2e38eb04c9
Kprobes has a counter 'nmissed', that is used to count the number of times a probe handler was not called. This generally happens when we hit a kprobe while handling another kprobe. However, if one of the probe handlers causes a fault, we are currently incrementing 'nmissed'. The comment in fault handler indicates that this can be used to account faults taken by the probe handlers. But, this has never been the intention as is evident from the comment above 'nmissed' in 'struct kprobe': /*count the number of times this probe was temporarily disarmed */ unsigned long nmissed; Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Masami Hiramatsu <mhiramat@kernel.org> Link: https://lkml.kernel.org/r/20210601120150.672652-1-naveen.n.rao@linux.vnet.ibm.com
415 lines
9.8 KiB
C
415 lines
9.8 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
|
|
*/
|
|
|
|
#include <linux/types.h>
|
|
#include <linux/kprobes.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/module.h>
|
|
#include <linux/kdebug.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/uaccess.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/current.h>
|
|
#include <asm/disasm.h>
|
|
|
|
#define MIN_STACK_SIZE(addr) min((unsigned long)MAX_STACK_SIZE, \
|
|
(unsigned long)current_thread_info() + THREAD_SIZE - (addr))
|
|
|
|
DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
|
|
DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
|
|
|
|
int __kprobes arch_prepare_kprobe(struct kprobe *p)
|
|
{
|
|
/* Attempt to probe at unaligned address */
|
|
if ((unsigned long)p->addr & 0x01)
|
|
return -EINVAL;
|
|
|
|
/* Address should not be in exception handling code */
|
|
|
|
p->ainsn.is_short = is_short_instr((unsigned long)p->addr);
|
|
p->opcode = *p->addr;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void __kprobes arch_arm_kprobe(struct kprobe *p)
|
|
{
|
|
*p->addr = UNIMP_S_INSTRUCTION;
|
|
|
|
flush_icache_range((unsigned long)p->addr,
|
|
(unsigned long)p->addr + sizeof(kprobe_opcode_t));
|
|
}
|
|
|
|
void __kprobes arch_disarm_kprobe(struct kprobe *p)
|
|
{
|
|
*p->addr = p->opcode;
|
|
|
|
flush_icache_range((unsigned long)p->addr,
|
|
(unsigned long)p->addr + sizeof(kprobe_opcode_t));
|
|
}
|
|
|
|
void __kprobes arch_remove_kprobe(struct kprobe *p)
|
|
{
|
|
arch_disarm_kprobe(p);
|
|
|
|
/* Can we remove the kprobe in the middle of kprobe handling? */
|
|
if (p->ainsn.t1_addr) {
|
|
*(p->ainsn.t1_addr) = p->ainsn.t1_opcode;
|
|
|
|
flush_icache_range((unsigned long)p->ainsn.t1_addr,
|
|
(unsigned long)p->ainsn.t1_addr +
|
|
sizeof(kprobe_opcode_t));
|
|
|
|
p->ainsn.t1_addr = NULL;
|
|
}
|
|
|
|
if (p->ainsn.t2_addr) {
|
|
*(p->ainsn.t2_addr) = p->ainsn.t2_opcode;
|
|
|
|
flush_icache_range((unsigned long)p->ainsn.t2_addr,
|
|
(unsigned long)p->ainsn.t2_addr +
|
|
sizeof(kprobe_opcode_t));
|
|
|
|
p->ainsn.t2_addr = NULL;
|
|
}
|
|
}
|
|
|
|
static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
|
|
{
|
|
kcb->prev_kprobe.kp = kprobe_running();
|
|
kcb->prev_kprobe.status = kcb->kprobe_status;
|
|
}
|
|
|
|
static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
|
|
{
|
|
__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
|
|
kcb->kprobe_status = kcb->prev_kprobe.status;
|
|
}
|
|
|
|
static inline void __kprobes set_current_kprobe(struct kprobe *p)
|
|
{
|
|
__this_cpu_write(current_kprobe, p);
|
|
}
|
|
|
|
static void __kprobes resume_execution(struct kprobe *p, unsigned long addr,
|
|
struct pt_regs *regs)
|
|
{
|
|
/* Remove the trap instructions inserted for single step and
|
|
* restore the original instructions
|
|
*/
|
|
if (p->ainsn.t1_addr) {
|
|
*(p->ainsn.t1_addr) = p->ainsn.t1_opcode;
|
|
|
|
flush_icache_range((unsigned long)p->ainsn.t1_addr,
|
|
(unsigned long)p->ainsn.t1_addr +
|
|
sizeof(kprobe_opcode_t));
|
|
|
|
p->ainsn.t1_addr = NULL;
|
|
}
|
|
|
|
if (p->ainsn.t2_addr) {
|
|
*(p->ainsn.t2_addr) = p->ainsn.t2_opcode;
|
|
|
|
flush_icache_range((unsigned long)p->ainsn.t2_addr,
|
|
(unsigned long)p->ainsn.t2_addr +
|
|
sizeof(kprobe_opcode_t));
|
|
|
|
p->ainsn.t2_addr = NULL;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
static void __kprobes setup_singlestep(struct kprobe *p, struct pt_regs *regs)
|
|
{
|
|
unsigned long next_pc;
|
|
unsigned long tgt_if_br = 0;
|
|
int is_branch;
|
|
unsigned long bta;
|
|
|
|
/* Copy the opcode back to the kprobe location and execute the
|
|
* instruction. Because of this we will not be able to get into the
|
|
* same kprobe until this kprobe is done
|
|
*/
|
|
*(p->addr) = p->opcode;
|
|
|
|
flush_icache_range((unsigned long)p->addr,
|
|
(unsigned long)p->addr + sizeof(kprobe_opcode_t));
|
|
|
|
/* Now we insert the trap at the next location after this instruction to
|
|
* single step. If it is a branch we insert the trap at possible branch
|
|
* targets
|
|
*/
|
|
|
|
bta = regs->bta;
|
|
|
|
if (regs->status32 & 0x40) {
|
|
/* We are in a delay slot with the branch taken */
|
|
|
|
next_pc = bta & ~0x01;
|
|
|
|
if (!p->ainsn.is_short) {
|
|
if (bta & 0x01)
|
|
regs->blink += 2;
|
|
else {
|
|
/* Branch not taken */
|
|
next_pc += 2;
|
|
|
|
/* next pc is taken from bta after executing the
|
|
* delay slot instruction
|
|
*/
|
|
regs->bta += 2;
|
|
}
|
|
}
|
|
|
|
is_branch = 0;
|
|
} else
|
|
is_branch =
|
|
disasm_next_pc((unsigned long)p->addr, regs,
|
|
(struct callee_regs *) current->thread.callee_reg,
|
|
&next_pc, &tgt_if_br);
|
|
|
|
p->ainsn.t1_addr = (kprobe_opcode_t *) next_pc;
|
|
p->ainsn.t1_opcode = *(p->ainsn.t1_addr);
|
|
*(p->ainsn.t1_addr) = TRAP_S_2_INSTRUCTION;
|
|
|
|
flush_icache_range((unsigned long)p->ainsn.t1_addr,
|
|
(unsigned long)p->ainsn.t1_addr +
|
|
sizeof(kprobe_opcode_t));
|
|
|
|
if (is_branch) {
|
|
p->ainsn.t2_addr = (kprobe_opcode_t *) tgt_if_br;
|
|
p->ainsn.t2_opcode = *(p->ainsn.t2_addr);
|
|
*(p->ainsn.t2_addr) = TRAP_S_2_INSTRUCTION;
|
|
|
|
flush_icache_range((unsigned long)p->ainsn.t2_addr,
|
|
(unsigned long)p->ainsn.t2_addr +
|
|
sizeof(kprobe_opcode_t));
|
|
}
|
|
}
|
|
|
|
int __kprobes arc_kprobe_handler(unsigned long addr, struct pt_regs *regs)
|
|
{
|
|
struct kprobe *p;
|
|
struct kprobe_ctlblk *kcb;
|
|
|
|
preempt_disable();
|
|
|
|
kcb = get_kprobe_ctlblk();
|
|
p = get_kprobe((unsigned long *)addr);
|
|
|
|
if (p) {
|
|
/*
|
|
* We have reentered the kprobe_handler, since another kprobe
|
|
* was hit while within the handler, we save the original
|
|
* kprobes and single step on the instruction of the new probe
|
|
* without calling any user handlers to avoid recursive
|
|
* kprobes.
|
|
*/
|
|
if (kprobe_running()) {
|
|
save_previous_kprobe(kcb);
|
|
set_current_kprobe(p);
|
|
kprobes_inc_nmissed_count(p);
|
|
setup_singlestep(p, regs);
|
|
kcb->kprobe_status = KPROBE_REENTER;
|
|
return 1;
|
|
}
|
|
|
|
set_current_kprobe(p);
|
|
kcb->kprobe_status = KPROBE_HIT_ACTIVE;
|
|
|
|
/* If we have no pre-handler or it returned 0, we continue with
|
|
* normal processing. If we have a pre-handler and it returned
|
|
* non-zero - which means user handler setup registers to exit
|
|
* to another instruction, we must skip the single stepping.
|
|
*/
|
|
if (!p->pre_handler || !p->pre_handler(p, regs)) {
|
|
setup_singlestep(p, regs);
|
|
kcb->kprobe_status = KPROBE_HIT_SS;
|
|
} else {
|
|
reset_current_kprobe();
|
|
preempt_enable_no_resched();
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* no_kprobe: */
|
|
preempt_enable_no_resched();
|
|
return 0;
|
|
}
|
|
|
|
static int __kprobes arc_post_kprobe_handler(unsigned long addr,
|
|
struct pt_regs *regs)
|
|
{
|
|
struct kprobe *cur = kprobe_running();
|
|
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
|
|
|
if (!cur)
|
|
return 0;
|
|
|
|
resume_execution(cur, addr, regs);
|
|
|
|
/* Rearm the kprobe */
|
|
arch_arm_kprobe(cur);
|
|
|
|
/*
|
|
* When we return from trap instruction we go to the next instruction
|
|
* We restored the actual instruction in resume_exectuiont and we to
|
|
* return to the same address and execute it
|
|
*/
|
|
regs->ret = addr;
|
|
|
|
if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
|
|
kcb->kprobe_status = KPROBE_HIT_SSDONE;
|
|
cur->post_handler(cur, regs, 0);
|
|
}
|
|
|
|
if (kcb->kprobe_status == KPROBE_REENTER) {
|
|
restore_previous_kprobe(kcb);
|
|
goto out;
|
|
}
|
|
|
|
reset_current_kprobe();
|
|
|
|
out:
|
|
preempt_enable_no_resched();
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Fault can be for the instruction being single stepped or for the
|
|
* pre/post handlers in the module.
|
|
* This is applicable for applications like user probes, where we have the
|
|
* probe in user space and the handlers in the kernel
|
|
*/
|
|
|
|
int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned long trapnr)
|
|
{
|
|
struct kprobe *cur = kprobe_running();
|
|
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
|
|
|
switch (kcb->kprobe_status) {
|
|
case KPROBE_HIT_SS:
|
|
case KPROBE_REENTER:
|
|
/*
|
|
* We are here because the instruction being single stepped
|
|
* caused the fault. We reset the current kprobe and allow the
|
|
* exception handler as if it is regular exception. In our
|
|
* case it doesn't matter because the system will be halted
|
|
*/
|
|
resume_execution(cur, (unsigned long)cur->addr, regs);
|
|
|
|
if (kcb->kprobe_status == KPROBE_REENTER)
|
|
restore_previous_kprobe(kcb);
|
|
else
|
|
reset_current_kprobe();
|
|
|
|
preempt_enable_no_resched();
|
|
break;
|
|
|
|
case KPROBE_HIT_ACTIVE:
|
|
case KPROBE_HIT_SSDONE:
|
|
/*
|
|
* We are here because the instructions in the pre/post handler
|
|
* caused the fault.
|
|
*/
|
|
|
|
/*
|
|
* In case the user-specified fault handler returned zero,
|
|
* try to fix up.
|
|
*/
|
|
if (fixup_exception(regs))
|
|
return 1;
|
|
|
|
/*
|
|
* fixup_exception() could not handle it,
|
|
* Let do_page_fault() fix it.
|
|
*/
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
|
|
unsigned long val, void *data)
|
|
{
|
|
struct die_args *args = data;
|
|
unsigned long addr = args->err;
|
|
int ret = NOTIFY_DONE;
|
|
|
|
switch (val) {
|
|
case DIE_IERR:
|
|
if (arc_kprobe_handler(addr, args->regs))
|
|
return NOTIFY_STOP;
|
|
break;
|
|
|
|
case DIE_TRAP:
|
|
if (arc_post_kprobe_handler(addr, args->regs))
|
|
return NOTIFY_STOP;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void __used kretprobe_trampoline_holder(void)
|
|
{
|
|
__asm__ __volatile__(".global kretprobe_trampoline\n"
|
|
"kretprobe_trampoline:\n" "nop\n");
|
|
}
|
|
|
|
void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
|
|
struct pt_regs *regs)
|
|
{
|
|
|
|
ri->ret_addr = (kprobe_opcode_t *) regs->blink;
|
|
ri->fp = NULL;
|
|
|
|
/* Replace the return addr with trampoline addr */
|
|
regs->blink = (unsigned long)&kretprobe_trampoline;
|
|
}
|
|
|
|
static int __kprobes trampoline_probe_handler(struct kprobe *p,
|
|
struct pt_regs *regs)
|
|
{
|
|
regs->ret = __kretprobe_trampoline_handler(regs, &kretprobe_trampoline, NULL);
|
|
|
|
/* By returning a non zero value, we are telling the kprobe handler
|
|
* that we don't want the post_handler to run
|
|
*/
|
|
return 1;
|
|
}
|
|
|
|
static struct kprobe trampoline_p = {
|
|
.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
|
|
.pre_handler = trampoline_probe_handler
|
|
};
|
|
|
|
int __init arch_init_kprobes(void)
|
|
{
|
|
/* Registering the trampoline code for the kret probe */
|
|
return register_kprobe(&trampoline_p);
|
|
}
|
|
|
|
int __kprobes arch_trampoline_kprobe(struct kprobe *p)
|
|
{
|
|
if (p->addr == (kprobe_opcode_t *) &kretprobe_trampoline)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void trap_is_kprobe(unsigned long address, struct pt_regs *regs)
|
|
{
|
|
notify_die(DIE_TRAP, "kprobe_trap", regs, address, 0, SIGTRAP);
|
|
}
|