6ea7bb00c1
Shadow stack's selftest utilizes the map_shadow_stack syscall. The syscall is new with the feature, but the selftests cannot automatically find the headers for the kernel source tree they are located in. This resulted in the shadow stack test failing to build until the brand new headers were installed. To avoid this, a copy of the new uapi defines needed by the test were included in the selftest (see link for discussion). When shadow stack was merged the syscall number was changed, but the copy in the selftest was not updated. So update the copy of the syscall number define used when the required headers are not installed, to have the final syscall number from the merge. Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/lkml/Y%2FijdXoTAATt0+Ct@zn.tnic/ Link: https://lore.kernel.org/r/20230901181652.2583861-1-rick.p.edgecombe@intel.com Reviewed-by: Sohil Mehta <sohil.mehta@intel.com> Fixes: df57721f9a63 ("Merge tag 'x86_shstk_for_6.6-rc1' of [...]")
885 lines
18 KiB
C
885 lines
18 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* This program test's basic kernel shadow stack support. It enables shadow
|
|
* stack manual via the arch_prctl(), instead of relying on glibc. It's
|
|
* Makefile doesn't compile with shadow stack support, so it doesn't rely on
|
|
* any particular glibc. As a result it can't do any operations that require
|
|
* special glibc shadow stack support (longjmp(), swapcontext(), etc). Just
|
|
* stick to the basics and hope the compiler doesn't do anything strange.
|
|
*/
|
|
|
|
#define _GNU_SOURCE
|
|
|
|
#include <sys/syscall.h>
|
|
#include <asm/mman.h>
|
|
#include <sys/mman.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/wait.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <fcntl.h>
|
|
#include <unistd.h>
|
|
#include <string.h>
|
|
#include <errno.h>
|
|
#include <stdbool.h>
|
|
#include <x86intrin.h>
|
|
#include <asm/prctl.h>
|
|
#include <sys/prctl.h>
|
|
#include <stdint.h>
|
|
#include <signal.h>
|
|
#include <pthread.h>
|
|
#include <sys/ioctl.h>
|
|
#include <linux/userfaultfd.h>
|
|
#include <setjmp.h>
|
|
#include <sys/ptrace.h>
|
|
#include <sys/signal.h>
|
|
#include <linux/elf.h>
|
|
|
|
/*
|
|
* Define the ABI defines if needed, so people can run the tests
|
|
* without building the headers.
|
|
*/
|
|
#ifndef __NR_map_shadow_stack
|
|
#define __NR_map_shadow_stack 453
|
|
|
|
#define SHADOW_STACK_SET_TOKEN (1ULL << 0)
|
|
|
|
#define ARCH_SHSTK_ENABLE 0x5001
|
|
#define ARCH_SHSTK_DISABLE 0x5002
|
|
#define ARCH_SHSTK_LOCK 0x5003
|
|
#define ARCH_SHSTK_UNLOCK 0x5004
|
|
#define ARCH_SHSTK_STATUS 0x5005
|
|
|
|
#define ARCH_SHSTK_SHSTK (1ULL << 0)
|
|
#define ARCH_SHSTK_WRSS (1ULL << 1)
|
|
|
|
#define NT_X86_SHSTK 0x204
|
|
#endif
|
|
|
|
#define SS_SIZE 0x200000
|
|
#define PAGE_SIZE 0x1000
|
|
|
|
#if (__GNUC__ < 8) || (__GNUC__ == 8 && __GNUC_MINOR__ < 5)
|
|
int main(int argc, char *argv[])
|
|
{
|
|
printf("[SKIP]\tCompiler does not support CET.\n");
|
|
return 0;
|
|
}
|
|
#else
|
|
void write_shstk(unsigned long *addr, unsigned long val)
|
|
{
|
|
asm volatile("wrssq %[val], (%[addr])\n"
|
|
: "=m" (addr)
|
|
: [addr] "r" (addr), [val] "r" (val));
|
|
}
|
|
|
|
static inline unsigned long __attribute__((always_inline)) get_ssp(void)
|
|
{
|
|
unsigned long ret = 0;
|
|
|
|
asm volatile("xor %0, %0; rdsspq %0" : "=r" (ret));
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* For use in inline enablement of shadow stack.
|
|
*
|
|
* The program can't return from the point where shadow stack gets enabled
|
|
* because there will be no address on the shadow stack. So it can't use
|
|
* syscall() for enablement, since it is a function.
|
|
*
|
|
* Based on code from nolibc.h. Keep a copy here because this can't pull in all
|
|
* of nolibc.h.
|
|
*/
|
|
#define ARCH_PRCTL(arg1, arg2) \
|
|
({ \
|
|
long _ret; \
|
|
register long _num asm("eax") = __NR_arch_prctl; \
|
|
register long _arg1 asm("rdi") = (long)(arg1); \
|
|
register long _arg2 asm("rsi") = (long)(arg2); \
|
|
\
|
|
asm volatile ( \
|
|
"syscall\n" \
|
|
: "=a"(_ret) \
|
|
: "r"(_arg1), "r"(_arg2), \
|
|
"0"(_num) \
|
|
: "rcx", "r11", "memory", "cc" \
|
|
); \
|
|
_ret; \
|
|
})
|
|
|
|
void *create_shstk(void *addr)
|
|
{
|
|
return (void *)syscall(__NR_map_shadow_stack, addr, SS_SIZE, SHADOW_STACK_SET_TOKEN);
|
|
}
|
|
|
|
void *create_normal_mem(void *addr)
|
|
{
|
|
return mmap(addr, SS_SIZE, PROT_READ | PROT_WRITE,
|
|
MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
|
|
}
|
|
|
|
void free_shstk(void *shstk)
|
|
{
|
|
munmap(shstk, SS_SIZE);
|
|
}
|
|
|
|
int reset_shstk(void *shstk)
|
|
{
|
|
return madvise(shstk, SS_SIZE, MADV_DONTNEED);
|
|
}
|
|
|
|
void try_shstk(unsigned long new_ssp)
|
|
{
|
|
unsigned long ssp;
|
|
|
|
printf("[INFO]\tnew_ssp = %lx, *new_ssp = %lx\n",
|
|
new_ssp, *((unsigned long *)new_ssp));
|
|
|
|
ssp = get_ssp();
|
|
printf("[INFO]\tchanging ssp from %lx to %lx\n", ssp, new_ssp);
|
|
|
|
asm volatile("rstorssp (%0)\n":: "r" (new_ssp));
|
|
asm volatile("saveprevssp");
|
|
printf("[INFO]\tssp is now %lx\n", get_ssp());
|
|
|
|
/* Switch back to original shadow stack */
|
|
ssp -= 8;
|
|
asm volatile("rstorssp (%0)\n":: "r" (ssp));
|
|
asm volatile("saveprevssp");
|
|
}
|
|
|
|
int test_shstk_pivot(void)
|
|
{
|
|
void *shstk = create_shstk(0);
|
|
|
|
if (shstk == MAP_FAILED) {
|
|
printf("[FAIL]\tError creating shadow stack: %d\n", errno);
|
|
return 1;
|
|
}
|
|
try_shstk((unsigned long)shstk + SS_SIZE - 8);
|
|
free_shstk(shstk);
|
|
|
|
printf("[OK]\tShadow stack pivot\n");
|
|
return 0;
|
|
}
|
|
|
|
int test_shstk_faults(void)
|
|
{
|
|
unsigned long *shstk = create_shstk(0);
|
|
|
|
/* Read shadow stack, test if it's zero to not get read optimized out */
|
|
if (*shstk != 0)
|
|
goto err;
|
|
|
|
/* Wrss memory that was already read. */
|
|
write_shstk(shstk, 1);
|
|
if (*shstk != 1)
|
|
goto err;
|
|
|
|
/* Page out memory, so we can wrss it again. */
|
|
if (reset_shstk((void *)shstk))
|
|
goto err;
|
|
|
|
write_shstk(shstk, 1);
|
|
if (*shstk != 1)
|
|
goto err;
|
|
|
|
printf("[OK]\tShadow stack faults\n");
|
|
return 0;
|
|
|
|
err:
|
|
return 1;
|
|
}
|
|
|
|
unsigned long saved_ssp;
|
|
unsigned long saved_ssp_val;
|
|
volatile bool segv_triggered;
|
|
|
|
void __attribute__((noinline)) violate_ss(void)
|
|
{
|
|
saved_ssp = get_ssp();
|
|
saved_ssp_val = *(unsigned long *)saved_ssp;
|
|
|
|
/* Corrupt shadow stack */
|
|
printf("[INFO]\tCorrupting shadow stack\n");
|
|
write_shstk((void *)saved_ssp, 0);
|
|
}
|
|
|
|
void segv_handler(int signum, siginfo_t *si, void *uc)
|
|
{
|
|
printf("[INFO]\tGenerated shadow stack violation successfully\n");
|
|
|
|
segv_triggered = true;
|
|
|
|
/* Fix shadow stack */
|
|
write_shstk((void *)saved_ssp, saved_ssp_val);
|
|
}
|
|
|
|
int test_shstk_violation(void)
|
|
{
|
|
struct sigaction sa = {};
|
|
|
|
sa.sa_sigaction = segv_handler;
|
|
sa.sa_flags = SA_SIGINFO;
|
|
if (sigaction(SIGSEGV, &sa, NULL))
|
|
return 1;
|
|
|
|
segv_triggered = false;
|
|
|
|
/* Make sure segv_triggered is set before violate_ss() */
|
|
asm volatile("" : : : "memory");
|
|
|
|
violate_ss();
|
|
|
|
signal(SIGSEGV, SIG_DFL);
|
|
|
|
printf("[OK]\tShadow stack violation test\n");
|
|
|
|
return !segv_triggered;
|
|
}
|
|
|
|
/* Gup test state */
|
|
#define MAGIC_VAL 0x12345678
|
|
bool is_shstk_access;
|
|
void *shstk_ptr;
|
|
int fd;
|
|
|
|
void reset_test_shstk(void *addr)
|
|
{
|
|
if (shstk_ptr)
|
|
free_shstk(shstk_ptr);
|
|
shstk_ptr = create_shstk(addr);
|
|
}
|
|
|
|
void test_access_fix_handler(int signum, siginfo_t *si, void *uc)
|
|
{
|
|
printf("[INFO]\tViolation from %s\n", is_shstk_access ? "shstk access" : "normal write");
|
|
|
|
segv_triggered = true;
|
|
|
|
/* Fix shadow stack */
|
|
if (is_shstk_access) {
|
|
reset_test_shstk(shstk_ptr);
|
|
return;
|
|
}
|
|
|
|
free_shstk(shstk_ptr);
|
|
create_normal_mem(shstk_ptr);
|
|
}
|
|
|
|
bool test_shstk_access(void *ptr)
|
|
{
|
|
is_shstk_access = true;
|
|
segv_triggered = false;
|
|
write_shstk(ptr, MAGIC_VAL);
|
|
|
|
asm volatile("" : : : "memory");
|
|
|
|
return segv_triggered;
|
|
}
|
|
|
|
bool test_write_access(void *ptr)
|
|
{
|
|
is_shstk_access = false;
|
|
segv_triggered = false;
|
|
*(unsigned long *)ptr = MAGIC_VAL;
|
|
|
|
asm volatile("" : : : "memory");
|
|
|
|
return segv_triggered;
|
|
}
|
|
|
|
bool gup_write(void *ptr)
|
|
{
|
|
unsigned long val;
|
|
|
|
lseek(fd, (unsigned long)ptr, SEEK_SET);
|
|
if (write(fd, &val, sizeof(val)) < 0)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
bool gup_read(void *ptr)
|
|
{
|
|
unsigned long val;
|
|
|
|
lseek(fd, (unsigned long)ptr, SEEK_SET);
|
|
if (read(fd, &val, sizeof(val)) < 0)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int test_gup(void)
|
|
{
|
|
struct sigaction sa = {};
|
|
int status;
|
|
pid_t pid;
|
|
|
|
sa.sa_sigaction = test_access_fix_handler;
|
|
sa.sa_flags = SA_SIGINFO;
|
|
if (sigaction(SIGSEGV, &sa, NULL))
|
|
return 1;
|
|
|
|
segv_triggered = false;
|
|
|
|
fd = open("/proc/self/mem", O_RDWR);
|
|
if (fd == -1)
|
|
return 1;
|
|
|
|
reset_test_shstk(0);
|
|
if (gup_read(shstk_ptr))
|
|
return 1;
|
|
if (test_shstk_access(shstk_ptr))
|
|
return 1;
|
|
printf("[INFO]\tGup read -> shstk access success\n");
|
|
|
|
reset_test_shstk(0);
|
|
if (gup_write(shstk_ptr))
|
|
return 1;
|
|
if (test_shstk_access(shstk_ptr))
|
|
return 1;
|
|
printf("[INFO]\tGup write -> shstk access success\n");
|
|
|
|
reset_test_shstk(0);
|
|
if (gup_read(shstk_ptr))
|
|
return 1;
|
|
if (!test_write_access(shstk_ptr))
|
|
return 1;
|
|
printf("[INFO]\tGup read -> write access success\n");
|
|
|
|
reset_test_shstk(0);
|
|
if (gup_write(shstk_ptr))
|
|
return 1;
|
|
if (!test_write_access(shstk_ptr))
|
|
return 1;
|
|
printf("[INFO]\tGup write -> write access success\n");
|
|
|
|
close(fd);
|
|
|
|
/* COW/gup test */
|
|
reset_test_shstk(0);
|
|
pid = fork();
|
|
if (!pid) {
|
|
fd = open("/proc/self/mem", O_RDWR);
|
|
if (fd == -1)
|
|
exit(1);
|
|
|
|
if (gup_write(shstk_ptr)) {
|
|
close(fd);
|
|
exit(1);
|
|
}
|
|
close(fd);
|
|
exit(0);
|
|
}
|
|
waitpid(pid, &status, 0);
|
|
if (WEXITSTATUS(status)) {
|
|
printf("[FAIL]\tWrite in child failed\n");
|
|
return 1;
|
|
}
|
|
if (*(unsigned long *)shstk_ptr == MAGIC_VAL) {
|
|
printf("[FAIL]\tWrite in child wrote through to shared memory\n");
|
|
return 1;
|
|
}
|
|
|
|
printf("[INFO]\tCow gup write -> write access success\n");
|
|
|
|
free_shstk(shstk_ptr);
|
|
|
|
signal(SIGSEGV, SIG_DFL);
|
|
|
|
printf("[OK]\tShadow gup test\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
int test_mprotect(void)
|
|
{
|
|
struct sigaction sa = {};
|
|
|
|
sa.sa_sigaction = test_access_fix_handler;
|
|
sa.sa_flags = SA_SIGINFO;
|
|
if (sigaction(SIGSEGV, &sa, NULL))
|
|
return 1;
|
|
|
|
segv_triggered = false;
|
|
|
|
/* mprotect a shadow stack as read only */
|
|
reset_test_shstk(0);
|
|
if (mprotect(shstk_ptr, SS_SIZE, PROT_READ) < 0) {
|
|
printf("[FAIL]\tmprotect(PROT_READ) failed\n");
|
|
return 1;
|
|
}
|
|
|
|
/* try to wrss it and fail */
|
|
if (!test_shstk_access(shstk_ptr)) {
|
|
printf("[FAIL]\tShadow stack access to read-only memory succeeded\n");
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* The shadow stack was reset above to resolve the fault, make the new one
|
|
* read-only.
|
|
*/
|
|
if (mprotect(shstk_ptr, SS_SIZE, PROT_READ) < 0) {
|
|
printf("[FAIL]\tmprotect(PROT_READ) failed\n");
|
|
return 1;
|
|
}
|
|
|
|
/* then back to writable */
|
|
if (mprotect(shstk_ptr, SS_SIZE, PROT_WRITE | PROT_READ) < 0) {
|
|
printf("[FAIL]\tmprotect(PROT_WRITE) failed\n");
|
|
return 1;
|
|
}
|
|
|
|
/* then wrss to it and succeed */
|
|
if (test_shstk_access(shstk_ptr)) {
|
|
printf("[FAIL]\tShadow stack access to mprotect() writable memory failed\n");
|
|
return 1;
|
|
}
|
|
|
|
free_shstk(shstk_ptr);
|
|
|
|
signal(SIGSEGV, SIG_DFL);
|
|
|
|
printf("[OK]\tmprotect() test\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
char zero[4096];
|
|
|
|
static void *uffd_thread(void *arg)
|
|
{
|
|
struct uffdio_copy req;
|
|
int uffd = *(int *)arg;
|
|
struct uffd_msg msg;
|
|
int ret;
|
|
|
|
while (1) {
|
|
ret = read(uffd, &msg, sizeof(msg));
|
|
if (ret > 0)
|
|
break;
|
|
else if (errno == EAGAIN)
|
|
continue;
|
|
return (void *)1;
|
|
}
|
|
|
|
req.dst = msg.arg.pagefault.address;
|
|
req.src = (__u64)zero;
|
|
req.len = 4096;
|
|
req.mode = 0;
|
|
|
|
if (ioctl(uffd, UFFDIO_COPY, &req))
|
|
return (void *)1;
|
|
|
|
return (void *)0;
|
|
}
|
|
|
|
int test_userfaultfd(void)
|
|
{
|
|
struct uffdio_register uffdio_register;
|
|
struct uffdio_api uffdio_api;
|
|
struct sigaction sa = {};
|
|
pthread_t thread;
|
|
void *res;
|
|
int uffd;
|
|
|
|
sa.sa_sigaction = test_access_fix_handler;
|
|
sa.sa_flags = SA_SIGINFO;
|
|
if (sigaction(SIGSEGV, &sa, NULL))
|
|
return 1;
|
|
|
|
uffd = syscall(__NR_userfaultfd, O_CLOEXEC | O_NONBLOCK);
|
|
if (uffd < 0) {
|
|
printf("[SKIP]\tUserfaultfd unavailable.\n");
|
|
return 0;
|
|
}
|
|
|
|
reset_test_shstk(0);
|
|
|
|
uffdio_api.api = UFFD_API;
|
|
uffdio_api.features = 0;
|
|
if (ioctl(uffd, UFFDIO_API, &uffdio_api))
|
|
goto err;
|
|
|
|
uffdio_register.range.start = (__u64)shstk_ptr;
|
|
uffdio_register.range.len = 4096;
|
|
uffdio_register.mode = UFFDIO_REGISTER_MODE_MISSING;
|
|
if (ioctl(uffd, UFFDIO_REGISTER, &uffdio_register))
|
|
goto err;
|
|
|
|
if (pthread_create(&thread, NULL, &uffd_thread, &uffd))
|
|
goto err;
|
|
|
|
reset_shstk(shstk_ptr);
|
|
test_shstk_access(shstk_ptr);
|
|
|
|
if (pthread_join(thread, &res))
|
|
goto err;
|
|
|
|
if (test_shstk_access(shstk_ptr))
|
|
goto err;
|
|
|
|
free_shstk(shstk_ptr);
|
|
|
|
signal(SIGSEGV, SIG_DFL);
|
|
|
|
if (!res)
|
|
printf("[OK]\tUserfaultfd test\n");
|
|
return !!res;
|
|
err:
|
|
free_shstk(shstk_ptr);
|
|
close(uffd);
|
|
signal(SIGSEGV, SIG_DFL);
|
|
return 1;
|
|
}
|
|
|
|
/* Simple linked list for keeping track of mappings in test_guard_gap() */
|
|
struct node {
|
|
struct node *next;
|
|
void *mapping;
|
|
};
|
|
|
|
/*
|
|
* This tests whether mmap will place other mappings in a shadow stack's guard
|
|
* gap. The steps are:
|
|
* 1. Finds an empty place by mapping and unmapping something.
|
|
* 2. Map a shadow stack in the middle of the known empty area.
|
|
* 3. Map a bunch of PAGE_SIZE mappings. These will use the search down
|
|
* direction, filling any gaps until it encounters the shadow stack's
|
|
* guard gap.
|
|
* 4. When a mapping lands below the shadow stack from step 2, then all
|
|
* of the above gaps are filled. The search down algorithm will have
|
|
* looked at the shadow stack gaps.
|
|
* 5. See if it landed in the gap.
|
|
*/
|
|
int test_guard_gap(void)
|
|
{
|
|
void *free_area, *shstk, *test_map = (void *)0xFFFFFFFFFFFFFFFF;
|
|
struct node *head = NULL, *cur;
|
|
|
|
free_area = mmap(0, SS_SIZE * 3, PROT_READ | PROT_WRITE,
|
|
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
|
|
munmap(free_area, SS_SIZE * 3);
|
|
|
|
shstk = create_shstk(free_area + SS_SIZE);
|
|
if (shstk == MAP_FAILED)
|
|
return 1;
|
|
|
|
while (test_map > shstk) {
|
|
test_map = mmap(0, PAGE_SIZE, PROT_READ | PROT_WRITE,
|
|
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
|
|
if (test_map == MAP_FAILED)
|
|
return 1;
|
|
cur = malloc(sizeof(*cur));
|
|
cur->mapping = test_map;
|
|
|
|
cur->next = head;
|
|
head = cur;
|
|
}
|
|
|
|
while (head) {
|
|
cur = head;
|
|
head = cur->next;
|
|
munmap(cur->mapping, PAGE_SIZE);
|
|
free(cur);
|
|
}
|
|
|
|
free_shstk(shstk);
|
|
|
|
if (shstk - test_map - PAGE_SIZE != PAGE_SIZE)
|
|
return 1;
|
|
|
|
printf("[OK]\tGuard gap test\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Too complicated to pull it out of the 32 bit header, but also get the
|
|
* 64 bit one needed above. Just define a copy here.
|
|
*/
|
|
#define __NR_compat_sigaction 67
|
|
|
|
/*
|
|
* Call 32 bit signal handler to get 32 bit signals ABI. Make sure
|
|
* to push the registers that will get clobbered.
|
|
*/
|
|
int sigaction32(int signum, const struct sigaction *restrict act,
|
|
struct sigaction *restrict oldact)
|
|
{
|
|
register long syscall_reg asm("eax") = __NR_compat_sigaction;
|
|
register long signum_reg asm("ebx") = signum;
|
|
register long act_reg asm("ecx") = (long)act;
|
|
register long oldact_reg asm("edx") = (long)oldact;
|
|
int ret = 0;
|
|
|
|
asm volatile ("int $0x80;"
|
|
: "=a"(ret), "=m"(oldact)
|
|
: "r"(syscall_reg), "r"(signum_reg), "r"(act_reg),
|
|
"r"(oldact_reg)
|
|
: "r8", "r9", "r10", "r11"
|
|
);
|
|
|
|
return ret;
|
|
}
|
|
|
|
sigjmp_buf jmp_buffer;
|
|
|
|
void segv_gp_handler(int signum, siginfo_t *si, void *uc)
|
|
{
|
|
segv_triggered = true;
|
|
|
|
/*
|
|
* To work with old glibc, this can't rely on siglongjmp working with
|
|
* shadow stack enabled, so disable shadow stack before siglongjmp().
|
|
*/
|
|
ARCH_PRCTL(ARCH_SHSTK_DISABLE, ARCH_SHSTK_SHSTK);
|
|
siglongjmp(jmp_buffer, -1);
|
|
}
|
|
|
|
/*
|
|
* Transition to 32 bit mode and check that a #GP triggers a segfault.
|
|
*/
|
|
int test_32bit(void)
|
|
{
|
|
struct sigaction sa = {};
|
|
struct sigaction *sa32;
|
|
|
|
/* Create sigaction in 32 bit address range */
|
|
sa32 = mmap(0, 4096, PROT_READ | PROT_WRITE,
|
|
MAP_32BIT | MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
|
|
sa32->sa_flags = SA_SIGINFO;
|
|
|
|
sa.sa_sigaction = segv_gp_handler;
|
|
sa.sa_flags = SA_SIGINFO;
|
|
if (sigaction(SIGSEGV, &sa, NULL))
|
|
return 1;
|
|
|
|
|
|
segv_triggered = false;
|
|
|
|
/* Make sure segv_triggered is set before triggering the #GP */
|
|
asm volatile("" : : : "memory");
|
|
|
|
/*
|
|
* Set handler to somewhere in 32 bit address space
|
|
*/
|
|
sa32->sa_handler = (void *)sa32;
|
|
if (sigaction32(SIGUSR1, sa32, NULL))
|
|
return 1;
|
|
|
|
if (!sigsetjmp(jmp_buffer, 1))
|
|
raise(SIGUSR1);
|
|
|
|
if (segv_triggered)
|
|
printf("[OK]\t32 bit test\n");
|
|
|
|
return !segv_triggered;
|
|
}
|
|
|
|
void segv_handler_ptrace(int signum, siginfo_t *si, void *uc)
|
|
{
|
|
/* The SSP adjustment caused a segfault. */
|
|
exit(0);
|
|
}
|
|
|
|
int test_ptrace(void)
|
|
{
|
|
unsigned long saved_ssp, ssp = 0;
|
|
struct sigaction sa= {};
|
|
struct iovec iov;
|
|
int status;
|
|
int pid;
|
|
|
|
iov.iov_base = &ssp;
|
|
iov.iov_len = sizeof(ssp);
|
|
|
|
pid = fork();
|
|
if (!pid) {
|
|
ssp = get_ssp();
|
|
|
|
sa.sa_sigaction = segv_handler_ptrace;
|
|
sa.sa_flags = SA_SIGINFO;
|
|
if (sigaction(SIGSEGV, &sa, NULL))
|
|
return 1;
|
|
|
|
ptrace(PTRACE_TRACEME, NULL, NULL, NULL);
|
|
/*
|
|
* The parent will tweak the SSP and return from this function
|
|
* will #CP.
|
|
*/
|
|
raise(SIGTRAP);
|
|
|
|
exit(1);
|
|
}
|
|
|
|
while (waitpid(pid, &status, 0) != -1 && WSTOPSIG(status) != SIGTRAP);
|
|
|
|
if (ptrace(PTRACE_GETREGSET, pid, NT_X86_SHSTK, &iov)) {
|
|
printf("[INFO]\tFailed to PTRACE_GETREGS\n");
|
|
goto out_kill;
|
|
}
|
|
|
|
if (!ssp) {
|
|
printf("[INFO]\tPtrace child SSP was 0\n");
|
|
goto out_kill;
|
|
}
|
|
|
|
saved_ssp = ssp;
|
|
|
|
iov.iov_len = 0;
|
|
if (!ptrace(PTRACE_SETREGSET, pid, NT_X86_SHSTK, &iov)) {
|
|
printf("[INFO]\tToo small size accepted via PTRACE_SETREGS\n");
|
|
goto out_kill;
|
|
}
|
|
|
|
iov.iov_len = sizeof(ssp) + 1;
|
|
if (!ptrace(PTRACE_SETREGSET, pid, NT_X86_SHSTK, &iov)) {
|
|
printf("[INFO]\tToo large size accepted via PTRACE_SETREGS\n");
|
|
goto out_kill;
|
|
}
|
|
|
|
ssp += 1;
|
|
if (!ptrace(PTRACE_SETREGSET, pid, NT_X86_SHSTK, &iov)) {
|
|
printf("[INFO]\tUnaligned SSP written via PTRACE_SETREGS\n");
|
|
goto out_kill;
|
|
}
|
|
|
|
ssp = 0xFFFFFFFFFFFF0000;
|
|
if (!ptrace(PTRACE_SETREGSET, pid, NT_X86_SHSTK, &iov)) {
|
|
printf("[INFO]\tKernel range SSP written via PTRACE_SETREGS\n");
|
|
goto out_kill;
|
|
}
|
|
|
|
/*
|
|
* Tweak the SSP so the child with #CP when it resumes and returns
|
|
* from raise()
|
|
*/
|
|
ssp = saved_ssp + 8;
|
|
iov.iov_len = sizeof(ssp);
|
|
if (ptrace(PTRACE_SETREGSET, pid, NT_X86_SHSTK, &iov)) {
|
|
printf("[INFO]\tFailed to PTRACE_SETREGS\n");
|
|
goto out_kill;
|
|
}
|
|
|
|
if (ptrace(PTRACE_DETACH, pid, NULL, NULL)) {
|
|
printf("[INFO]\tFailed to PTRACE_DETACH\n");
|
|
goto out_kill;
|
|
}
|
|
|
|
waitpid(pid, &status, 0);
|
|
if (WEXITSTATUS(status))
|
|
return 1;
|
|
|
|
printf("[OK]\tPtrace test\n");
|
|
return 0;
|
|
|
|
out_kill:
|
|
kill(pid, SIGKILL);
|
|
return 1;
|
|
}
|
|
|
|
int main(int argc, char *argv[])
|
|
{
|
|
int ret = 0;
|
|
|
|
if (ARCH_PRCTL(ARCH_SHSTK_ENABLE, ARCH_SHSTK_SHSTK)) {
|
|
printf("[SKIP]\tCould not enable Shadow stack\n");
|
|
return 1;
|
|
}
|
|
|
|
if (ARCH_PRCTL(ARCH_SHSTK_DISABLE, ARCH_SHSTK_SHSTK)) {
|
|
ret = 1;
|
|
printf("[FAIL]\tDisabling shadow stack failed\n");
|
|
}
|
|
|
|
if (ARCH_PRCTL(ARCH_SHSTK_ENABLE, ARCH_SHSTK_SHSTK)) {
|
|
printf("[SKIP]\tCould not re-enable Shadow stack\n");
|
|
return 1;
|
|
}
|
|
|
|
if (ARCH_PRCTL(ARCH_SHSTK_ENABLE, ARCH_SHSTK_WRSS)) {
|
|
printf("[SKIP]\tCould not enable WRSS\n");
|
|
ret = 1;
|
|
goto out;
|
|
}
|
|
|
|
/* Should have succeeded if here, but this is a test, so double check. */
|
|
if (!get_ssp()) {
|
|
printf("[FAIL]\tShadow stack disabled\n");
|
|
return 1;
|
|
}
|
|
|
|
if (test_shstk_pivot()) {
|
|
ret = 1;
|
|
printf("[FAIL]\tShadow stack pivot\n");
|
|
goto out;
|
|
}
|
|
|
|
if (test_shstk_faults()) {
|
|
ret = 1;
|
|
printf("[FAIL]\tShadow stack fault test\n");
|
|
goto out;
|
|
}
|
|
|
|
if (test_shstk_violation()) {
|
|
ret = 1;
|
|
printf("[FAIL]\tShadow stack violation test\n");
|
|
goto out;
|
|
}
|
|
|
|
if (test_gup()) {
|
|
ret = 1;
|
|
printf("[FAIL]\tShadow shadow stack gup\n");
|
|
goto out;
|
|
}
|
|
|
|
if (test_mprotect()) {
|
|
ret = 1;
|
|
printf("[FAIL]\tShadow shadow mprotect test\n");
|
|
goto out;
|
|
}
|
|
|
|
if (test_userfaultfd()) {
|
|
ret = 1;
|
|
printf("[FAIL]\tUserfaultfd test\n");
|
|
goto out;
|
|
}
|
|
|
|
if (test_guard_gap()) {
|
|
ret = 1;
|
|
printf("[FAIL]\tGuard gap test\n");
|
|
goto out;
|
|
}
|
|
|
|
if (test_ptrace()) {
|
|
ret = 1;
|
|
printf("[FAIL]\tptrace test\n");
|
|
}
|
|
|
|
if (test_32bit()) {
|
|
ret = 1;
|
|
printf("[FAIL]\t32 bit test\n");
|
|
goto out;
|
|
}
|
|
|
|
return ret;
|
|
|
|
out:
|
|
/*
|
|
* Disable shadow stack before the function returns, or there will be a
|
|
* shadow stack violation.
|
|
*/
|
|
if (ARCH_PRCTL(ARCH_SHSTK_DISABLE, ARCH_SHSTK_SHSTK)) {
|
|
ret = 1;
|
|
printf("[FAIL]\tDisabling shadow stack failed\n");
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
#endif
|