk_buff *skb,
struct flow_dissector_key_control *key_control,
struct flow_dissector *flow_dissector,
void *target_container, const void *data,
__be16 *p_proto, int *p_nhoff, int *p_hlen,
unsigned int flags)
{
struct flow_dissector_key_keyid *key_keyid;
struct gre_base_hdr *hdr, _hdr;
int offset = 0;
u16 gre_ver;
hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr),
data, *p_hlen, &_hdr);
if (!hdr)
return FLOW_DISSECT_RET_OUT_BAD;
/* Only look inside GRE without routing */
if (hdr->flags & GRE_ROUTING)
return FLOW_DISSECT_RET_OUT_GOOD;
/* Only look inside GRE for version 0 and 1 */
gre_ver = ntohs(hdr->flags & GRE_VERSION);
if (gre_ver > 1)
return FLOW_DISSECT_RET_OUT_GOOD;
*p_proto = hdr->protocol;
if (gre_ver) {
/* Version1 must be PPTP, and check the flags */
if (!(*p_proto == GRE_PROTO_PPP && (hdr->flags & GRE_KEY)))
return FLOW_DISSECT_RET_OUT_GOOD;
}
offset += sizeof(struct gre_base_hdr);
if (hdr->flags & GRE_CSUM)
offset += sizeof_field(struct gre_full_hdr, csum) +
sizeof_field(struct gre_full_hdr, reserved1);
if (hdr->flags & GRE_KEY) {
const __be32 *keyid;
__be32 _keyid;
keyid = __skb_header_pointer(skb, *p_nhoff + offset,
sizeof(_keyid),
data, *p_hlen, &_keyid);
if (!keyid)
return FLOW_DISSECT_RET_OUT_BAD;
if (dissector_uses_key(flow_dissector,
FLOW_DISSECTOR_KEY_GRE_KEYID)) {
key_keyid = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_GRE_KEYID,
target_container);
if (gre_ver == 0)
key_keyid->keyid = *keyid;
else
key_keyid->keyid = *keyid & GRE_PPTP_KEY_MASK;
}
offset += sizeof_field(struct gre_full_hdr, key);
}
if (hdr->flags & GRE_SEQ)
offset += sizeof_field(struct pptp_gre_header, seq);
if (gre_ver == 0) {
if (*p_proto == htons(ETH_P_TEB)) {
const struct ethhdr *eth;
struct ethhdr _eth;
eth = __skb_header_pointer(skb, *p_nhoff + offset,
sizeof(_eth),
data, *p_hlen, &_eth);
if (!eth)
return FLOW_DISSECT_RET_OUT_BAD;
*p_proto = eth->h_proto;
offset += sizeof(*eth);
/* Cap headers that we access via pointers at the
* end of the Ethernet header as our maximum alignment
* at that point is only 2 bytes.
*/
if (NET_IP_ALIGN)
*p_hlen = *p_nhoff + offset;
}
} else { /* version 1, must be PPTP */
u8 _ppp_hdr[PPP_HDRLEN];
u8 *ppp_hdr;
if (hdr->flags & GRE_ACK)
offset += sizeof_field(struct pptp_gre_header, ack);
ppp_hdr = __skb_header_pointer(skb, *p_nhoff + offset,
sizeof(_ppp_hdr),
data, *p_hlen, _ppp_hdr);
if (!ppp_hdr)
return FLOW_DISSECT_RET_OUT_BAD;
switch (PPP_PROTOCOL(ppp_hdr)) {
case PPP_IP:
*p_proto = htons(ETH_P_IP);
break;
case PPP_IPV6:
*p_proto = htons(ETH_P_IPV6);
break;
default:
/* Could probably catch some more like MPLS */
break;
}
offset += PPP_HDRLEN;
}
*p_nhoff += offset;
key_control->flags |= FLOW_DIS_ENCAPSULATION;
if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
return FLOW_DISSECT_RET_OUT_GOOD;
return FLOW_DISSECT_RET_PROTO_AGAIN;
}
/**
* __skb_flow_dissect_batadv() - dissect batman-adv header
* @skb: sk_buff to with the batman-adv header
* @key_control: flow dissectors control key
* @data: raw buffer pointer to the packet, if NULL use skb->data
* @p_proto: pointer used to update the protocol to process next
* @p_nhoff: pointer used to update inner network header offset
* @hlen: packet header length
* @flags: any combination of FLOW_DISSECTOR_F_*
*
* ETH_P_BATMAN packets are tried to be dissected. Only
* &struct batadv_unicast packets are actually processed because they contain an
* inner ethernet header and are usually followed by actual network header. This
* allows the flow dissector to continue processing the packet.
*
* Return: FLOW_DISSECT_RET_PROTO_AGAIN when &struct batadv_unicast was found,
* FLOW_DISSECT_RET_OUT_GOOD when dissector should stop after encapsulation,
* otherwise FLOW_DISSECT_RET_OUT_BAD
*/
static enum flow_dissect_ret
__skb_flow_dissect_batadv(const struct sk_buff *skb,
struct flow_dissector_key_control *key_control,
const void *data, __be16 *p_proto, int *p_nhoff,
int hlen, unsigned int flags)
{
struct {
struct batadv_unicast_packet batadv_unicast;
struct ethhdr eth;
} *hdr, _hdr;
hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr), data, hlen,
&_hdr);
if (!hdr)
return FLOW_DISSECT_RET_OUT_BAD;
if (hdr->batadv_unicast.version != BATADV_COMPAT_VERSION)
return FLOW_DISSECT_RET_OUT_BAD;
if (hdr->batadv_unicast.packet_type != BATADV_UNICAST)
return FLOW_DISSECT_RET_OUT_BAD;
*p_proto = hdr->eth.h_proto;
*p_nhoff += sizeof(*hdr);
key_control->flags |= FLOW_DIS_ENCAPSULATION;
if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
return FLOW_DISSECT_RET_OUT_GOOD;
return FLOW_DISSECT_RET_PROTO_AGAIN;
}
static void
__skb_flow_dissect_tcp(const struct sk_buff *skb,
struct flow_dissector *flow_dissector,
void *target_container, const void *data,
int thoff, int hlen)
{
struct flow_dissector_key_tcp *key_tcp;
struct tcphdr *th, _th;
if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_TCP))
return;
th = __skb_header_pointer(skb, thoff, sizeof(_th), data, hlen, &_th);
if (!th)
return;
if (unlikely(__tcp_hdrlen(th) < sizeof(_th)))
return;
key_tcp = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_TCP,
target_container);
key_tcp->flags = (*(__be16 *) &tcp_flag_word(th) & htons(0x0FFF));
}
static void
__skb_flow_dissect_ports(const struct sk_buff *skb,
struct flow_dissector *flow_dissector,
void *target_container, const void *data,
int nhoff, u8 ip_proto, int hlen)
{
enum flow_dissector_key_id dissector_ports = FLOW_DISSECTOR_KEY_MAX;
struct flow_dissector_key_ports *key_ports;
if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS))
dissector_ports = FLOW_DISSECTOR_KEY_PORTS;
else if (dissector_uses_key(flow_dissector,
FLOW_DISSECTOR_KEY_PORTS_RANGE))
dissector_ports = FLOW_DISSECTOR_KEY_PORTS_RANGE;
if (dissector_ports == FLOW_DISSECTOR_KEY_MAX)
return;
key_ports = skb_flow_dissector_target(flow_dissector,
dissector_ports,
target_container);
key_ports->ports = __skb_flow_get_ports(skb, nhoff, ip_proto,
data, hlen);
}
static void
__skb_flow_dissect_ipv4(const struct sk_buff *skb,
struct flow_dissector *flow_dissector,
void *target_container, const void *data,
const struct iphdr *iph)
{
struct flow_dissector_key_ip *key_ip;
if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP))
return;
key_ip = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_IP,
target_container);
key_ip->tos = iph->tos;
key_ip->ttl = iph->ttl;
}
static void
__skb_flow_dissect_ipv6(const struct sk_buff *skb,
struct flow_dissector *flow_dissector,
void *target_container, const void *data,
const struct ipv6hdr *iph)
{
struct flow_dissector_key_ip *key_ip;
if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP))
return;
key_ip = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_IP,
target_container);
key_ip->tos = ipv6_get_dsfield(iph);
key_ip->ttl = iph->hop_limit;
}
/* Maximum number of protocol headers that can be parsed in
* __skb_flow_dissect
*/
#define MAX_FLOW_DISSECT_HDRS 15
static bool skb_flow_dissect_allowed(int *num_hdrs)
{
++*num_hdrs;
return (*num_hdrs <= MAX_FLOW_DISSECT_HDRS);
}
static void __skb_flow_bpf_to_target(const struct bpf_flow_keys *flow_keys,
struct flow_dissector *flow_dissector,
void *target_container)
{
struct flow_dissector_key_ports *key_ports = NULL;
struct flow_dissector_key_control *key_control;
struct flow_dissector_key_basic *key_basic;
struct flow_dissector_key_addrs *key_addrs;
struct flow_dissector_key_tags *key_tags;
key_control = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_CONTROL,
target_container);
key_control->thoff = flow_keys->thoff;
if (flow_keys->is_frag)
key_control->flags |= FLOW_DIS_IS_FRAGMENT;
if (flow_keys->is_first_frag)
key_control->flags |= FLOW_DIS_FIRST_FRAG;
if (flow_keys->is_encap)
key_control->flags |= FLOW_DIS_ENCAPSULATION;
key_basic = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_BASIC,
target_container);
key_basic->n_proto = flow_keys->n_proto;
key_basic->ip_proto = flow_keys->ip_proto;
if (flow_keys->addr_proto == ETH_P_IP &&
dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
key_addrs = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_IPV4_ADDRS,
target_container);
key_addrs->v4addrs.src = flow_keys->ipv4_src;
key_addrs->v4addrs.dst = flow_keys->ipv4_dst;
key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
} else if (flow_keys->addr_proto == ETH_P_IPV6 &&
dissector_uses_key(flow_dissector,
FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
key_addrs = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_IPV6_ADDRS,
target_container);
memcpy(&key_addrs->v6addrs.src, &flow_keys->ipv6_src,
sizeof(key_addrs->v6addrs.src));
memcpy(&key_addrs->v6addrs.dst, &flow_keys->ipv6_dst,
sizeof(key_addrs->v6addrs.dst));
key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
}
if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS))
key_ports = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_PORTS,
target_container);
else if (dissector_uses_key(flow_dissector,
FLOW_DISSECTOR_KEY_PORTS_RANGE))
key_ports = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_PORTS_RANGE,
target_container);
if (key_ports) {
key_ports->src = flow_keys->sport;
key_ports->dst = flow_keys->dport;
}
if (dissector_uses_key(flow_dissector,
FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
key_tags = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_FLOW_LABEL,
target_container);
key_tags->flow_label = ntohl(flow_keys->flow_label);
}
}
u32 bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
__be16 proto, int nhoff, int hlen, unsigned int flags)
{
struct bpf_flow_keys *flow_keys = ctx->flow_keys;
u32 result;
/* Pass parameters to the BPF program */
memset(flow_keys, 0, sizeof(*flow_keys));
flow_keys->n_proto = proto;
flow_keys->nhoff = nhoff;
flow_keys->thoff = flow_keys->nhoff;
BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_PARSE_1ST_FRAG !=
(int)FLOW_DISSECTOR_F_PARSE_1ST_FRAG);
BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL !=
(int)FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
BUILD_BUG_ON((int)BPF_FLOW_DISSECTOR_F_STOP_AT_ENCAP !=
(int)FLOW_DISSECTOR_F_STOP_AT_ENCAP);
flow_keys->flags = flags;
result = bpf_prog_run_pin_on_cpu(prog, ctx);
flow_keys->nhoff = clamp_t(u16, flow_keys->nhoff, nhoff, hlen);
flow_keys->thoff = clamp_t(u16, flow_keys->thoff,
flow_keys->nhoff, hlen);
return result;
}
static bool is_pppoe_ses_hdr_valid(const struct pppoe_hdr *hdr)
{
return hdr->ver == 1 && hdr->type == 1 && hdr->code == 0;
}
/**
* __skb_flow_dissect - extract the flow_keys struct and return it
* @net: associated network namespace, derived from @skb if NULL
* @skb: sk_buff to extract the flow from, can be NULL if the rest are specified
* @flow_dissector: list of keys to dissect
* @target_container: target structure to put dissected values into
* @data: raw buffer pointer to the packet, if NULL use skb->data
* @proto: protocol for which to get the flow, if @data is NULL use skb->protocol
* @nhoff: network header offset, if @data is NULL use skb_network_offset(skb)
* @hlen: packet header length, if @data is NULL use skb_headlen(skb)
* @flags: flags that control the dissection process, e.g.
* FLOW_DISSECTOR_F_STOP_AT_ENCAP.
*
* The function will try to retrieve individual keys into target specified
* by flow_dissector from either the skbuff or a raw buffer specified by the
* rest parameters.
*
* Caller must take care of zeroing target container memory.
*/
bool __skb_flow_dissect(const struct net *net,
const struct sk_buff *skb,
struct flow_dissector *flow_dissector,
void *target_container, const void *data,
__be16 proto, int nhoff, int hlen, unsigned int flags)
{
struct flow_dissector_key_control *key_control;
struct flow_dissector_key_basic *key_basic;
struct flow_dissector_key_addrs *key_addrs;
struct flow_dissector_key_tags *key_tags;
struct flow_dissector_key_vlan *key_vlan;
enum flow_dissect_ret fdret;
enum flow_dissector_key_id dissector_vlan = FLOW_DISSECTOR_KEY_MAX;
bool mpls_el = false;
int mpls_lse = 0;
int num_hdrs = 0;
u8 ip_proto = 0;
bool ret;
if (!data) {
data = skb->data;
proto = skb_vlan_tag_present(skb) ?
skb->vlan_proto : skb->protocol;
nhoff = skb_network_offset(skb);
hlen = skb_headlen(skb);
#if IS_ENABLED(CONFIG_NET_DSA)
if (unlikely(skb->dev && netdev_uses_dsa(skb->dev) &&
proto == htons(ETH_P_XDSA))) {
struct metadata_dst *md_dst = skb_metadata_dst(skb);
const struct dsa_device_ops *ops;
int offset = 0;
ops = skb->dev->dsa_ptr->tag_ops;
/* Only DSA header taggers break flow dissection */
if (ops->needed_headroom &&
(!md_dst || md_dst->type != METADATA_HW_PORT_MUX)) {
if (ops->flow_dissect)
ops->flow_dissect(skb, &proto, &offset);
else
dsa_tag_generic_flow_dissect(skb,
&proto,
&offset);
hlen -= offset;
nhoff += offset;
}
}
#endif
}
/* It is ensured by skb_flow_dissector_init() that control key will
* be always present.
*/
key_control = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_CONTROL,
target_container);
/* It is ensured by skb_flow_dissector_init() that basic key will
* be always present.
*/
key_basic = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_BASIC,
target_container);
if (skb) {
if (!net) {
if (skb->dev)
net = dev_net(skb->dev);
else if (skb->sk)
net = sock_net(skb->sk);
}
}
WARN_ON_ONCE(!net);
if (net) {
enum netns_bpf_attach_type type = NETNS_BPF_FLOW_DISSECTOR;
struct bpf_prog_array *run_array;
rcu_read_lock();
run_array = rcu_dereference(init_net.bpf.run_array[type]);
if (!run_array)
run_array = rcu_dereference(net->bpf.run_array[type]);
if (run_array) {
struct bpf_flow_keys flow_keys;
struct bpf_flow_dissector ctx = {
.flow_keys = &flow_keys,
.data = data,
.data_end = data + hlen,
};
__be16 n_proto = proto;
struct bpf_prog *prog;
u32 result;
if (skb) {
ctx.skb = skb;
/* we can't use 'proto' in the skb case
* because it might be set to skb->vlan_proto
* which has been pulled from the data
*/
n_proto = skb->protocol;
}
prog = READ_ONCE(run_array->items[0].prog);
result = bpf_flow_dissect(prog, &ctx, n_proto, nhoff,
hlen, flags);
if (result == BPF_FLOW_DISSECTOR_CONTINUE)
goto dissect_continue;
__skb_flow_bpf_to_target(&flow_keys, flow_dissector,
target_container);
rcu_read_unlock();
return result == BPF_OK;
}
dissect_continue:
rcu_read_unlock();
}
if (dissector_uses_key(flow_dissector,
FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
struct ethhdr *eth = eth_hdr(skb);
struct flow_dissector_key_eth_addrs *key_eth_addrs;
key_eth_addrs = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_ETH_ADDRS,
target_container);
memcpy(key_eth_addrs, eth, sizeof(*key_eth_addrs));
}
if (dissector_uses_key(flow_dissector,
FLOW_DISSECTOR_KEY_NUM_OF_VLANS)) {
struct flow_dissector_key_num_of_vlans *key_num_of_vlans;
key_num_of_vlans = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_NUM_OF_VLANS,
target_container);
key_num_of_vlans->num_of_vlans = 0;
}
proto_again:
fdret = FLOW_DISSECT_RET_CONTINUE;
switch (proto) {
case htons(ETH_P_IP): {
const struct iphdr *iph;
struct iphdr _iph;
iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
if (!iph || iph->ihl < 5) {
fdret = FLOW_DISSECT_RET_OUT_BAD;
break;
}
nhoff += iph->ihl * 4;
ip_proto = iph->protocol;
if (dissector_uses_key(flow_dissector,
FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
key_addrs = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_IPV4_ADDRS,
target_container);
memcpy(&key_addrs->v4addrs.src, &iph->saddr,
sizeof(key_addrs->v4addrs.src));
memcpy(&key_addrs->v4addrs.dst, &iph->daddr,
sizeof(key_addrs->v4addrs.dst));
key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
}
__skb_flow_dissect_ipv4(skb, flow_dissector,
target_container, data, iph);
if (ip_is_fragment(iph)) {
key_control->flags |= FLOW_DIS_IS_FRAGMENT;
if (iph->frag_off & htons(IP_OFFSET)) {
fdret = FLOW_DISSECT_RET_OUT_GOOD;
break;
} else {
key_control->flags |= FLOW_DIS_FIRST_FRAG;
if (!(flags &
FLOW_DISSECTOR_F_PARSE_1ST_FRAG)) {
fdret = FLOW_DISSECT_RET_OUT_GOOD;
break;
}
}
}
break;
}
case htons(ETH_P_IPV6): {
const struct ipv6hdr *iph;
struct ipv6hdr _iph;
iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
if (!iph) {
fdret = FLOW_DISSECT_RET_OUT_BAD;
break;
}
ip_proto = iph->nexthdr;
nhoff += sizeof(struct ipv6hdr);
if (dissector_uses_key(flow_dissector,
FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
key_addrs = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_IPV6_ADDRS,
target_container);
memcpy(&key_addrs->v6addrs.src, &iph->saddr,
sizeof(key_addrs->v6addrs.src));
memcpy(&key_addrs->v6addrs.dst, &iph->daddr,
sizeof(key_addrs->v6addrs.dst));
key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
}
if ((dissector_uses_key(flow_dissector,
FLOW_DISSECTOR_KEY_FLOW_LABEL) ||
(flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)) &&
ip6_flowlabel(iph)) {
__be32 flow_label = ip6_flowlabel(iph);
if (dissector_uses_key(flow_dissector,
FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
key_tags = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_FLOW_LABEL,
target_container);
key_tags->flow_label = ntohl(flow_label);
}
if (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL) {
fdret = FLOW_DISSECT_RET_OUT_GOOD;
break;
}
}
__skb_flow_dissect_ipv6(skb, flow_dissector,
target_container, data, iph);
break;
}
case htons(ETH_P_8021AD):
case htons(ETH_P_8021Q): {
const struct vlan_hdr *vlan = NULL;
struct vlan_hdr _vlan;
__be16 saved_vlan_tpid = proto;
if (dissector_vlan == FLOW_DISSECTOR_KEY_MAX &&
skb && skb_vlan_tag_present(skb)) {
proto = skb->protocol;
} else {
vlan = __skb_header_pointer(skb, nhoff, sizeof(_vlan),
data, hlen, &_vlan);
if (!vlan) {
fdret = FLOW_DISSECT_RET_OUT_BAD;
break;
}
proto = vlan->h_vlan_encapsulated_proto;
nhoff += sizeof(*vlan);
}
if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_NUM_OF_VLANS) &&
!(key_control->flags & FLOW_DIS_ENCAPSULATION)) {
struct flow_dissector_key_num_of_vlans *key_nvs;
key_nvs = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_NUM_OF_VLANS,
target_container);
key_nvs->num_of_vlans++;
}
if (dissector_vlan == FLOW_DISSECTOR_KEY_MAX) {
dissector_vlan = FLOW_DISSECTOR_KEY_VLAN;
} else if (dissector_vlan == FLOW_DISSECTOR_KEY_VLAN) {
dissector_vlan = FLOW_DISSECTOR_KEY_CVLAN;
} else {
fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
break;
}
if (dissector_uses_key(flow_dissector, dissector_vlan)) {
key_vlan = skb_flow_dissector_target(flow_dissector,
dissector_vlan,
target_container);
if (!vlan) {
key_vlan->vlan_id = skb_vlan_tag_get_id(skb);
key_vlan->vlan_priority = skb_vlan_tag_get_prio(skb);
} else {
key_vlan->vlan_id = ntohs(vlan->h_vlan_TCI) &
VLAN_VID_MASK;
key_vlan->vlan_priority =
(ntohs(vlan->h_vlan_TCI) &
VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
}
key_vlan->vlan_tpid = saved_vlan_tpid;
key_vlan->vlan_eth_type = proto;
}
fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
break;
}
case htons(ETH_P_PPP_SES): {
struct {
struct pppoe_hdr hdr;
__be16 proto;
} *hdr, _hdr;
u16 ppp_proto;
hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
if (!hdr) {
fdret = FLOW_DISSECT_RET_OUT_BAD;
break;
}
if (!is_pppoe_ses_hdr_valid(&hdr->hdr)) {
fdret = FLOW_DISSECT_RET_OUT_BAD;
break;
}
/* least significant bit of the most significant octet
* indicates if protocol field was compressed
*/
ppp_proto = ntohs(hdr->proto);
if (ppp_proto & 0x0100) {
ppp_proto = ppp_proto >> 8;
nhoff += PPPOE_SES_HLEN - 1;
} else {
nhoff += PPPOE_SES_HLEN;
}
if (ppp_proto == PPP_IP) {
proto = htons(ETH_P_IP);
fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
} else if (ppp_proto == PPP_IPV6) {
proto = htons(ETH_P_IPV6);
fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
} else if (ppp_proto == PPP_MPLS_UC) {
proto = htons(ETH_P_MPLS_UC);
fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
} else if (ppp_proto == PPP_MPLS_MC) {
proto = htons(ETH_P_MPLS_MC);
fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
} else if (ppp_proto_is_valid(ppp_proto)) {
fdret = FLOW_DISSECT_RET_OUT_GOOD;
} else {
fdret = FLOW_DISSECT_RET_OUT_BAD;
break;
}
if (dissector_uses_key(flow_dissector,
FLOW_DISSECTOR_KEY_PPPOE)) {
struct flow_dissector_key_pppoe *key_pppoe;
key_pppoe = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_PPPOE,
target_container);
key_pppoe->session_id = hdr->hdr.sid;
key_pppoe->ppp_proto = htons(ppp_proto);
key_pppoe->type = htons(ETH_P_PPP_SES);
}
break;
}
case htons(ETH_P_TIPC): {
struct tipc_basic_hdr *hdr, _hdr;
hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr),
data, hlen, &_hdr);
if (!hdr) {
fdret = FLOW_DISSECT_RET_OUT_BAD;
break;
}
if (dissector_uses_key(flow_dissector,
FLOW_DISSECTOR_KEY_TIPC)) {
key_addrs = skb_flow_dissector_target(flow_dissector,
FLOW_DISSECTOR_KEY_TIPC,
target_container);
key_addrs->tipckey.key = tipc_hdr_rps_key(hdr);
key_control->addr_type = FLOW_DISSECTOR_KEY_TIPC;
}
fdret = FLOW_DISSECT_RET_OUT_GOOD;
break;
}
case htons(ETH_P_MPLS_UC):
case htons(ETH_P_MPLS_MC):
fdret = __skb_flow_dissect_mpls(skb, flow_dissector,
target_container, data,
nhoff, hlen, mpls_lse,
&mpls_el);
nhoff += sizeof(struct mpls_label);
mpls_lse++;
break;
case htons(ETH_P_FCOE):
if ((hlen - nhoff) < FCOE_HEADER_LEN) {
fdret = FLOW_DISSECT_RET_OUT_BAD;
break;
}
nhoff += FCOE_HEADER_LEN;
fdret = FLOW_DISSECT_RET_OUT_GOOD;
break;
case htons(ETH_P_ARP):
case htons(ETH_P_RARP):
fdret = __skb_flow_dissect_arp(skb, flow_dissector,
target_container, data,
nhoff, hlen);
break;
case htons(ETH_P_BATMAN):
fdret = __skb_flow_dissect_batadv(skb, key_control, data,
&proto, &nhoff, hlen, flags);
break;
case htons(ETH_P_1588): {
struct ptp_header *hdr, _hdr;
hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data,
hlen, &_hdr);
if (!hdr) {
fdret = FLOW_DISSECT_RET_OUT_BAD;
break;
}
nhoff += sizeof(struct ptp_header);
fdret = FLOW_DISSECT_RET_OUT_GOOD;
break;
}
case htons(ETH_P_PRP):
case htons(ETH_P_HSR): {
struct hsr_tag *hdr, _hdr;
hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen,
&_hdr);
if (!hdr) {
fdret = FLOW_DISSECT_RET_OUT_BAD;
break;
}
proto = hdr->encap_proto;
nhoff += HSR_HLEN;
fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
break;
}
case htons(ETH_P_CFM):
fdret = __skb_flow_dissect_cfm(skb, flow_dissector,
target_container, data,
nhoff, hlen);
break;
default:
fdret = FLOW_DISSECT_RET_OUT_BAD;
break;
}
/* Process result of proto processing */
switch (fdret) {
case FLOW_DISSECT_RET_OUT_GOOD:
goto out_good;
case FLOW_DISSECT_RET_PROTO_AGAIN:
if (skb_flow_dissect_allowed(&num_hdrs))
goto proto_again;
goto out_good;
case FLOW_DISSECT_RET_CONTINUE:
case FLOW_DISSECT_RET_IPPROTO_AGAIN:
break;
case FLOW_DISSECT_RET_OUT_BAD:
default:
goto out_bad;
}
ip_proto_again:
fdret = FLOW_DISSECT_RET_CONTINUE;
switch (ip_proto) {
case IPPROTO_GRE:
if (flags & FLOW_DISSECTOR_F_STOP_BEFORE_ENCAP) {
fdret = FLOW_DISSECT_RET_OUT_GOOD;
break;
}
fdret = __skb_flow_dissect_gre(skb, key_control, flow_dissector,
target_container, data,
&proto, &nhoff, &hlen, flags);
break;
case NEXTHDR_HOP:
case NEXTHDR_ROUTING:
case NEXTHDR_DEST: {
u8 _opthdr[2], *opthdr;
if (proto != htons(ETH_P_IPV6))
break;
opthdr = __skb_header_pointer(skb, nhoff, sizeof(_opthdr),
data, hlen, &_opthdr);
if (!opthdr) {
fdret = FLOW_DISSECT_RET_OUT_BAD;
break;
}
ip_proto = opthdr[0];
nhoff += (opthdr[1] + 1) << 3;
fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN;
break;
}
case NEXTHDR_FRAGMENT: {
struct frag_hdr _fh, *fh;
if (proto != htons(ETH_P_IPV6))
break;
fh = __skb_header_pointer(skb, nhoff, sizeof(_fh),
data, hlen, &_fh);
if (!fh) {
fdret = FLOW_DISSECT_RET_OUT_BAD;
break;
}
key_control->flags |= FLOW_DIS_IS_FRAGMENT;
nhoff += sizeof(_fh);
ip_proto = fh->nexthdr;
if (!(fh->frag_off & htons(IP6_OFFSET))) {
key_control->flags |= FLOW_DIS_FIRST_FRAG;
if (flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG) {
fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN;
break;
}
}
fdret = FLOW_DISSECT_RET_OUT_GOOD;
break;
}
case IPPROTO_IPIP:
if (flags & FLOW_DISSECTOR_F_STOP_BEFORE_ENCAP) {
fdret = FLOW_DISSECT_RET_OUT_GOOD;
break;
}
proto = htons(ETH_P_IP);
key_control->flags |= FLOW_DIS_ENCAPSULATION;
if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) {
fdret = FLOW_DISSECT_RET_OUT_GOOD;
break;
}
fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
break;
case IPPROTO_IPV6:
if (flags & FLOW_DISSECTOR_F_STOP_BEFORE_ENCAP) {
fdret = FLOW_DISSECT_RET_OUT_GOOD;
break;
}
proto = htons(ETH_P_IPV6);
key_control->flags |= FLOW_DIS_ENCAPSULATION;
if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) {
fdret = FLOW_DISSECT_RET_OUT_GOOD;
break;
}
fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
break;
case IPPROTO_MPLS:
proto = htons(ETH_P_MPLS_UC);
fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
break;
case IPPROTO_TCP:
__skb_flow_dissect_tcp(skb, flow_dissector, target_container,
data, nhoff, hlen);
break;
case IPPROTO_ICMP:
case IPPROTO_ICMPV6:
__skb_flow_dissect_icmp(skb, flow_dissector, target_container,
data, nhoff, hlen);
break;
case IPPROTO_L2TP:
__skb_flow_dissect_l2tpv3(skb, flow_dissector, target_container,
data, nhoff, hlen);
break;
case IPPROTO_ESP:
__skb_flow_dissect_esp(skb, flow_dissector, target_container,
data, nhoff, hlen);
break;
case IPPROTO_AH:
__skb_flow_dissect_ah(skb, flow_dissector, target_container,
data, nhoff, hlen);
break;
default:
break;
}
if (!(key_control->flags & FLOW_DIS_IS_FRAGMENT))
__skb_flow_dissect_ports(skb, flow_dissector, target_container,
data, nhoff, ip_proto, hlen);
/* Process result of IP proto processing */
switch (fdret) {
case FLOW_DISSECT_RET_PROTO_AGAIN:
if (skb_flow_dissect_allowed(&num_hdrs))
goto proto_again;
break;
case FLOW_DISSECT_RET_IPPROTO_AGAIN:
if (skb_flow_dissect_allowed(&num_hdrs))
goto ip_proto_again;
break;
case FLOW_DISSECT_RET_OUT_GOOD:
case FLOW_DISSECT_RET_CONTINUE:
break;
case FLOW_DISSECT_RET_OUT_BAD:
default:
goto out_bad;
}
out_good:
ret = true;
out:
key_control->thoff = min_t(u16, nhoff, skb ? skb->len : hlen);
key_basic->n_proto = proto;
key_basic->ip_proto = ip_proto;
return ret;
out_bad:
ret = false;
goto out;
}
EXPORT_SYMBOL(__skb_flow_dissect);
static siphash_aligned_key_t hashrnd;
static __always_inline void __flow_hash_secret_init(void)
{
net_get_random_once(&hashrnd, sizeof(hashrnd));
}
static const void *flow_keys_hash_start(const struct flow_keys *flow)
{
BUILD_BUG_ON(FLOW_KEYS_HASH_OFFSET % SIPHASH_ALIGNMENT);
return &flow->FLOW_KEYS_HASH_START_FIELD;
}
static inline size_t flow_keys_hash_length(const struct flow_keys *flow)
{
size_t diff = FLOW_KEYS_HASH_OFFSET + sizeof(flow->addrs);
BUILD_BUG_ON((sizeof(*flow) - FLOW_KEYS_HASH_OFFSET) % sizeof(u32));
switch (flow->control.addr_type) {
case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
diff -= sizeof(flow->addrs.v4addrs);
break;
case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
diff -= sizeof(flow->addrs.v6addrs);
break;
case FLOW_DISSECTOR_KEY_TIPC:
diff -= sizeof(flow->addrs.tipckey);
break;
}
return sizeof(*flow) - diff;
}
__be32 flow_get_u32_src(const struct flow_keys *flow)
{
switch (flow->control.addr_type) {
case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
return flow->addrs.v4addrs.src;
case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
return (__force __be32)ipv6_addr_hash(
&flow->addrs.v6addrs.src);
case FLOW_DISSECTOR_KEY_TIPC:
return flow->addrs.tipckey.key;
default:
return 0;
}
}
EXPORT_SYMBOL(flow_get_u32_src);
__be32 flow_get_u32_dst(const struct flow_keys *flow)
{
switch (flow->control.addr_type) {
case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
return flow->addrs.v4addrs.dst;
case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
return (__force __be32)ipv6_addr_hash(
&flow->addrs.v6addrs.dst);
default:
return 0;
}
}
EXPORT_SYMBOL(flow_get_u32_dst);
/* Sort the source and destination IP and the ports,
* to have consistent hash within the two directions
*/
static inline void __flow_hash_consistentify(struct flow_keys *keys)
{
int addr_diff, i;
switch (keys->control.addr_type) {
case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
if ((__force u32)keys->addrs.v4addrs.dst <
(__force u32)keys->addrs.v4addrs.src)
swap(keys->addrs.v4addrs.src, keys->addrs.v4addrs.dst);
if ((__force u16)keys->ports.dst <
(__force u16)keys->ports.src) {
swap(keys->ports.src, keys->ports.dst);
}
break;
case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
addr_diff = memcmp(&keys->addrs.v6addrs.dst,
&keys->addrs.v6addrs.src,
sizeof(keys->addrs.v6addrs.dst));
if (addr_diff < 0) {
for (i = 0; i < 4; i++)
swap(keys->addrs.v6addrs.src.s6_addr32[i],
keys->addrs.v6addrs.dst.s6_addr32[i]);
}
if ((__force u16)keys->ports.dst <
(__force u16)keys->ports.src) {
swap(keys->ports.src, keys->ports.dst);
}
break;
}
}
static inline u32 __flow_hash_from_keys(struct flow_keys *keys,
const siphash_key_t *keyval)
{
u32 hash;
__flow_hash_consistentify(keys);
hash = siphash(flow_keys_hash_start(keys),
flow_keys_hash_length(keys), keyval);
if (!hash)
hash = 1;
return hash;
}
u32 flow_hash_from_keys(struct flow_keys *keys)
{
__flow_hash_secret_init();
return __flow_hash_from_keys(keys, &hashrnd);
}
EXPORT_SYMBOL(flow_hash_from_keys);
static inline u32 ___skb_get_hash(const struct sk_buff *skb,
struct flow_keys *keys,
const siphash_key_t *keyval)
{
skb_flow_dissect_flow_keys(skb, keys,
FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
return __flow_hash_from_keys(keys, keyval);
}
struct _flow_keys_digest_data {
__be16 n_proto;
u8 ip_proto;
u8 padding;
__be32 ports;
__be32 src;
__be32 dst;
};
void make_flow_keys_digest(struct flow_keys_digest *digest,
const struct flow_keys *flow)
{
struct _flow_keys_digest_data *data =
(struct _flow_keys_digest_data *)digest;
BUILD_BUG_ON(sizeof(*data) > sizeof(*digest));
memset(digest, 0, sizeof(*digest));
data->n_proto = flow->basic.n_proto;
data->ip_proto = flow->basic.ip_proto;
data->ports = flow->ports.ports;
data->src = flow->addrs.v4addrs.src;
data->dst = flow->addrs.v4addrs.dst;
}
EXPORT_SYMBOL(make_flow_keys_digest);
static struct flow_dissector flow_keys_dissector_symmetric __read_mostly;
u32 __skb_get_hash_symmetric(const struct sk_buff *skb)
{
struct flow_keys keys;
__flow_hash_secret_init();
memset(&keys, 0, sizeof(keys));
__skb_flow_dissect(NULL, skb, &flow_keys_dissector_symmetric,
&keys, NULL, 0, 0, 0, 0);
return __flow_hash_from_keys(&keys, &hashrnd);
}
EXPORT_SYMBOL_GPL(__skb_get_hash_symmetric);
/**
* __skb_get_hash: calculate a flow hash
* @skb: sk_buff to calculate flow hash from
*
* This function calculates a flow hash based on src/dst addresses
* and src/dst port numbers. Sets hash in skb to non-zero hash value
* on success, zero indicates no valid hash. Also, sets l4_hash in skb
* if hash is a canonical 4-tuple hash over transport ports.
*/
void __skb_get_hash(struct sk_buff *skb)
{
struct flow_keys keys;
u32 hash;
__flow_hash_secret_init();
hash = ___skb_get_hash(skb, &keys, &hashrnd);
__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
}
EXPORT_SYMBOL(__skb_get_hash);
__u32 skb_get_hash_perturb(const struct sk_buff *skb,
const siphash_key_t *perturb)
{
struct flow_keys keys;
return ___skb_get_hash(skb, &keys, perturb);
}
EXPORT_SYMBOL(skb_get_hash_perturb);
u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
const struct flow_keys_basic *keys, int hlen)
{
u32 poff = keys->control.thoff;
/* skip L4 headers for fragments after the first */
if ((keys->control.flags & FLOW_DIS_IS_FRAGMENT) &&
!(keys->control.flags & FLOW_DIS_FIRST_FRAG))
return poff;
switch (keys->basic.ip_proto) {
case IPPROTO_TCP: {
/* access doff as u8 to avoid unaligned access */
const u8 *doff;
u8 _doff;
doff = __skb_header_pointer(skb, poff + 12, sizeof(_doff),
data, hlen, &_doff);
if (!doff)
return poff;
poff += max_t(u32, sizeof(struct tcphdr), (*doff & 0xF0) >> 2);
break;
}
case IPPROTO_UDP:
case IPPROTO_UDPLITE:
poff += sizeof(struct udphdr);
break;
/* For the rest, we do not really care about header
* extensions at this point for now.
*/
case IPPROTO_ICMP:
poff += sizeof(struct icmphdr);
break;
case IPPROTO_ICMPV6:
poff += sizeof(struct icmp6hdr);
break;
case IPPROTO_IGMP:
poff += sizeof(struct igmphdr);
break;
case IPPROTO_DCCP:
poff += sizeof(struct dccp_hdr);
break;
case IPPROTO_SCTP:
poff += sizeof(struct sctphdr);
break;
}
return poff;
}
/**
* skb_get_poff - get the offset to the payload
* @skb: sk_buff to get the payload offset from
*
* The function will get the offset to the payload as far as it could
* be dissected. The main user is currently BPF, so that we can dynamically
* truncate packets without needing to push actual payload to the user
* space and can analyze headers only, instead.
*/
u32 skb_get_poff(const struct sk_buff *skb)
{
struct flow_keys_basic keys;
if (!skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
NULL, 0, 0, 0, 0))
return 0;
return __skb_get_poff(skb, skb->data, &keys, skb_headlen(skb));
}
__u32 __get_hash_from_flowi6(const struct flowi6 *fl6, struct flow_keys *keys)
{
memset(keys, 0, sizeof(*keys));
memcpy(&keys->addrs.v6addrs.src, &fl6->saddr,
sizeof(keys->addrs.v6addrs.src));
memcpy(&keys->addrs.v6addrs.dst, &fl6->daddr,
sizeof(keys->addrs.v6addrs.dst));
keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
keys->ports.src = fl6->fl6_sport;
keys->ports.dst = fl6->fl6_dport;
keys->keyid.keyid = fl6->fl6_gre_key;
keys->tags.flow_label = (__force u32)flowi6_get_flowlabel(fl6);
keys->basic.ip_proto = fl6->flowi6_proto;
return flow_hash_from_keys(keys);
}
EXPORT_SYMBOL(__get_hash_from_flowi6);
static const struct flow_dissector_key flow_keys_dissector_keys[] = {
{
.key_id = FLOW_DISSECTOR_KEY_CONTROL,
.offset = offsetof(struct flow_keys, control),
},
{
.key_id = FLOW_DISSECTOR_KEY_BASIC,
.offset = offsetof(struct flow_keys, basic),
},
{
.key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
.offset = offsetof(struct flow_keys, addrs.v4addrs),
},
{
.key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
.offset = offsetof(struct flow_keys, addrs.v6addrs),
},
{
.key_id = FLOW_DISSECTOR_KEY_TIPC,
.offset = offsetof(struct flow_keys, addrs.tipckey),
},
{
.key_id = FLOW_DISSECTOR_KEY_PORTS,
.offset = offsetof(struct flow_keys, ports),
},
{
.key_id = FLOW_DISSECTOR_KEY_VLAN,
.offset = offsetof(struct flow_keys, vlan),
},
{
.key_id = FLOW_DISSECTOR_KEY_FLOW_LABEL,
.offset = offsetof(struct flow_keys, tags),
},
{
.key_id = FLOW_DISSECTOR_KEY_GRE_KEYID,
.offset = offsetof(struct flow_keys, keyid),
},
};
static const struct flow_dissector_key flow_keys_dissector_symmetric_keys[] = {
{
.key_id = FLOW_DISSECTOR_KEY_CONTROL,
.offset = offsetof(struct flow_keys, control),
},
{
.key_id = FLOW_DISSECTOR_KEY_BASIC,
.offset = offsetof(struct flow_keys, basic),
},
{
.key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
.offset = offsetof(struct flow_keys, addrs.v4addrs),
},
{
.key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
.offset = offsetof(struct flow_keys, addrs.v6addrs),
},
{
.key_id = FLOW_DISSECTOR_KEY_PORTS,
.offset = offsetof(struct flow_keys, ports),
},
};
static const struct flow_dissector_key flow_keys_basic_dissector_keys[] = {
{
.key_id = FLOW_DISSECTOR_KEY_CONTROL,
.offset = offsetof(struct flow_keys, control),
},
{
.key_id = FLOW_DISSECTOR_KEY_BASIC,
.offset = offsetof(struct flow_keys, basic),
},
};
struct flow_dissector flow_keys_dissector __read_mostly;
EXPORT_SYMBOL(flow_keys_dissector);
struct flow_dissector flow_keys_basic_dissector __read_mostly;
EXPORT_SYMBOL(flow_keys_basic_dissector);
static int __init init_default_flow_dissectors(void)
{
skb_flow_dissector_init(&flow_keys_dissector,
flow_keys_dissector_keys,
ARRAY_SIZE(flow_keys_dissector_keys));
skb_flow_dissector_init(&flow_keys_dissector_symmetric,
flow_keys_dissector_symmetric_keys,
ARRAY_SIZE(flow_keys_dissector_symmetric_keys));
skb_flow_dissector_init(&flow_keys_basic_dissector,
flow_keys_basic_dissector_keys,
ARRAY_SIZE(flow_keys_basic_dissector_keys));
return 0;
}
core_initcall(init_default_flow_dissectors);