e24c3bec3e
MIPS R6 introduced the following instruction: Floating Point Fused Multiply Add: MADDF.fmt To perform a fused multiply-add of FP values. MADDF.fmt: FPR[fd] = FPR[fd] + (FPR[fs] x FPR[ft]) Signed-off-by: Markos Chandras <markos.chandras@imgtec.com> Cc: linux-mips@linux-mips.org Patchwork: https://patchwork.linux-mips.org/patch/10956/ Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
256 lines
6.0 KiB
C
256 lines
6.0 KiB
C
/*
|
|
* IEEE754 floating point arithmetic
|
|
* single precision: MADDF.f (Fused Multiply Add)
|
|
* MADDF.fmt: FPR[fd] = FPR[fd] + (FPR[fs] x FPR[ft])
|
|
*
|
|
* MIPS floating point support
|
|
* Copyright (C) 2015 Imagination Technologies, Ltd.
|
|
* Author: Markos Chandras <markos.chandras@imgtec.com>
|
|
*
|
|
* This program is free software; you can distribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by the
|
|
* Free Software Foundation; version 2 of the License.
|
|
*/
|
|
|
|
#include "ieee754sp.h"
|
|
|
|
union ieee754sp ieee754sp_maddf(union ieee754sp z, union ieee754sp x,
|
|
union ieee754sp y)
|
|
{
|
|
int re;
|
|
int rs;
|
|
unsigned rm;
|
|
unsigned short lxm;
|
|
unsigned short hxm;
|
|
unsigned short lym;
|
|
unsigned short hym;
|
|
unsigned lrm;
|
|
unsigned hrm;
|
|
unsigned t;
|
|
unsigned at;
|
|
int s;
|
|
|
|
COMPXSP;
|
|
COMPYSP;
|
|
u32 zm; int ze; int zs __maybe_unused; int zc;
|
|
|
|
EXPLODEXSP;
|
|
EXPLODEYSP;
|
|
EXPLODESP(z, zc, zs, ze, zm)
|
|
|
|
FLUSHXSP;
|
|
FLUSHYSP;
|
|
FLUSHSP(z, zc, zs, ze, zm);
|
|
|
|
ieee754_clearcx();
|
|
|
|
switch (zc) {
|
|
case IEEE754_CLASS_SNAN:
|
|
ieee754_setcx(IEEE754_INVALID_OPERATION);
|
|
return ieee754sp_nanxcpt(z);
|
|
case IEEE754_CLASS_DNORM:
|
|
SPDNORMx(zm, ze);
|
|
/* QNAN is handled separately below */
|
|
}
|
|
|
|
switch (CLPAIR(xc, yc)) {
|
|
case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_SNAN):
|
|
case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_SNAN):
|
|
case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_SNAN):
|
|
case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_SNAN):
|
|
case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_SNAN):
|
|
return ieee754sp_nanxcpt(y);
|
|
|
|
case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_SNAN):
|
|
case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_QNAN):
|
|
case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_ZERO):
|
|
case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_NORM):
|
|
case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_DNORM):
|
|
case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_INF):
|
|
return ieee754sp_nanxcpt(x);
|
|
|
|
case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_QNAN):
|
|
case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_QNAN):
|
|
case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_QNAN):
|
|
case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_QNAN):
|
|
return y;
|
|
|
|
case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_QNAN):
|
|
case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_ZERO):
|
|
case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_NORM):
|
|
case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_DNORM):
|
|
case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_INF):
|
|
return x;
|
|
|
|
/*
|
|
* Infinity handling
|
|
*/
|
|
case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_ZERO):
|
|
case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_INF):
|
|
if (zc == IEEE754_CLASS_QNAN)
|
|
return z;
|
|
ieee754_setcx(IEEE754_INVALID_OPERATION);
|
|
return ieee754sp_indef();
|
|
|
|
case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_INF):
|
|
case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_INF):
|
|
case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_NORM):
|
|
case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_DNORM):
|
|
case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_INF):
|
|
if (zc == IEEE754_CLASS_QNAN)
|
|
return z;
|
|
return ieee754sp_inf(xs ^ ys);
|
|
|
|
case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_ZERO):
|
|
case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_NORM):
|
|
case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_DNORM):
|
|
case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_ZERO):
|
|
case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_ZERO):
|
|
if (zc == IEEE754_CLASS_INF)
|
|
return ieee754sp_inf(zs);
|
|
/* Multiplication is 0 so just return z */
|
|
return z;
|
|
|
|
case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_DNORM):
|
|
SPDNORMX;
|
|
|
|
case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_DNORM):
|
|
if (zc == IEEE754_CLASS_QNAN)
|
|
return z;
|
|
else if (zc == IEEE754_CLASS_INF)
|
|
return ieee754sp_inf(zs);
|
|
SPDNORMY;
|
|
break;
|
|
|
|
case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_NORM):
|
|
if (zc == IEEE754_CLASS_QNAN)
|
|
return z;
|
|
else if (zc == IEEE754_CLASS_INF)
|
|
return ieee754sp_inf(zs);
|
|
SPDNORMX;
|
|
break;
|
|
|
|
case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_NORM):
|
|
if (zc == IEEE754_CLASS_QNAN)
|
|
return z;
|
|
else if (zc == IEEE754_CLASS_INF)
|
|
return ieee754sp_inf(zs);
|
|
/* fall through to real computations */
|
|
}
|
|
|
|
/* Finally get to do some computation */
|
|
|
|
/*
|
|
* Do the multiplication bit first
|
|
*
|
|
* rm = xm * ym, re = xe + ye basically
|
|
*
|
|
* At this point xm and ym should have been normalized.
|
|
*/
|
|
|
|
/* rm = xm * ym, re = xe+ye basically */
|
|
assert(xm & SP_HIDDEN_BIT);
|
|
assert(ym & SP_HIDDEN_BIT);
|
|
|
|
re = xe + ye;
|
|
rs = xs ^ ys;
|
|
|
|
/* shunt to top of word */
|
|
xm <<= 32 - (SP_FBITS + 1);
|
|
ym <<= 32 - (SP_FBITS + 1);
|
|
|
|
/*
|
|
* Multiply 32 bits xm, ym to give high 32 bits rm with stickness.
|
|
*/
|
|
lxm = xm & 0xffff;
|
|
hxm = xm >> 16;
|
|
lym = ym & 0xffff;
|
|
hym = ym >> 16;
|
|
|
|
lrm = lxm * lym; /* 16 * 16 => 32 */
|
|
hrm = hxm * hym; /* 16 * 16 => 32 */
|
|
|
|
t = lxm * hym; /* 16 * 16 => 32 */
|
|
at = lrm + (t << 16);
|
|
hrm += at < lrm;
|
|
lrm = at;
|
|
hrm = hrm + (t >> 16);
|
|
|
|
t = hxm * lym; /* 16 * 16 => 32 */
|
|
at = lrm + (t << 16);
|
|
hrm += at < lrm;
|
|
lrm = at;
|
|
hrm = hrm + (t >> 16);
|
|
|
|
rm = hrm | (lrm != 0);
|
|
|
|
/*
|
|
* Sticky shift down to normal rounding precision.
|
|
*/
|
|
if ((int) rm < 0) {
|
|
rm = (rm >> (32 - (SP_FBITS + 1 + 3))) |
|
|
((rm << (SP_FBITS + 1 + 3)) != 0);
|
|
re++;
|
|
} else {
|
|
rm = (rm >> (32 - (SP_FBITS + 1 + 3 + 1))) |
|
|
((rm << (SP_FBITS + 1 + 3 + 1)) != 0);
|
|
}
|
|
assert(rm & (SP_HIDDEN_BIT << 3));
|
|
|
|
/* And now the addition */
|
|
|
|
assert(zm & SP_HIDDEN_BIT);
|
|
|
|
/*
|
|
* Provide guard,round and stick bit space.
|
|
*/
|
|
zm <<= 3;
|
|
|
|
if (ze > re) {
|
|
/*
|
|
* Have to shift y fraction right to align.
|
|
*/
|
|
s = ze - re;
|
|
SPXSRSYn(s);
|
|
} else if (re > ze) {
|
|
/*
|
|
* Have to shift x fraction right to align.
|
|
*/
|
|
s = re - ze;
|
|
SPXSRSYn(s);
|
|
}
|
|
assert(ze == re);
|
|
assert(ze <= SP_EMAX);
|
|
|
|
if (zs == rs) {
|
|
/*
|
|
* Generate 28 bit result of adding two 27 bit numbers
|
|
* leaving result in zm, zs and ze.
|
|
*/
|
|
zm = zm + rm;
|
|
|
|
if (zm >> (SP_FBITS + 1 + 3)) { /* carry out */
|
|
SPXSRSX1();
|
|
}
|
|
} else {
|
|
if (zm >= rm) {
|
|
zm = zm - rm;
|
|
} else {
|
|
zm = rm - zm;
|
|
zs = rs;
|
|
}
|
|
if (zm == 0)
|
|
return ieee754sp_zero(ieee754_csr.rm == FPU_CSR_RD);
|
|
|
|
/*
|
|
* Normalize in extended single precision
|
|
*/
|
|
while ((zm >> (SP_MBITS + 3)) == 0) {
|
|
zm <<= 1;
|
|
ze--;
|
|
}
|
|
|
|
}
|
|
return ieee754sp_format(zs, ze, zm);
|
|
}
|