7f0add250f
This will make syncing fs.h to user space a little easier if we can pull the super block specific helpers out of fs.h and put them in super.h. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
1175 lines
32 KiB
C
1175 lines
32 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 2007 Oracle. All rights reserved.
|
|
*/
|
|
|
|
#include <linux/slab.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/writeback.h>
|
|
#include <linux/sched/mm.h>
|
|
#include "messages.h"
|
|
#include "misc.h"
|
|
#include "ctree.h"
|
|
#include "transaction.h"
|
|
#include "btrfs_inode.h"
|
|
#include "extent_io.h"
|
|
#include "disk-io.h"
|
|
#include "compression.h"
|
|
#include "delalloc-space.h"
|
|
#include "qgroup.h"
|
|
#include "subpage.h"
|
|
#include "file.h"
|
|
#include "super.h"
|
|
|
|
static struct kmem_cache *btrfs_ordered_extent_cache;
|
|
|
|
static u64 entry_end(struct btrfs_ordered_extent *entry)
|
|
{
|
|
if (entry->file_offset + entry->num_bytes < entry->file_offset)
|
|
return (u64)-1;
|
|
return entry->file_offset + entry->num_bytes;
|
|
}
|
|
|
|
/* returns NULL if the insertion worked, or it returns the node it did find
|
|
* in the tree
|
|
*/
|
|
static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
|
|
struct rb_node *node)
|
|
{
|
|
struct rb_node **p = &root->rb_node;
|
|
struct rb_node *parent = NULL;
|
|
struct btrfs_ordered_extent *entry;
|
|
|
|
while (*p) {
|
|
parent = *p;
|
|
entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
|
|
|
|
if (file_offset < entry->file_offset)
|
|
p = &(*p)->rb_left;
|
|
else if (file_offset >= entry_end(entry))
|
|
p = &(*p)->rb_right;
|
|
else
|
|
return parent;
|
|
}
|
|
|
|
rb_link_node(node, parent, p);
|
|
rb_insert_color(node, root);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* look for a given offset in the tree, and if it can't be found return the
|
|
* first lesser offset
|
|
*/
|
|
static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
|
|
struct rb_node **prev_ret)
|
|
{
|
|
struct rb_node *n = root->rb_node;
|
|
struct rb_node *prev = NULL;
|
|
struct rb_node *test;
|
|
struct btrfs_ordered_extent *entry;
|
|
struct btrfs_ordered_extent *prev_entry = NULL;
|
|
|
|
while (n) {
|
|
entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
|
|
prev = n;
|
|
prev_entry = entry;
|
|
|
|
if (file_offset < entry->file_offset)
|
|
n = n->rb_left;
|
|
else if (file_offset >= entry_end(entry))
|
|
n = n->rb_right;
|
|
else
|
|
return n;
|
|
}
|
|
if (!prev_ret)
|
|
return NULL;
|
|
|
|
while (prev && file_offset >= entry_end(prev_entry)) {
|
|
test = rb_next(prev);
|
|
if (!test)
|
|
break;
|
|
prev_entry = rb_entry(test, struct btrfs_ordered_extent,
|
|
rb_node);
|
|
if (file_offset < entry_end(prev_entry))
|
|
break;
|
|
|
|
prev = test;
|
|
}
|
|
if (prev)
|
|
prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
|
|
rb_node);
|
|
while (prev && file_offset < entry_end(prev_entry)) {
|
|
test = rb_prev(prev);
|
|
if (!test)
|
|
break;
|
|
prev_entry = rb_entry(test, struct btrfs_ordered_extent,
|
|
rb_node);
|
|
prev = test;
|
|
}
|
|
*prev_ret = prev;
|
|
return NULL;
|
|
}
|
|
|
|
static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
|
|
u64 len)
|
|
{
|
|
if (file_offset + len <= entry->file_offset ||
|
|
entry->file_offset + entry->num_bytes <= file_offset)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* look find the first ordered struct that has this offset, otherwise
|
|
* the first one less than this offset
|
|
*/
|
|
static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
|
|
u64 file_offset)
|
|
{
|
|
struct rb_root *root = &tree->tree;
|
|
struct rb_node *prev = NULL;
|
|
struct rb_node *ret;
|
|
struct btrfs_ordered_extent *entry;
|
|
|
|
if (tree->last) {
|
|
entry = rb_entry(tree->last, struct btrfs_ordered_extent,
|
|
rb_node);
|
|
if (in_range(file_offset, entry->file_offset, entry->num_bytes))
|
|
return tree->last;
|
|
}
|
|
ret = __tree_search(root, file_offset, &prev);
|
|
if (!ret)
|
|
ret = prev;
|
|
if (ret)
|
|
tree->last = ret;
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Add an ordered extent to the per-inode tree.
|
|
*
|
|
* @inode: Inode that this extent is for.
|
|
* @file_offset: Logical offset in file where the extent starts.
|
|
* @num_bytes: Logical length of extent in file.
|
|
* @ram_bytes: Full length of unencoded data.
|
|
* @disk_bytenr: Offset of extent on disk.
|
|
* @disk_num_bytes: Size of extent on disk.
|
|
* @offset: Offset into unencoded data where file data starts.
|
|
* @flags: Flags specifying type of extent (1 << BTRFS_ORDERED_*).
|
|
* @compress_type: Compression algorithm used for data.
|
|
*
|
|
* Most of these parameters correspond to &struct btrfs_file_extent_item. The
|
|
* tree is given a single reference on the ordered extent that was inserted.
|
|
*
|
|
* Return: 0 or -ENOMEM.
|
|
*/
|
|
int btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset,
|
|
u64 num_bytes, u64 ram_bytes, u64 disk_bytenr,
|
|
u64 disk_num_bytes, u64 offset, unsigned flags,
|
|
int compress_type)
|
|
{
|
|
struct btrfs_root *root = inode->root;
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
|
|
struct rb_node *node;
|
|
struct btrfs_ordered_extent *entry;
|
|
int ret;
|
|
|
|
if (flags &
|
|
((1 << BTRFS_ORDERED_NOCOW) | (1 << BTRFS_ORDERED_PREALLOC))) {
|
|
/* For nocow write, we can release the qgroup rsv right now */
|
|
ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes);
|
|
if (ret < 0)
|
|
return ret;
|
|
ret = 0;
|
|
} else {
|
|
/*
|
|
* The ordered extent has reserved qgroup space, release now
|
|
* and pass the reserved number for qgroup_record to free.
|
|
*/
|
|
ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
|
|
if (!entry)
|
|
return -ENOMEM;
|
|
|
|
entry->file_offset = file_offset;
|
|
entry->num_bytes = num_bytes;
|
|
entry->ram_bytes = ram_bytes;
|
|
entry->disk_bytenr = disk_bytenr;
|
|
entry->disk_num_bytes = disk_num_bytes;
|
|
entry->offset = offset;
|
|
entry->bytes_left = num_bytes;
|
|
entry->inode = igrab(&inode->vfs_inode);
|
|
entry->compress_type = compress_type;
|
|
entry->truncated_len = (u64)-1;
|
|
entry->qgroup_rsv = ret;
|
|
entry->physical = (u64)-1;
|
|
|
|
ASSERT((flags & ~BTRFS_ORDERED_TYPE_FLAGS) == 0);
|
|
entry->flags = flags;
|
|
|
|
percpu_counter_add_batch(&fs_info->ordered_bytes, num_bytes,
|
|
fs_info->delalloc_batch);
|
|
|
|
/* one ref for the tree */
|
|
refcount_set(&entry->refs, 1);
|
|
init_waitqueue_head(&entry->wait);
|
|
INIT_LIST_HEAD(&entry->list);
|
|
INIT_LIST_HEAD(&entry->log_list);
|
|
INIT_LIST_HEAD(&entry->root_extent_list);
|
|
INIT_LIST_HEAD(&entry->work_list);
|
|
init_completion(&entry->completion);
|
|
|
|
trace_btrfs_ordered_extent_add(inode, entry);
|
|
|
|
spin_lock_irq(&tree->lock);
|
|
node = tree_insert(&tree->tree, file_offset,
|
|
&entry->rb_node);
|
|
if (node)
|
|
btrfs_panic(fs_info, -EEXIST,
|
|
"inconsistency in ordered tree at offset %llu",
|
|
file_offset);
|
|
spin_unlock_irq(&tree->lock);
|
|
|
|
spin_lock(&root->ordered_extent_lock);
|
|
list_add_tail(&entry->root_extent_list,
|
|
&root->ordered_extents);
|
|
root->nr_ordered_extents++;
|
|
if (root->nr_ordered_extents == 1) {
|
|
spin_lock(&fs_info->ordered_root_lock);
|
|
BUG_ON(!list_empty(&root->ordered_root));
|
|
list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
|
|
spin_unlock(&fs_info->ordered_root_lock);
|
|
}
|
|
spin_unlock(&root->ordered_extent_lock);
|
|
|
|
/*
|
|
* We don't need the count_max_extents here, we can assume that all of
|
|
* that work has been done at higher layers, so this is truly the
|
|
* smallest the extent is going to get.
|
|
*/
|
|
spin_lock(&inode->lock);
|
|
btrfs_mod_outstanding_extents(inode, 1);
|
|
spin_unlock(&inode->lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Add a struct btrfs_ordered_sum into the list of checksums to be inserted
|
|
* when an ordered extent is finished. If the list covers more than one
|
|
* ordered extent, it is split across multiples.
|
|
*/
|
|
void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
|
|
struct btrfs_ordered_sum *sum)
|
|
{
|
|
struct btrfs_ordered_inode_tree *tree;
|
|
|
|
tree = &BTRFS_I(entry->inode)->ordered_tree;
|
|
spin_lock_irq(&tree->lock);
|
|
list_add_tail(&sum->list, &entry->list);
|
|
spin_unlock_irq(&tree->lock);
|
|
}
|
|
|
|
static void finish_ordered_fn(struct btrfs_work *work)
|
|
{
|
|
struct btrfs_ordered_extent *ordered_extent;
|
|
|
|
ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
|
|
btrfs_finish_ordered_io(ordered_extent);
|
|
}
|
|
|
|
/*
|
|
* Mark all ordered extents io inside the specified range finished.
|
|
*
|
|
* @page: The involved page for the operation.
|
|
* For uncompressed buffered IO, the page status also needs to be
|
|
* updated to indicate whether the pending ordered io is finished.
|
|
* Can be NULL for direct IO and compressed write.
|
|
* For these cases, callers are ensured they won't execute the
|
|
* endio function twice.
|
|
*
|
|
* This function is called for endio, thus the range must have ordered
|
|
* extent(s) covering it.
|
|
*/
|
|
void btrfs_mark_ordered_io_finished(struct btrfs_inode *inode,
|
|
struct page *page, u64 file_offset,
|
|
u64 num_bytes, bool uptodate)
|
|
{
|
|
struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
|
|
struct btrfs_fs_info *fs_info = inode->root->fs_info;
|
|
struct btrfs_workqueue *wq;
|
|
struct rb_node *node;
|
|
struct btrfs_ordered_extent *entry = NULL;
|
|
unsigned long flags;
|
|
u64 cur = file_offset;
|
|
|
|
if (btrfs_is_free_space_inode(inode))
|
|
wq = fs_info->endio_freespace_worker;
|
|
else
|
|
wq = fs_info->endio_write_workers;
|
|
|
|
if (page)
|
|
ASSERT(page->mapping && page_offset(page) <= file_offset &&
|
|
file_offset + num_bytes <= page_offset(page) + PAGE_SIZE);
|
|
|
|
spin_lock_irqsave(&tree->lock, flags);
|
|
while (cur < file_offset + num_bytes) {
|
|
u64 entry_end;
|
|
u64 end;
|
|
u32 len;
|
|
|
|
node = tree_search(tree, cur);
|
|
/* No ordered extents at all */
|
|
if (!node)
|
|
break;
|
|
|
|
entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
|
|
entry_end = entry->file_offset + entry->num_bytes;
|
|
/*
|
|
* |<-- OE --->| |
|
|
* cur
|
|
* Go to next OE.
|
|
*/
|
|
if (cur >= entry_end) {
|
|
node = rb_next(node);
|
|
/* No more ordered extents, exit */
|
|
if (!node)
|
|
break;
|
|
entry = rb_entry(node, struct btrfs_ordered_extent,
|
|
rb_node);
|
|
|
|
/* Go to next ordered extent and continue */
|
|
cur = entry->file_offset;
|
|
continue;
|
|
}
|
|
/*
|
|
* | |<--- OE --->|
|
|
* cur
|
|
* Go to the start of OE.
|
|
*/
|
|
if (cur < entry->file_offset) {
|
|
cur = entry->file_offset;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Now we are definitely inside one ordered extent.
|
|
*
|
|
* |<--- OE --->|
|
|
* |
|
|
* cur
|
|
*/
|
|
end = min(entry->file_offset + entry->num_bytes,
|
|
file_offset + num_bytes) - 1;
|
|
ASSERT(end + 1 - cur < U32_MAX);
|
|
len = end + 1 - cur;
|
|
|
|
if (page) {
|
|
/*
|
|
* Ordered (Private2) bit indicates whether we still
|
|
* have pending io unfinished for the ordered extent.
|
|
*
|
|
* If there's no such bit, we need to skip to next range.
|
|
*/
|
|
if (!btrfs_page_test_ordered(fs_info, page, cur, len)) {
|
|
cur += len;
|
|
continue;
|
|
}
|
|
btrfs_page_clear_ordered(fs_info, page, cur, len);
|
|
}
|
|
|
|
/* Now we're fine to update the accounting */
|
|
if (unlikely(len > entry->bytes_left)) {
|
|
WARN_ON(1);
|
|
btrfs_crit(fs_info,
|
|
"bad ordered extent accounting, root=%llu ino=%llu OE offset=%llu OE len=%llu to_dec=%u left=%llu",
|
|
inode->root->root_key.objectid,
|
|
btrfs_ino(inode),
|
|
entry->file_offset,
|
|
entry->num_bytes,
|
|
len, entry->bytes_left);
|
|
entry->bytes_left = 0;
|
|
} else {
|
|
entry->bytes_left -= len;
|
|
}
|
|
|
|
if (!uptodate)
|
|
set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
|
|
|
|
/*
|
|
* All the IO of the ordered extent is finished, we need to queue
|
|
* the finish_func to be executed.
|
|
*/
|
|
if (entry->bytes_left == 0) {
|
|
set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
|
|
cond_wake_up(&entry->wait);
|
|
refcount_inc(&entry->refs);
|
|
trace_btrfs_ordered_extent_mark_finished(inode, entry);
|
|
spin_unlock_irqrestore(&tree->lock, flags);
|
|
btrfs_init_work(&entry->work, finish_ordered_fn, NULL, NULL);
|
|
btrfs_queue_work(wq, &entry->work);
|
|
spin_lock_irqsave(&tree->lock, flags);
|
|
}
|
|
cur += len;
|
|
}
|
|
spin_unlock_irqrestore(&tree->lock, flags);
|
|
}
|
|
|
|
/*
|
|
* Finish IO for one ordered extent across a given range. The range can only
|
|
* contain one ordered extent.
|
|
*
|
|
* @cached: The cached ordered extent. If not NULL, we can skip the tree
|
|
* search and use the ordered extent directly.
|
|
* Will be also used to store the finished ordered extent.
|
|
* @file_offset: File offset for the finished IO
|
|
* @io_size: Length of the finish IO range
|
|
*
|
|
* Return true if the ordered extent is finished in the range, and update
|
|
* @cached.
|
|
* Return false otherwise.
|
|
*
|
|
* NOTE: The range can NOT cross multiple ordered extents.
|
|
* Thus caller should ensure the range doesn't cross ordered extents.
|
|
*/
|
|
bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode,
|
|
struct btrfs_ordered_extent **cached,
|
|
u64 file_offset, u64 io_size)
|
|
{
|
|
struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
|
|
struct rb_node *node;
|
|
struct btrfs_ordered_extent *entry = NULL;
|
|
unsigned long flags;
|
|
bool finished = false;
|
|
|
|
spin_lock_irqsave(&tree->lock, flags);
|
|
if (cached && *cached) {
|
|
entry = *cached;
|
|
goto have_entry;
|
|
}
|
|
|
|
node = tree_search(tree, file_offset);
|
|
if (!node)
|
|
goto out;
|
|
|
|
entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
|
|
have_entry:
|
|
if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
|
|
goto out;
|
|
|
|
if (io_size > entry->bytes_left)
|
|
btrfs_crit(inode->root->fs_info,
|
|
"bad ordered accounting left %llu size %llu",
|
|
entry->bytes_left, io_size);
|
|
|
|
entry->bytes_left -= io_size;
|
|
|
|
if (entry->bytes_left == 0) {
|
|
/*
|
|
* Ensure only one caller can set the flag and finished_ret
|
|
* accordingly
|
|
*/
|
|
finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
|
|
/* test_and_set_bit implies a barrier */
|
|
cond_wake_up_nomb(&entry->wait);
|
|
}
|
|
out:
|
|
if (finished && cached && entry) {
|
|
*cached = entry;
|
|
refcount_inc(&entry->refs);
|
|
trace_btrfs_ordered_extent_dec_test_pending(inode, entry);
|
|
}
|
|
spin_unlock_irqrestore(&tree->lock, flags);
|
|
return finished;
|
|
}
|
|
|
|
/*
|
|
* used to drop a reference on an ordered extent. This will free
|
|
* the extent if the last reference is dropped
|
|
*/
|
|
void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
|
|
{
|
|
struct list_head *cur;
|
|
struct btrfs_ordered_sum *sum;
|
|
|
|
trace_btrfs_ordered_extent_put(BTRFS_I(entry->inode), entry);
|
|
|
|
if (refcount_dec_and_test(&entry->refs)) {
|
|
ASSERT(list_empty(&entry->root_extent_list));
|
|
ASSERT(list_empty(&entry->log_list));
|
|
ASSERT(RB_EMPTY_NODE(&entry->rb_node));
|
|
if (entry->inode)
|
|
btrfs_add_delayed_iput(entry->inode);
|
|
while (!list_empty(&entry->list)) {
|
|
cur = entry->list.next;
|
|
sum = list_entry(cur, struct btrfs_ordered_sum, list);
|
|
list_del(&sum->list);
|
|
kvfree(sum);
|
|
}
|
|
kmem_cache_free(btrfs_ordered_extent_cache, entry);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* remove an ordered extent from the tree. No references are dropped
|
|
* and waiters are woken up.
|
|
*/
|
|
void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode,
|
|
struct btrfs_ordered_extent *entry)
|
|
{
|
|
struct btrfs_ordered_inode_tree *tree;
|
|
struct btrfs_root *root = btrfs_inode->root;
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct rb_node *node;
|
|
bool pending;
|
|
bool freespace_inode;
|
|
|
|
/*
|
|
* If this is a free space inode the thread has not acquired the ordered
|
|
* extents lockdep map.
|
|
*/
|
|
freespace_inode = btrfs_is_free_space_inode(btrfs_inode);
|
|
|
|
btrfs_lockdep_acquire(fs_info, btrfs_trans_pending_ordered);
|
|
/* This is paired with btrfs_add_ordered_extent. */
|
|
spin_lock(&btrfs_inode->lock);
|
|
btrfs_mod_outstanding_extents(btrfs_inode, -1);
|
|
spin_unlock(&btrfs_inode->lock);
|
|
if (root != fs_info->tree_root) {
|
|
u64 release;
|
|
|
|
if (test_bit(BTRFS_ORDERED_ENCODED, &entry->flags))
|
|
release = entry->disk_num_bytes;
|
|
else
|
|
release = entry->num_bytes;
|
|
btrfs_delalloc_release_metadata(btrfs_inode, release, false);
|
|
}
|
|
|
|
percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes,
|
|
fs_info->delalloc_batch);
|
|
|
|
tree = &btrfs_inode->ordered_tree;
|
|
spin_lock_irq(&tree->lock);
|
|
node = &entry->rb_node;
|
|
rb_erase(node, &tree->tree);
|
|
RB_CLEAR_NODE(node);
|
|
if (tree->last == node)
|
|
tree->last = NULL;
|
|
set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
|
|
pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags);
|
|
spin_unlock_irq(&tree->lock);
|
|
|
|
/*
|
|
* The current running transaction is waiting on us, we need to let it
|
|
* know that we're complete and wake it up.
|
|
*/
|
|
if (pending) {
|
|
struct btrfs_transaction *trans;
|
|
|
|
/*
|
|
* The checks for trans are just a formality, it should be set,
|
|
* but if it isn't we don't want to deref/assert under the spin
|
|
* lock, so be nice and check if trans is set, but ASSERT() so
|
|
* if it isn't set a developer will notice.
|
|
*/
|
|
spin_lock(&fs_info->trans_lock);
|
|
trans = fs_info->running_transaction;
|
|
if (trans)
|
|
refcount_inc(&trans->use_count);
|
|
spin_unlock(&fs_info->trans_lock);
|
|
|
|
ASSERT(trans);
|
|
if (trans) {
|
|
if (atomic_dec_and_test(&trans->pending_ordered))
|
|
wake_up(&trans->pending_wait);
|
|
btrfs_put_transaction(trans);
|
|
}
|
|
}
|
|
|
|
btrfs_lockdep_release(fs_info, btrfs_trans_pending_ordered);
|
|
|
|
spin_lock(&root->ordered_extent_lock);
|
|
list_del_init(&entry->root_extent_list);
|
|
root->nr_ordered_extents--;
|
|
|
|
trace_btrfs_ordered_extent_remove(btrfs_inode, entry);
|
|
|
|
if (!root->nr_ordered_extents) {
|
|
spin_lock(&fs_info->ordered_root_lock);
|
|
BUG_ON(list_empty(&root->ordered_root));
|
|
list_del_init(&root->ordered_root);
|
|
spin_unlock(&fs_info->ordered_root_lock);
|
|
}
|
|
spin_unlock(&root->ordered_extent_lock);
|
|
wake_up(&entry->wait);
|
|
if (!freespace_inode)
|
|
btrfs_lockdep_release(fs_info, btrfs_ordered_extent);
|
|
}
|
|
|
|
static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
|
|
{
|
|
struct btrfs_ordered_extent *ordered;
|
|
|
|
ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
|
|
btrfs_start_ordered_extent(ordered, 1);
|
|
complete(&ordered->completion);
|
|
}
|
|
|
|
/*
|
|
* wait for all the ordered extents in a root. This is done when balancing
|
|
* space between drives.
|
|
*/
|
|
u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
|
|
const u64 range_start, const u64 range_len)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
LIST_HEAD(splice);
|
|
LIST_HEAD(skipped);
|
|
LIST_HEAD(works);
|
|
struct btrfs_ordered_extent *ordered, *next;
|
|
u64 count = 0;
|
|
const u64 range_end = range_start + range_len;
|
|
|
|
mutex_lock(&root->ordered_extent_mutex);
|
|
spin_lock(&root->ordered_extent_lock);
|
|
list_splice_init(&root->ordered_extents, &splice);
|
|
while (!list_empty(&splice) && nr) {
|
|
ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
|
|
root_extent_list);
|
|
|
|
if (range_end <= ordered->disk_bytenr ||
|
|
ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) {
|
|
list_move_tail(&ordered->root_extent_list, &skipped);
|
|
cond_resched_lock(&root->ordered_extent_lock);
|
|
continue;
|
|
}
|
|
|
|
list_move_tail(&ordered->root_extent_list,
|
|
&root->ordered_extents);
|
|
refcount_inc(&ordered->refs);
|
|
spin_unlock(&root->ordered_extent_lock);
|
|
|
|
btrfs_init_work(&ordered->flush_work,
|
|
btrfs_run_ordered_extent_work, NULL, NULL);
|
|
list_add_tail(&ordered->work_list, &works);
|
|
btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
|
|
|
|
cond_resched();
|
|
spin_lock(&root->ordered_extent_lock);
|
|
if (nr != U64_MAX)
|
|
nr--;
|
|
count++;
|
|
}
|
|
list_splice_tail(&skipped, &root->ordered_extents);
|
|
list_splice_tail(&splice, &root->ordered_extents);
|
|
spin_unlock(&root->ordered_extent_lock);
|
|
|
|
list_for_each_entry_safe(ordered, next, &works, work_list) {
|
|
list_del_init(&ordered->work_list);
|
|
wait_for_completion(&ordered->completion);
|
|
btrfs_put_ordered_extent(ordered);
|
|
cond_resched();
|
|
}
|
|
mutex_unlock(&root->ordered_extent_mutex);
|
|
|
|
return count;
|
|
}
|
|
|
|
void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
|
|
const u64 range_start, const u64 range_len)
|
|
{
|
|
struct btrfs_root *root;
|
|
struct list_head splice;
|
|
u64 done;
|
|
|
|
INIT_LIST_HEAD(&splice);
|
|
|
|
mutex_lock(&fs_info->ordered_operations_mutex);
|
|
spin_lock(&fs_info->ordered_root_lock);
|
|
list_splice_init(&fs_info->ordered_roots, &splice);
|
|
while (!list_empty(&splice) && nr) {
|
|
root = list_first_entry(&splice, struct btrfs_root,
|
|
ordered_root);
|
|
root = btrfs_grab_root(root);
|
|
BUG_ON(!root);
|
|
list_move_tail(&root->ordered_root,
|
|
&fs_info->ordered_roots);
|
|
spin_unlock(&fs_info->ordered_root_lock);
|
|
|
|
done = btrfs_wait_ordered_extents(root, nr,
|
|
range_start, range_len);
|
|
btrfs_put_root(root);
|
|
|
|
spin_lock(&fs_info->ordered_root_lock);
|
|
if (nr != U64_MAX) {
|
|
nr -= done;
|
|
}
|
|
}
|
|
list_splice_tail(&splice, &fs_info->ordered_roots);
|
|
spin_unlock(&fs_info->ordered_root_lock);
|
|
mutex_unlock(&fs_info->ordered_operations_mutex);
|
|
}
|
|
|
|
/*
|
|
* Used to start IO or wait for a given ordered extent to finish.
|
|
*
|
|
* If wait is one, this effectively waits on page writeback for all the pages
|
|
* in the extent, and it waits on the io completion code to insert
|
|
* metadata into the btree corresponding to the extent
|
|
*/
|
|
void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry, int wait)
|
|
{
|
|
u64 start = entry->file_offset;
|
|
u64 end = start + entry->num_bytes - 1;
|
|
struct btrfs_inode *inode = BTRFS_I(entry->inode);
|
|
bool freespace_inode;
|
|
|
|
trace_btrfs_ordered_extent_start(inode, entry);
|
|
|
|
/*
|
|
* If this is a free space inode do not take the ordered extents lockdep
|
|
* map.
|
|
*/
|
|
freespace_inode = btrfs_is_free_space_inode(inode);
|
|
|
|
/*
|
|
* pages in the range can be dirty, clean or writeback. We
|
|
* start IO on any dirty ones so the wait doesn't stall waiting
|
|
* for the flusher thread to find them
|
|
*/
|
|
if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
|
|
filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end);
|
|
if (wait) {
|
|
if (!freespace_inode)
|
|
btrfs_might_wait_for_event(inode->root->fs_info, btrfs_ordered_extent);
|
|
wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
|
|
&entry->flags));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Used to wait on ordered extents across a large range of bytes.
|
|
*/
|
|
int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
|
|
{
|
|
int ret = 0;
|
|
int ret_wb = 0;
|
|
u64 end;
|
|
u64 orig_end;
|
|
struct btrfs_ordered_extent *ordered;
|
|
|
|
if (start + len < start) {
|
|
orig_end = INT_LIMIT(loff_t);
|
|
} else {
|
|
orig_end = start + len - 1;
|
|
if (orig_end > INT_LIMIT(loff_t))
|
|
orig_end = INT_LIMIT(loff_t);
|
|
}
|
|
|
|
/* start IO across the range first to instantiate any delalloc
|
|
* extents
|
|
*/
|
|
ret = btrfs_fdatawrite_range(inode, start, orig_end);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* If we have a writeback error don't return immediately. Wait first
|
|
* for any ordered extents that haven't completed yet. This is to make
|
|
* sure no one can dirty the same page ranges and call writepages()
|
|
* before the ordered extents complete - to avoid failures (-EEXIST)
|
|
* when adding the new ordered extents to the ordered tree.
|
|
*/
|
|
ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
|
|
|
|
end = orig_end;
|
|
while (1) {
|
|
ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), end);
|
|
if (!ordered)
|
|
break;
|
|
if (ordered->file_offset > orig_end) {
|
|
btrfs_put_ordered_extent(ordered);
|
|
break;
|
|
}
|
|
if (ordered->file_offset + ordered->num_bytes <= start) {
|
|
btrfs_put_ordered_extent(ordered);
|
|
break;
|
|
}
|
|
btrfs_start_ordered_extent(ordered, 1);
|
|
end = ordered->file_offset;
|
|
/*
|
|
* If the ordered extent had an error save the error but don't
|
|
* exit without waiting first for all other ordered extents in
|
|
* the range to complete.
|
|
*/
|
|
if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
|
|
ret = -EIO;
|
|
btrfs_put_ordered_extent(ordered);
|
|
if (end == 0 || end == start)
|
|
break;
|
|
end--;
|
|
}
|
|
return ret_wb ? ret_wb : ret;
|
|
}
|
|
|
|
/*
|
|
* find an ordered extent corresponding to file_offset. return NULL if
|
|
* nothing is found, otherwise take a reference on the extent and return it
|
|
*/
|
|
struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode,
|
|
u64 file_offset)
|
|
{
|
|
struct btrfs_ordered_inode_tree *tree;
|
|
struct rb_node *node;
|
|
struct btrfs_ordered_extent *entry = NULL;
|
|
unsigned long flags;
|
|
|
|
tree = &inode->ordered_tree;
|
|
spin_lock_irqsave(&tree->lock, flags);
|
|
node = tree_search(tree, file_offset);
|
|
if (!node)
|
|
goto out;
|
|
|
|
entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
|
|
if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
|
|
entry = NULL;
|
|
if (entry) {
|
|
refcount_inc(&entry->refs);
|
|
trace_btrfs_ordered_extent_lookup(inode, entry);
|
|
}
|
|
out:
|
|
spin_unlock_irqrestore(&tree->lock, flags);
|
|
return entry;
|
|
}
|
|
|
|
/* Since the DIO code tries to lock a wide area we need to look for any ordered
|
|
* extents that exist in the range, rather than just the start of the range.
|
|
*/
|
|
struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
|
|
struct btrfs_inode *inode, u64 file_offset, u64 len)
|
|
{
|
|
struct btrfs_ordered_inode_tree *tree;
|
|
struct rb_node *node;
|
|
struct btrfs_ordered_extent *entry = NULL;
|
|
|
|
tree = &inode->ordered_tree;
|
|
spin_lock_irq(&tree->lock);
|
|
node = tree_search(tree, file_offset);
|
|
if (!node) {
|
|
node = tree_search(tree, file_offset + len);
|
|
if (!node)
|
|
goto out;
|
|
}
|
|
|
|
while (1) {
|
|
entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
|
|
if (range_overlaps(entry, file_offset, len))
|
|
break;
|
|
|
|
if (entry->file_offset >= file_offset + len) {
|
|
entry = NULL;
|
|
break;
|
|
}
|
|
entry = NULL;
|
|
node = rb_next(node);
|
|
if (!node)
|
|
break;
|
|
}
|
|
out:
|
|
if (entry) {
|
|
refcount_inc(&entry->refs);
|
|
trace_btrfs_ordered_extent_lookup_range(inode, entry);
|
|
}
|
|
spin_unlock_irq(&tree->lock);
|
|
return entry;
|
|
}
|
|
|
|
/*
|
|
* Adds all ordered extents to the given list. The list ends up sorted by the
|
|
* file_offset of the ordered extents.
|
|
*/
|
|
void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode,
|
|
struct list_head *list)
|
|
{
|
|
struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
|
|
struct rb_node *n;
|
|
|
|
ASSERT(inode_is_locked(&inode->vfs_inode));
|
|
|
|
spin_lock_irq(&tree->lock);
|
|
for (n = rb_first(&tree->tree); n; n = rb_next(n)) {
|
|
struct btrfs_ordered_extent *ordered;
|
|
|
|
ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
|
|
|
|
if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
|
|
continue;
|
|
|
|
ASSERT(list_empty(&ordered->log_list));
|
|
list_add_tail(&ordered->log_list, list);
|
|
refcount_inc(&ordered->refs);
|
|
trace_btrfs_ordered_extent_lookup_for_logging(inode, ordered);
|
|
}
|
|
spin_unlock_irq(&tree->lock);
|
|
}
|
|
|
|
/*
|
|
* lookup and return any extent before 'file_offset'. NULL is returned
|
|
* if none is found
|
|
*/
|
|
struct btrfs_ordered_extent *
|
|
btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset)
|
|
{
|
|
struct btrfs_ordered_inode_tree *tree;
|
|
struct rb_node *node;
|
|
struct btrfs_ordered_extent *entry = NULL;
|
|
|
|
tree = &inode->ordered_tree;
|
|
spin_lock_irq(&tree->lock);
|
|
node = tree_search(tree, file_offset);
|
|
if (!node)
|
|
goto out;
|
|
|
|
entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
|
|
refcount_inc(&entry->refs);
|
|
trace_btrfs_ordered_extent_lookup_first(inode, entry);
|
|
out:
|
|
spin_unlock_irq(&tree->lock);
|
|
return entry;
|
|
}
|
|
|
|
/*
|
|
* Lookup the first ordered extent that overlaps the range
|
|
* [@file_offset, @file_offset + @len).
|
|
*
|
|
* The difference between this and btrfs_lookup_first_ordered_extent() is
|
|
* that this one won't return any ordered extent that does not overlap the range.
|
|
* And the difference against btrfs_lookup_ordered_extent() is, this function
|
|
* ensures the first ordered extent gets returned.
|
|
*/
|
|
struct btrfs_ordered_extent *btrfs_lookup_first_ordered_range(
|
|
struct btrfs_inode *inode, u64 file_offset, u64 len)
|
|
{
|
|
struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
|
|
struct rb_node *node;
|
|
struct rb_node *cur;
|
|
struct rb_node *prev;
|
|
struct rb_node *next;
|
|
struct btrfs_ordered_extent *entry = NULL;
|
|
|
|
spin_lock_irq(&tree->lock);
|
|
node = tree->tree.rb_node;
|
|
/*
|
|
* Here we don't want to use tree_search() which will use tree->last
|
|
* and screw up the search order.
|
|
* And __tree_search() can't return the adjacent ordered extents
|
|
* either, thus here we do our own search.
|
|
*/
|
|
while (node) {
|
|
entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
|
|
|
|
if (file_offset < entry->file_offset) {
|
|
node = node->rb_left;
|
|
} else if (file_offset >= entry_end(entry)) {
|
|
node = node->rb_right;
|
|
} else {
|
|
/*
|
|
* Direct hit, got an ordered extent that starts at
|
|
* @file_offset
|
|
*/
|
|
goto out;
|
|
}
|
|
}
|
|
if (!entry) {
|
|
/* Empty tree */
|
|
goto out;
|
|
}
|
|
|
|
cur = &entry->rb_node;
|
|
/* We got an entry around @file_offset, check adjacent entries */
|
|
if (entry->file_offset < file_offset) {
|
|
prev = cur;
|
|
next = rb_next(cur);
|
|
} else {
|
|
prev = rb_prev(cur);
|
|
next = cur;
|
|
}
|
|
if (prev) {
|
|
entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node);
|
|
if (range_overlaps(entry, file_offset, len))
|
|
goto out;
|
|
}
|
|
if (next) {
|
|
entry = rb_entry(next, struct btrfs_ordered_extent, rb_node);
|
|
if (range_overlaps(entry, file_offset, len))
|
|
goto out;
|
|
}
|
|
/* No ordered extent in the range */
|
|
entry = NULL;
|
|
out:
|
|
if (entry) {
|
|
refcount_inc(&entry->refs);
|
|
trace_btrfs_ordered_extent_lookup_first_range(inode, entry);
|
|
}
|
|
|
|
spin_unlock_irq(&tree->lock);
|
|
return entry;
|
|
}
|
|
|
|
/*
|
|
* Lock the passed range and ensures all pending ordered extents in it are run
|
|
* to completion.
|
|
*
|
|
* @inode: Inode whose ordered tree is to be searched
|
|
* @start: Beginning of range to flush
|
|
* @end: Last byte of range to lock
|
|
* @cached_state: If passed, will return the extent state responsible for the
|
|
* locked range. It's the caller's responsibility to free the
|
|
* cached state.
|
|
*
|
|
* Always return with the given range locked, ensuring after it's called no
|
|
* order extent can be pending.
|
|
*/
|
|
void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start,
|
|
u64 end,
|
|
struct extent_state **cached_state)
|
|
{
|
|
struct btrfs_ordered_extent *ordered;
|
|
struct extent_state *cache = NULL;
|
|
struct extent_state **cachedp = &cache;
|
|
|
|
if (cached_state)
|
|
cachedp = cached_state;
|
|
|
|
while (1) {
|
|
lock_extent(&inode->io_tree, start, end, cachedp);
|
|
ordered = btrfs_lookup_ordered_range(inode, start,
|
|
end - start + 1);
|
|
if (!ordered) {
|
|
/*
|
|
* If no external cached_state has been passed then
|
|
* decrement the extra ref taken for cachedp since we
|
|
* aren't exposing it outside of this function
|
|
*/
|
|
if (!cached_state)
|
|
refcount_dec(&cache->refs);
|
|
break;
|
|
}
|
|
unlock_extent(&inode->io_tree, start, end, cachedp);
|
|
btrfs_start_ordered_extent(ordered, 1);
|
|
btrfs_put_ordered_extent(ordered);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Lock the passed range and ensure all pending ordered extents in it are run
|
|
* to completion in nowait mode.
|
|
*
|
|
* Return true if btrfs_lock_ordered_range does not return any extents,
|
|
* otherwise false.
|
|
*/
|
|
bool btrfs_try_lock_ordered_range(struct btrfs_inode *inode, u64 start, u64 end,
|
|
struct extent_state **cached_state)
|
|
{
|
|
struct btrfs_ordered_extent *ordered;
|
|
|
|
if (!try_lock_extent(&inode->io_tree, start, end, cached_state))
|
|
return false;
|
|
|
|
ordered = btrfs_lookup_ordered_range(inode, start, end - start + 1);
|
|
if (!ordered)
|
|
return true;
|
|
|
|
btrfs_put_ordered_extent(ordered);
|
|
unlock_extent(&inode->io_tree, start, end, cached_state);
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
static int clone_ordered_extent(struct btrfs_ordered_extent *ordered, u64 pos,
|
|
u64 len)
|
|
{
|
|
struct inode *inode = ordered->inode;
|
|
struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
|
|
u64 file_offset = ordered->file_offset + pos;
|
|
u64 disk_bytenr = ordered->disk_bytenr + pos;
|
|
unsigned long flags = ordered->flags & BTRFS_ORDERED_TYPE_FLAGS;
|
|
|
|
/*
|
|
* The splitting extent is already counted and will be added again in
|
|
* btrfs_add_ordered_extent_*(). Subtract len to avoid double counting.
|
|
*/
|
|
percpu_counter_add_batch(&fs_info->ordered_bytes, -len,
|
|
fs_info->delalloc_batch);
|
|
WARN_ON_ONCE(flags & (1 << BTRFS_ORDERED_COMPRESSED));
|
|
return btrfs_add_ordered_extent(BTRFS_I(inode), file_offset, len, len,
|
|
disk_bytenr, len, 0, flags,
|
|
ordered->compress_type);
|
|
}
|
|
|
|
int btrfs_split_ordered_extent(struct btrfs_ordered_extent *ordered, u64 pre,
|
|
u64 post)
|
|
{
|
|
struct inode *inode = ordered->inode;
|
|
struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
|
|
struct rb_node *node;
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
int ret = 0;
|
|
|
|
trace_btrfs_ordered_extent_split(BTRFS_I(inode), ordered);
|
|
|
|
spin_lock_irq(&tree->lock);
|
|
/* Remove from tree once */
|
|
node = &ordered->rb_node;
|
|
rb_erase(node, &tree->tree);
|
|
RB_CLEAR_NODE(node);
|
|
if (tree->last == node)
|
|
tree->last = NULL;
|
|
|
|
ordered->file_offset += pre;
|
|
ordered->disk_bytenr += pre;
|
|
ordered->num_bytes -= (pre + post);
|
|
ordered->disk_num_bytes -= (pre + post);
|
|
ordered->bytes_left -= (pre + post);
|
|
|
|
/* Re-insert the node */
|
|
node = tree_insert(&tree->tree, ordered->file_offset, &ordered->rb_node);
|
|
if (node)
|
|
btrfs_panic(fs_info, -EEXIST,
|
|
"zoned: inconsistency in ordered tree at offset %llu",
|
|
ordered->file_offset);
|
|
|
|
spin_unlock_irq(&tree->lock);
|
|
|
|
if (pre)
|
|
ret = clone_ordered_extent(ordered, 0, pre);
|
|
if (ret == 0 && post)
|
|
ret = clone_ordered_extent(ordered, pre + ordered->disk_num_bytes,
|
|
post);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int __init ordered_data_init(void)
|
|
{
|
|
btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
|
|
sizeof(struct btrfs_ordered_extent), 0,
|
|
SLAB_MEM_SPREAD,
|
|
NULL);
|
|
if (!btrfs_ordered_extent_cache)
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void __cold ordered_data_exit(void)
|
|
{
|
|
kmem_cache_destroy(btrfs_ordered_extent_cache);
|
|
}
|