b78b27d029
Optimizing the initialization speed of 1G huge pages through parallelization. 1G hugetlbs are allocated from bootmem, a process that is already very fast and does not currently require optimization. Therefore, we focus on parallelizing only the initialization phase in `gather_bootmem_prealloc`. Here are some test results: test case no patch(ms) patched(ms) saved ------------------- -------------- ------------- -------- 256c2T(4 node) 1G 4745 2024 57.34% 128c1T(2 node) 1G 3358 1712 49.02% 12T 1G 77000 18300 76.23% [akpm@linux-foundation.org: s/initialied/initialized/, per Alexey] Link: https://lkml.kernel.org/r/20240222140422.393911-9-gang.li@linux.dev Signed-off-by: Gang Li <ligang.bdlg@bytedance.com> Tested-by: David Rientjes <rientjes@google.com> Reviewed-by: Muchun Song <muchun.song@linux.dev> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: David Hildenbrand <david@redhat.com> Cc: Jane Chu <jane.chu@oracle.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Steffen Klassert <steffen.klassert@secunet.com> Cc: Tim Chen <tim.c.chen@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
620 lines
15 KiB
C
620 lines
15 KiB
C
/*
|
|
* PPC Huge TLB Page Support for Kernel.
|
|
*
|
|
* Copyright (C) 2003 David Gibson, IBM Corporation.
|
|
* Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
|
|
*
|
|
* Based on the IA-32 version:
|
|
* Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
|
|
*/
|
|
|
|
#include <linux/mm.h>
|
|
#include <linux/io.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <linux/export.h>
|
|
#include <linux/of_fdt.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/swapops.h>
|
|
#include <linux/kmemleak.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/tlb.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/hugetlb.h>
|
|
#include <asm/pte-walk.h>
|
|
#include <asm/firmware.h>
|
|
|
|
bool hugetlb_disabled = false;
|
|
|
|
#define hugepd_none(hpd) (hpd_val(hpd) == 0)
|
|
|
|
#define PTE_T_ORDER (__builtin_ffs(sizeof(pte_basic_t)) - \
|
|
__builtin_ffs(sizeof(void *)))
|
|
|
|
pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr, unsigned long sz)
|
|
{
|
|
/*
|
|
* Only called for hugetlbfs pages, hence can ignore THP and the
|
|
* irq disabled walk.
|
|
*/
|
|
return __find_linux_pte(mm->pgd, addr, NULL, NULL);
|
|
}
|
|
|
|
static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
|
|
unsigned long address, unsigned int pdshift,
|
|
unsigned int pshift, spinlock_t *ptl)
|
|
{
|
|
struct kmem_cache *cachep;
|
|
pte_t *new;
|
|
int i;
|
|
int num_hugepd;
|
|
|
|
if (pshift >= pdshift) {
|
|
cachep = PGT_CACHE(PTE_T_ORDER);
|
|
num_hugepd = 1 << (pshift - pdshift);
|
|
} else {
|
|
cachep = PGT_CACHE(pdshift - pshift);
|
|
num_hugepd = 1;
|
|
}
|
|
|
|
if (!cachep) {
|
|
WARN_ONCE(1, "No page table cache created for hugetlb tables");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
new = kmem_cache_alloc(cachep, pgtable_gfp_flags(mm, GFP_KERNEL));
|
|
|
|
BUG_ON(pshift > HUGEPD_SHIFT_MASK);
|
|
BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
|
|
|
|
if (!new)
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* Make sure other cpus find the hugepd set only after a
|
|
* properly initialized page table is visible to them.
|
|
* For more details look for comment in __pte_alloc().
|
|
*/
|
|
smp_wmb();
|
|
|
|
spin_lock(ptl);
|
|
/*
|
|
* We have multiple higher-level entries that point to the same
|
|
* actual pte location. Fill in each as we go and backtrack on error.
|
|
* We need all of these so the DTLB pgtable walk code can find the
|
|
* right higher-level entry without knowing if it's a hugepage or not.
|
|
*/
|
|
for (i = 0; i < num_hugepd; i++, hpdp++) {
|
|
if (unlikely(!hugepd_none(*hpdp)))
|
|
break;
|
|
hugepd_populate(hpdp, new, pshift);
|
|
}
|
|
/* If we bailed from the for loop early, an error occurred, clean up */
|
|
if (i < num_hugepd) {
|
|
for (i = i - 1 ; i >= 0; i--, hpdp--)
|
|
*hpdp = __hugepd(0);
|
|
kmem_cache_free(cachep, new);
|
|
} else {
|
|
kmemleak_ignore(new);
|
|
}
|
|
spin_unlock(ptl);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* At this point we do the placement change only for BOOK3S 64. This would
|
|
* possibly work on other subarchs.
|
|
*/
|
|
pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
|
|
unsigned long addr, unsigned long sz)
|
|
{
|
|
pgd_t *pg;
|
|
p4d_t *p4;
|
|
pud_t *pu;
|
|
pmd_t *pm;
|
|
hugepd_t *hpdp = NULL;
|
|
unsigned pshift = __ffs(sz);
|
|
unsigned pdshift = PGDIR_SHIFT;
|
|
spinlock_t *ptl;
|
|
|
|
addr &= ~(sz-1);
|
|
pg = pgd_offset(mm, addr);
|
|
p4 = p4d_offset(pg, addr);
|
|
|
|
#ifdef CONFIG_PPC_BOOK3S_64
|
|
if (pshift == PGDIR_SHIFT)
|
|
/* 16GB huge page */
|
|
return (pte_t *) p4;
|
|
else if (pshift > PUD_SHIFT) {
|
|
/*
|
|
* We need to use hugepd table
|
|
*/
|
|
ptl = &mm->page_table_lock;
|
|
hpdp = (hugepd_t *)p4;
|
|
} else {
|
|
pdshift = PUD_SHIFT;
|
|
pu = pud_alloc(mm, p4, addr);
|
|
if (!pu)
|
|
return NULL;
|
|
if (pshift == PUD_SHIFT)
|
|
return (pte_t *)pu;
|
|
else if (pshift > PMD_SHIFT) {
|
|
ptl = pud_lockptr(mm, pu);
|
|
hpdp = (hugepd_t *)pu;
|
|
} else {
|
|
pdshift = PMD_SHIFT;
|
|
pm = pmd_alloc(mm, pu, addr);
|
|
if (!pm)
|
|
return NULL;
|
|
if (pshift == PMD_SHIFT)
|
|
/* 16MB hugepage */
|
|
return (pte_t *)pm;
|
|
else {
|
|
ptl = pmd_lockptr(mm, pm);
|
|
hpdp = (hugepd_t *)pm;
|
|
}
|
|
}
|
|
}
|
|
#else
|
|
if (pshift >= PGDIR_SHIFT) {
|
|
ptl = &mm->page_table_lock;
|
|
hpdp = (hugepd_t *)p4;
|
|
} else {
|
|
pdshift = PUD_SHIFT;
|
|
pu = pud_alloc(mm, p4, addr);
|
|
if (!pu)
|
|
return NULL;
|
|
if (pshift >= PUD_SHIFT) {
|
|
ptl = pud_lockptr(mm, pu);
|
|
hpdp = (hugepd_t *)pu;
|
|
} else {
|
|
pdshift = PMD_SHIFT;
|
|
pm = pmd_alloc(mm, pu, addr);
|
|
if (!pm)
|
|
return NULL;
|
|
ptl = pmd_lockptr(mm, pm);
|
|
hpdp = (hugepd_t *)pm;
|
|
}
|
|
}
|
|
#endif
|
|
if (!hpdp)
|
|
return NULL;
|
|
|
|
if (IS_ENABLED(CONFIG_PPC_8xx) && pshift < PMD_SHIFT)
|
|
return pte_alloc_huge(mm, (pmd_t *)hpdp, addr);
|
|
|
|
BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
|
|
|
|
if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr,
|
|
pdshift, pshift, ptl))
|
|
return NULL;
|
|
|
|
return hugepte_offset(*hpdp, addr, pdshift);
|
|
}
|
|
|
|
#ifdef CONFIG_PPC_BOOK3S_64
|
|
/*
|
|
* Tracks gpages after the device tree is scanned and before the
|
|
* huge_boot_pages list is ready on pseries.
|
|
*/
|
|
#define MAX_NUMBER_GPAGES 1024
|
|
__initdata static u64 gpage_freearray[MAX_NUMBER_GPAGES];
|
|
__initdata static unsigned nr_gpages;
|
|
|
|
/*
|
|
* Build list of addresses of gigantic pages. This function is used in early
|
|
* boot before the buddy allocator is setup.
|
|
*/
|
|
void __init pseries_add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
|
|
{
|
|
if (!addr)
|
|
return;
|
|
while (number_of_pages > 0) {
|
|
gpage_freearray[nr_gpages] = addr;
|
|
nr_gpages++;
|
|
number_of_pages--;
|
|
addr += page_size;
|
|
}
|
|
}
|
|
|
|
static int __init pseries_alloc_bootmem_huge_page(struct hstate *hstate)
|
|
{
|
|
struct huge_bootmem_page *m;
|
|
if (nr_gpages == 0)
|
|
return 0;
|
|
m = phys_to_virt(gpage_freearray[--nr_gpages]);
|
|
gpage_freearray[nr_gpages] = 0;
|
|
list_add(&m->list, &huge_boot_pages[0]);
|
|
m->hstate = hstate;
|
|
return 1;
|
|
}
|
|
|
|
bool __init hugetlb_node_alloc_supported(void)
|
|
{
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
|
|
int __init alloc_bootmem_huge_page(struct hstate *h, int nid)
|
|
{
|
|
|
|
#ifdef CONFIG_PPC_BOOK3S_64
|
|
if (firmware_has_feature(FW_FEATURE_LPAR) && !radix_enabled())
|
|
return pseries_alloc_bootmem_huge_page(h);
|
|
#endif
|
|
return __alloc_bootmem_huge_page(h, nid);
|
|
}
|
|
|
|
#ifndef CONFIG_PPC_BOOK3S_64
|
|
#define HUGEPD_FREELIST_SIZE \
|
|
((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
|
|
|
|
struct hugepd_freelist {
|
|
struct rcu_head rcu;
|
|
unsigned int index;
|
|
void *ptes[];
|
|
};
|
|
|
|
static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
|
|
|
|
static void hugepd_free_rcu_callback(struct rcu_head *head)
|
|
{
|
|
struct hugepd_freelist *batch =
|
|
container_of(head, struct hugepd_freelist, rcu);
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < batch->index; i++)
|
|
kmem_cache_free(PGT_CACHE(PTE_T_ORDER), batch->ptes[i]);
|
|
|
|
free_page((unsigned long)batch);
|
|
}
|
|
|
|
static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
|
|
{
|
|
struct hugepd_freelist **batchp;
|
|
|
|
batchp = &get_cpu_var(hugepd_freelist_cur);
|
|
|
|
if (atomic_read(&tlb->mm->mm_users) < 2 ||
|
|
mm_is_thread_local(tlb->mm)) {
|
|
kmem_cache_free(PGT_CACHE(PTE_T_ORDER), hugepte);
|
|
put_cpu_var(hugepd_freelist_cur);
|
|
return;
|
|
}
|
|
|
|
if (*batchp == NULL) {
|
|
*batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
|
|
(*batchp)->index = 0;
|
|
}
|
|
|
|
(*batchp)->ptes[(*batchp)->index++] = hugepte;
|
|
if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
|
|
call_rcu(&(*batchp)->rcu, hugepd_free_rcu_callback);
|
|
*batchp = NULL;
|
|
}
|
|
put_cpu_var(hugepd_freelist_cur);
|
|
}
|
|
#else
|
|
static inline void hugepd_free(struct mmu_gather *tlb, void *hugepte) {}
|
|
#endif
|
|
|
|
/* Return true when the entry to be freed maps more than the area being freed */
|
|
static bool range_is_outside_limits(unsigned long start, unsigned long end,
|
|
unsigned long floor, unsigned long ceiling,
|
|
unsigned long mask)
|
|
{
|
|
if ((start & mask) < floor)
|
|
return true;
|
|
if (ceiling) {
|
|
ceiling &= mask;
|
|
if (!ceiling)
|
|
return true;
|
|
}
|
|
return end - 1 > ceiling - 1;
|
|
}
|
|
|
|
static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
|
|
unsigned long start, unsigned long end,
|
|
unsigned long floor, unsigned long ceiling)
|
|
{
|
|
pte_t *hugepte = hugepd_page(*hpdp);
|
|
int i;
|
|
|
|
unsigned long pdmask = ~((1UL << pdshift) - 1);
|
|
unsigned int num_hugepd = 1;
|
|
unsigned int shift = hugepd_shift(*hpdp);
|
|
|
|
/* Note: On fsl the hpdp may be the first of several */
|
|
if (shift > pdshift)
|
|
num_hugepd = 1 << (shift - pdshift);
|
|
|
|
if (range_is_outside_limits(start, end, floor, ceiling, pdmask))
|
|
return;
|
|
|
|
for (i = 0; i < num_hugepd; i++, hpdp++)
|
|
*hpdp = __hugepd(0);
|
|
|
|
if (shift >= pdshift)
|
|
hugepd_free(tlb, hugepte);
|
|
else
|
|
pgtable_free_tlb(tlb, hugepte,
|
|
get_hugepd_cache_index(pdshift - shift));
|
|
}
|
|
|
|
static void hugetlb_free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
|
|
unsigned long addr, unsigned long end,
|
|
unsigned long floor, unsigned long ceiling)
|
|
{
|
|
pgtable_t token = pmd_pgtable(*pmd);
|
|
|
|
if (range_is_outside_limits(addr, end, floor, ceiling, PMD_MASK))
|
|
return;
|
|
|
|
pmd_clear(pmd);
|
|
pte_free_tlb(tlb, token, addr);
|
|
mm_dec_nr_ptes(tlb->mm);
|
|
}
|
|
|
|
static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
|
|
unsigned long addr, unsigned long end,
|
|
unsigned long floor, unsigned long ceiling)
|
|
{
|
|
pmd_t *pmd;
|
|
unsigned long next;
|
|
unsigned long start;
|
|
|
|
start = addr;
|
|
do {
|
|
unsigned long more;
|
|
|
|
pmd = pmd_offset(pud, addr);
|
|
next = pmd_addr_end(addr, end);
|
|
if (!is_hugepd(__hugepd(pmd_val(*pmd)))) {
|
|
if (pmd_none_or_clear_bad(pmd))
|
|
continue;
|
|
|
|
/*
|
|
* if it is not hugepd pointer, we should already find
|
|
* it cleared.
|
|
*/
|
|
WARN_ON(!IS_ENABLED(CONFIG_PPC_8xx));
|
|
|
|
hugetlb_free_pte_range(tlb, pmd, addr, end, floor, ceiling);
|
|
|
|
continue;
|
|
}
|
|
/*
|
|
* Increment next by the size of the huge mapping since
|
|
* there may be more than one entry at this level for a
|
|
* single hugepage, but all of them point to
|
|
* the same kmem cache that holds the hugepte.
|
|
*/
|
|
more = addr + (1UL << hugepd_shift(*(hugepd_t *)pmd));
|
|
if (more > next)
|
|
next = more;
|
|
|
|
free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
|
|
addr, next, floor, ceiling);
|
|
} while (addr = next, addr != end);
|
|
|
|
if (range_is_outside_limits(start, end, floor, ceiling, PUD_MASK))
|
|
return;
|
|
|
|
pmd = pmd_offset(pud, start & PUD_MASK);
|
|
pud_clear(pud);
|
|
pmd_free_tlb(tlb, pmd, start & PUD_MASK);
|
|
mm_dec_nr_pmds(tlb->mm);
|
|
}
|
|
|
|
static void hugetlb_free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
|
|
unsigned long addr, unsigned long end,
|
|
unsigned long floor, unsigned long ceiling)
|
|
{
|
|
pud_t *pud;
|
|
unsigned long next;
|
|
unsigned long start;
|
|
|
|
start = addr;
|
|
do {
|
|
pud = pud_offset(p4d, addr);
|
|
next = pud_addr_end(addr, end);
|
|
if (!is_hugepd(__hugepd(pud_val(*pud)))) {
|
|
if (pud_none_or_clear_bad(pud))
|
|
continue;
|
|
hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
|
|
ceiling);
|
|
} else {
|
|
unsigned long more;
|
|
/*
|
|
* Increment next by the size of the huge mapping since
|
|
* there may be more than one entry at this level for a
|
|
* single hugepage, but all of them point to
|
|
* the same kmem cache that holds the hugepte.
|
|
*/
|
|
more = addr + (1UL << hugepd_shift(*(hugepd_t *)pud));
|
|
if (more > next)
|
|
next = more;
|
|
|
|
free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
|
|
addr, next, floor, ceiling);
|
|
}
|
|
} while (addr = next, addr != end);
|
|
|
|
if (range_is_outside_limits(start, end, floor, ceiling, PGDIR_MASK))
|
|
return;
|
|
|
|
pud = pud_offset(p4d, start & PGDIR_MASK);
|
|
p4d_clear(p4d);
|
|
pud_free_tlb(tlb, pud, start & PGDIR_MASK);
|
|
mm_dec_nr_puds(tlb->mm);
|
|
}
|
|
|
|
/*
|
|
* This function frees user-level page tables of a process.
|
|
*/
|
|
void hugetlb_free_pgd_range(struct mmu_gather *tlb,
|
|
unsigned long addr, unsigned long end,
|
|
unsigned long floor, unsigned long ceiling)
|
|
{
|
|
pgd_t *pgd;
|
|
p4d_t *p4d;
|
|
unsigned long next;
|
|
|
|
/*
|
|
* Because there are a number of different possible pagetable
|
|
* layouts for hugepage ranges, we limit knowledge of how
|
|
* things should be laid out to the allocation path
|
|
* (huge_pte_alloc(), above). Everything else works out the
|
|
* structure as it goes from information in the hugepd
|
|
* pointers. That means that we can't here use the
|
|
* optimization used in the normal page free_pgd_range(), of
|
|
* checking whether we're actually covering a large enough
|
|
* range to have to do anything at the top level of the walk
|
|
* instead of at the bottom.
|
|
*
|
|
* To make sense of this, you should probably go read the big
|
|
* block comment at the top of the normal free_pgd_range(),
|
|
* too.
|
|
*/
|
|
|
|
do {
|
|
next = pgd_addr_end(addr, end);
|
|
pgd = pgd_offset(tlb->mm, addr);
|
|
p4d = p4d_offset(pgd, addr);
|
|
if (!is_hugepd(__hugepd(pgd_val(*pgd)))) {
|
|
if (p4d_none_or_clear_bad(p4d))
|
|
continue;
|
|
hugetlb_free_pud_range(tlb, p4d, addr, next, floor, ceiling);
|
|
} else {
|
|
unsigned long more;
|
|
/*
|
|
* Increment next by the size of the huge mapping since
|
|
* there may be more than one entry at the pgd level
|
|
* for a single hugepage, but all of them point to the
|
|
* same kmem cache that holds the hugepte.
|
|
*/
|
|
more = addr + (1UL << hugepd_shift(*(hugepd_t *)pgd));
|
|
if (more > next)
|
|
next = more;
|
|
|
|
free_hugepd_range(tlb, (hugepd_t *)p4d, PGDIR_SHIFT,
|
|
addr, next, floor, ceiling);
|
|
}
|
|
} while (addr = next, addr != end);
|
|
}
|
|
|
|
bool __init arch_hugetlb_valid_size(unsigned long size)
|
|
{
|
|
int shift = __ffs(size);
|
|
int mmu_psize;
|
|
|
|
/* Check that it is a page size supported by the hardware and
|
|
* that it fits within pagetable and slice limits. */
|
|
if (size <= PAGE_SIZE || !is_power_of_2(size))
|
|
return false;
|
|
|
|
mmu_psize = check_and_get_huge_psize(shift);
|
|
if (mmu_psize < 0)
|
|
return false;
|
|
|
|
BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
|
|
|
|
return true;
|
|
}
|
|
|
|
static int __init add_huge_page_size(unsigned long long size)
|
|
{
|
|
int shift = __ffs(size);
|
|
|
|
if (!arch_hugetlb_valid_size((unsigned long)size))
|
|
return -EINVAL;
|
|
|
|
hugetlb_add_hstate(shift - PAGE_SHIFT);
|
|
return 0;
|
|
}
|
|
|
|
static int __init hugetlbpage_init(void)
|
|
{
|
|
bool configured = false;
|
|
int psize;
|
|
|
|
if (hugetlb_disabled) {
|
|
pr_info("HugeTLB support is disabled!\n");
|
|
return 0;
|
|
}
|
|
|
|
if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) && !radix_enabled() &&
|
|
!mmu_has_feature(MMU_FTR_16M_PAGE))
|
|
return -ENODEV;
|
|
|
|
for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
|
|
unsigned shift;
|
|
unsigned pdshift;
|
|
|
|
if (!mmu_psize_defs[psize].shift)
|
|
continue;
|
|
|
|
shift = mmu_psize_to_shift(psize);
|
|
|
|
#ifdef CONFIG_PPC_BOOK3S_64
|
|
if (shift > PGDIR_SHIFT)
|
|
continue;
|
|
else if (shift > PUD_SHIFT)
|
|
pdshift = PGDIR_SHIFT;
|
|
else if (shift > PMD_SHIFT)
|
|
pdshift = PUD_SHIFT;
|
|
else
|
|
pdshift = PMD_SHIFT;
|
|
#else
|
|
if (shift < PUD_SHIFT)
|
|
pdshift = PMD_SHIFT;
|
|
else if (shift < PGDIR_SHIFT)
|
|
pdshift = PUD_SHIFT;
|
|
else
|
|
pdshift = PGDIR_SHIFT;
|
|
#endif
|
|
|
|
if (add_huge_page_size(1ULL << shift) < 0)
|
|
continue;
|
|
/*
|
|
* if we have pdshift and shift value same, we don't
|
|
* use pgt cache for hugepd.
|
|
*/
|
|
if (pdshift > shift) {
|
|
if (!IS_ENABLED(CONFIG_PPC_8xx))
|
|
pgtable_cache_add(pdshift - shift);
|
|
} else if (IS_ENABLED(CONFIG_PPC_E500) ||
|
|
IS_ENABLED(CONFIG_PPC_8xx)) {
|
|
pgtable_cache_add(PTE_T_ORDER);
|
|
}
|
|
|
|
configured = true;
|
|
}
|
|
|
|
if (!configured)
|
|
pr_info("Failed to initialize. Disabling HugeTLB");
|
|
|
|
return 0;
|
|
}
|
|
|
|
arch_initcall(hugetlbpage_init);
|
|
|
|
void __init gigantic_hugetlb_cma_reserve(void)
|
|
{
|
|
unsigned long order = 0;
|
|
|
|
if (radix_enabled())
|
|
order = PUD_SHIFT - PAGE_SHIFT;
|
|
else if (!firmware_has_feature(FW_FEATURE_LPAR) && mmu_psize_defs[MMU_PAGE_16G].shift)
|
|
/*
|
|
* For pseries we do use ibm,expected#pages for reserving 16G pages.
|
|
*/
|
|
order = mmu_psize_to_shift(MMU_PAGE_16G) - PAGE_SHIFT;
|
|
|
|
if (order)
|
|
hugetlb_cma_reserve(order);
|
|
}
|