4954f5b8ef
The put_user() and get_user() functions do checks on the address which is passed to them. They check whether the address is actually a user-space address and whether its fine to access it. They also call might_fault() to indicate that they could fault and possibly sleep. All of these checks are neither wanted nor needed in the #VC exception handler, which can be invoked from almost any context and also for MMIO instructions from kernel space on kernel memory. All the #VC handler wants to know is whether a fault happened when the access was tried. This is provided by __put_user()/__get_user(), which just do the access no matter what. Also add comments explaining why __get_user() and __put_user() are the best choice here and why it is safe to use them in this context. Also explain why copy_to/from_user can't be used. In addition, also revert commit 7024f60d6552 ("x86/sev-es: Handle string port IO to kernel memory properly") because using __get_user()/__put_user() fixes the same problem while the above commit introduced several problems: 1) It uses access_ok() which is only allowed in task context. 2) It uses memcpy() which has no fault handling at all and is thus unsafe to use here. [ bp: Fix up commit ID of the reverted commit above. ] Fixes: f980f9c31a92 ("x86/sev-es: Compile early handler code into kernel image") Signed-off-by: Joerg Roedel <jroedel@suse.de> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: stable@vger.kernel.org # v5.10+ Link: https://lkml.kernel.org/r/20210519135251.30093-4-joro@8bytes.org
1496 lines
35 KiB
C
1496 lines
35 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* AMD Memory Encryption Support
|
|
*
|
|
* Copyright (C) 2019 SUSE
|
|
*
|
|
* Author: Joerg Roedel <jroedel@suse.de>
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "SEV-ES: " fmt
|
|
|
|
#include <linux/sched/debug.h> /* For show_regs() */
|
|
#include <linux/percpu-defs.h>
|
|
#include <linux/mem_encrypt.h>
|
|
#include <linux/lockdep.h>
|
|
#include <linux/printk.h>
|
|
#include <linux/mm_types.h>
|
|
#include <linux/set_memory.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/mm.h>
|
|
|
|
#include <asm/cpu_entry_area.h>
|
|
#include <asm/stacktrace.h>
|
|
#include <asm/sev.h>
|
|
#include <asm/insn-eval.h>
|
|
#include <asm/fpu/internal.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/realmode.h>
|
|
#include <asm/traps.h>
|
|
#include <asm/svm.h>
|
|
#include <asm/smp.h>
|
|
#include <asm/cpu.h>
|
|
|
|
#define DR7_RESET_VALUE 0x400
|
|
|
|
/* For early boot hypervisor communication in SEV-ES enabled guests */
|
|
static struct ghcb boot_ghcb_page __bss_decrypted __aligned(PAGE_SIZE);
|
|
|
|
/*
|
|
* Needs to be in the .data section because we need it NULL before bss is
|
|
* cleared
|
|
*/
|
|
static struct ghcb __initdata *boot_ghcb;
|
|
|
|
/* #VC handler runtime per-CPU data */
|
|
struct sev_es_runtime_data {
|
|
struct ghcb ghcb_page;
|
|
|
|
/* Physical storage for the per-CPU IST stack of the #VC handler */
|
|
char ist_stack[EXCEPTION_STKSZ] __aligned(PAGE_SIZE);
|
|
|
|
/*
|
|
* Physical storage for the per-CPU fall-back stack of the #VC handler.
|
|
* The fall-back stack is used when it is not safe to switch back to the
|
|
* interrupted stack in the #VC entry code.
|
|
*/
|
|
char fallback_stack[EXCEPTION_STKSZ] __aligned(PAGE_SIZE);
|
|
|
|
/*
|
|
* Reserve one page per CPU as backup storage for the unencrypted GHCB.
|
|
* It is needed when an NMI happens while the #VC handler uses the real
|
|
* GHCB, and the NMI handler itself is causing another #VC exception. In
|
|
* that case the GHCB content of the first handler needs to be backed up
|
|
* and restored.
|
|
*/
|
|
struct ghcb backup_ghcb;
|
|
|
|
/*
|
|
* Mark the per-cpu GHCBs as in-use to detect nested #VC exceptions.
|
|
* There is no need for it to be atomic, because nothing is written to
|
|
* the GHCB between the read and the write of ghcb_active. So it is safe
|
|
* to use it when a nested #VC exception happens before the write.
|
|
*
|
|
* This is necessary for example in the #VC->NMI->#VC case when the NMI
|
|
* happens while the first #VC handler uses the GHCB. When the NMI code
|
|
* raises a second #VC handler it might overwrite the contents of the
|
|
* GHCB written by the first handler. To avoid this the content of the
|
|
* GHCB is saved and restored when the GHCB is detected to be in use
|
|
* already.
|
|
*/
|
|
bool ghcb_active;
|
|
bool backup_ghcb_active;
|
|
|
|
/*
|
|
* Cached DR7 value - write it on DR7 writes and return it on reads.
|
|
* That value will never make it to the real hardware DR7 as debugging
|
|
* is currently unsupported in SEV-ES guests.
|
|
*/
|
|
unsigned long dr7;
|
|
};
|
|
|
|
struct ghcb_state {
|
|
struct ghcb *ghcb;
|
|
};
|
|
|
|
static DEFINE_PER_CPU(struct sev_es_runtime_data*, runtime_data);
|
|
DEFINE_STATIC_KEY_FALSE(sev_es_enable_key);
|
|
|
|
/* Needed in vc_early_forward_exception */
|
|
void do_early_exception(struct pt_regs *regs, int trapnr);
|
|
|
|
static void __init setup_vc_stacks(int cpu)
|
|
{
|
|
struct sev_es_runtime_data *data;
|
|
struct cpu_entry_area *cea;
|
|
unsigned long vaddr;
|
|
phys_addr_t pa;
|
|
|
|
data = per_cpu(runtime_data, cpu);
|
|
cea = get_cpu_entry_area(cpu);
|
|
|
|
/* Map #VC IST stack */
|
|
vaddr = CEA_ESTACK_BOT(&cea->estacks, VC);
|
|
pa = __pa(data->ist_stack);
|
|
cea_set_pte((void *)vaddr, pa, PAGE_KERNEL);
|
|
|
|
/* Map VC fall-back stack */
|
|
vaddr = CEA_ESTACK_BOT(&cea->estacks, VC2);
|
|
pa = __pa(data->fallback_stack);
|
|
cea_set_pte((void *)vaddr, pa, PAGE_KERNEL);
|
|
}
|
|
|
|
static __always_inline bool on_vc_stack(struct pt_regs *regs)
|
|
{
|
|
unsigned long sp = regs->sp;
|
|
|
|
/* User-mode RSP is not trusted */
|
|
if (user_mode(regs))
|
|
return false;
|
|
|
|
/* SYSCALL gap still has user-mode RSP */
|
|
if (ip_within_syscall_gap(regs))
|
|
return false;
|
|
|
|
return ((sp >= __this_cpu_ist_bottom_va(VC)) && (sp < __this_cpu_ist_top_va(VC)));
|
|
}
|
|
|
|
/*
|
|
* This function handles the case when an NMI is raised in the #VC
|
|
* exception handler entry code, before the #VC handler has switched off
|
|
* its IST stack. In this case, the IST entry for #VC must be adjusted,
|
|
* so that any nested #VC exception will not overwrite the stack
|
|
* contents of the interrupted #VC handler.
|
|
*
|
|
* The IST entry is adjusted unconditionally so that it can be also be
|
|
* unconditionally adjusted back in __sev_es_ist_exit(). Otherwise a
|
|
* nested sev_es_ist_exit() call may adjust back the IST entry too
|
|
* early.
|
|
*
|
|
* The __sev_es_ist_enter() and __sev_es_ist_exit() functions always run
|
|
* on the NMI IST stack, as they are only called from NMI handling code
|
|
* right now.
|
|
*/
|
|
void noinstr __sev_es_ist_enter(struct pt_regs *regs)
|
|
{
|
|
unsigned long old_ist, new_ist;
|
|
|
|
/* Read old IST entry */
|
|
new_ist = old_ist = __this_cpu_read(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC]);
|
|
|
|
/*
|
|
* If NMI happened while on the #VC IST stack, set the new IST
|
|
* value below regs->sp, so that the interrupted stack frame is
|
|
* not overwritten by subsequent #VC exceptions.
|
|
*/
|
|
if (on_vc_stack(regs))
|
|
new_ist = regs->sp;
|
|
|
|
/*
|
|
* Reserve additional 8 bytes and store old IST value so this
|
|
* adjustment can be unrolled in __sev_es_ist_exit().
|
|
*/
|
|
new_ist -= sizeof(old_ist);
|
|
*(unsigned long *)new_ist = old_ist;
|
|
|
|
/* Set new IST entry */
|
|
this_cpu_write(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC], new_ist);
|
|
}
|
|
|
|
void noinstr __sev_es_ist_exit(void)
|
|
{
|
|
unsigned long ist;
|
|
|
|
/* Read IST entry */
|
|
ist = __this_cpu_read(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC]);
|
|
|
|
if (WARN_ON(ist == __this_cpu_ist_top_va(VC)))
|
|
return;
|
|
|
|
/* Read back old IST entry and write it to the TSS */
|
|
this_cpu_write(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC], *(unsigned long *)ist);
|
|
}
|
|
|
|
static __always_inline struct ghcb *sev_es_get_ghcb(struct ghcb_state *state)
|
|
{
|
|
struct sev_es_runtime_data *data;
|
|
struct ghcb *ghcb;
|
|
|
|
data = this_cpu_read(runtime_data);
|
|
ghcb = &data->ghcb_page;
|
|
|
|
if (unlikely(data->ghcb_active)) {
|
|
/* GHCB is already in use - save its contents */
|
|
|
|
if (unlikely(data->backup_ghcb_active)) {
|
|
/*
|
|
* Backup-GHCB is also already in use. There is no way
|
|
* to continue here so just kill the machine. To make
|
|
* panic() work, mark GHCBs inactive so that messages
|
|
* can be printed out.
|
|
*/
|
|
data->ghcb_active = false;
|
|
data->backup_ghcb_active = false;
|
|
|
|
panic("Unable to handle #VC exception! GHCB and Backup GHCB are already in use");
|
|
}
|
|
|
|
/* Mark backup_ghcb active before writing to it */
|
|
data->backup_ghcb_active = true;
|
|
|
|
state->ghcb = &data->backup_ghcb;
|
|
|
|
/* Backup GHCB content */
|
|
*state->ghcb = *ghcb;
|
|
} else {
|
|
state->ghcb = NULL;
|
|
data->ghcb_active = true;
|
|
}
|
|
|
|
return ghcb;
|
|
}
|
|
|
|
/* Needed in vc_early_forward_exception */
|
|
void do_early_exception(struct pt_regs *regs, int trapnr);
|
|
|
|
static inline u64 sev_es_rd_ghcb_msr(void)
|
|
{
|
|
return __rdmsr(MSR_AMD64_SEV_ES_GHCB);
|
|
}
|
|
|
|
static __always_inline void sev_es_wr_ghcb_msr(u64 val)
|
|
{
|
|
u32 low, high;
|
|
|
|
low = (u32)(val);
|
|
high = (u32)(val >> 32);
|
|
|
|
native_wrmsr(MSR_AMD64_SEV_ES_GHCB, low, high);
|
|
}
|
|
|
|
static int vc_fetch_insn_kernel(struct es_em_ctxt *ctxt,
|
|
unsigned char *buffer)
|
|
{
|
|
return copy_from_kernel_nofault(buffer, (unsigned char *)ctxt->regs->ip, MAX_INSN_SIZE);
|
|
}
|
|
|
|
static enum es_result __vc_decode_user_insn(struct es_em_ctxt *ctxt)
|
|
{
|
|
char buffer[MAX_INSN_SIZE];
|
|
int res;
|
|
|
|
res = insn_fetch_from_user_inatomic(ctxt->regs, buffer);
|
|
if (!res) {
|
|
ctxt->fi.vector = X86_TRAP_PF;
|
|
ctxt->fi.error_code = X86_PF_INSTR | X86_PF_USER;
|
|
ctxt->fi.cr2 = ctxt->regs->ip;
|
|
return ES_EXCEPTION;
|
|
}
|
|
|
|
if (!insn_decode_from_regs(&ctxt->insn, ctxt->regs, buffer, res))
|
|
return ES_DECODE_FAILED;
|
|
|
|
if (ctxt->insn.immediate.got)
|
|
return ES_OK;
|
|
else
|
|
return ES_DECODE_FAILED;
|
|
}
|
|
|
|
static enum es_result __vc_decode_kern_insn(struct es_em_ctxt *ctxt)
|
|
{
|
|
char buffer[MAX_INSN_SIZE];
|
|
int res, ret;
|
|
|
|
res = vc_fetch_insn_kernel(ctxt, buffer);
|
|
if (res) {
|
|
ctxt->fi.vector = X86_TRAP_PF;
|
|
ctxt->fi.error_code = X86_PF_INSTR;
|
|
ctxt->fi.cr2 = ctxt->regs->ip;
|
|
return ES_EXCEPTION;
|
|
}
|
|
|
|
ret = insn_decode(&ctxt->insn, buffer, MAX_INSN_SIZE, INSN_MODE_64);
|
|
if (ret < 0)
|
|
return ES_DECODE_FAILED;
|
|
else
|
|
return ES_OK;
|
|
}
|
|
|
|
static enum es_result vc_decode_insn(struct es_em_ctxt *ctxt)
|
|
{
|
|
if (user_mode(ctxt->regs))
|
|
return __vc_decode_user_insn(ctxt);
|
|
else
|
|
return __vc_decode_kern_insn(ctxt);
|
|
}
|
|
|
|
static enum es_result vc_write_mem(struct es_em_ctxt *ctxt,
|
|
char *dst, char *buf, size_t size)
|
|
{
|
|
unsigned long error_code = X86_PF_PROT | X86_PF_WRITE;
|
|
char __user *target = (char __user *)dst;
|
|
u64 d8;
|
|
u32 d4;
|
|
u16 d2;
|
|
u8 d1;
|
|
|
|
/*
|
|
* This function uses __put_user() independent of whether kernel or user
|
|
* memory is accessed. This works fine because __put_user() does no
|
|
* sanity checks of the pointer being accessed. All that it does is
|
|
* to report when the access failed.
|
|
*
|
|
* Also, this function runs in atomic context, so __put_user() is not
|
|
* allowed to sleep. The page-fault handler detects that it is running
|
|
* in atomic context and will not try to take mmap_sem and handle the
|
|
* fault, so additional pagefault_enable()/disable() calls are not
|
|
* needed.
|
|
*
|
|
* The access can't be done via copy_to_user() here because
|
|
* vc_write_mem() must not use string instructions to access unsafe
|
|
* memory. The reason is that MOVS is emulated by the #VC handler by
|
|
* splitting the move up into a read and a write and taking a nested #VC
|
|
* exception on whatever of them is the MMIO access. Using string
|
|
* instructions here would cause infinite nesting.
|
|
*/
|
|
switch (size) {
|
|
case 1:
|
|
memcpy(&d1, buf, 1);
|
|
if (__put_user(d1, target))
|
|
goto fault;
|
|
break;
|
|
case 2:
|
|
memcpy(&d2, buf, 2);
|
|
if (__put_user(d2, target))
|
|
goto fault;
|
|
break;
|
|
case 4:
|
|
memcpy(&d4, buf, 4);
|
|
if (__put_user(d4, target))
|
|
goto fault;
|
|
break;
|
|
case 8:
|
|
memcpy(&d8, buf, 8);
|
|
if (__put_user(d8, target))
|
|
goto fault;
|
|
break;
|
|
default:
|
|
WARN_ONCE(1, "%s: Invalid size: %zu\n", __func__, size);
|
|
return ES_UNSUPPORTED;
|
|
}
|
|
|
|
return ES_OK;
|
|
|
|
fault:
|
|
if (user_mode(ctxt->regs))
|
|
error_code |= X86_PF_USER;
|
|
|
|
ctxt->fi.vector = X86_TRAP_PF;
|
|
ctxt->fi.error_code = error_code;
|
|
ctxt->fi.cr2 = (unsigned long)dst;
|
|
|
|
return ES_EXCEPTION;
|
|
}
|
|
|
|
static enum es_result vc_read_mem(struct es_em_ctxt *ctxt,
|
|
char *src, char *buf, size_t size)
|
|
{
|
|
unsigned long error_code = X86_PF_PROT;
|
|
char __user *s = (char __user *)src;
|
|
u64 d8;
|
|
u32 d4;
|
|
u16 d2;
|
|
u8 d1;
|
|
|
|
/*
|
|
* This function uses __get_user() independent of whether kernel or user
|
|
* memory is accessed. This works fine because __get_user() does no
|
|
* sanity checks of the pointer being accessed. All that it does is
|
|
* to report when the access failed.
|
|
*
|
|
* Also, this function runs in atomic context, so __get_user() is not
|
|
* allowed to sleep. The page-fault handler detects that it is running
|
|
* in atomic context and will not try to take mmap_sem and handle the
|
|
* fault, so additional pagefault_enable()/disable() calls are not
|
|
* needed.
|
|
*
|
|
* The access can't be done via copy_from_user() here because
|
|
* vc_read_mem() must not use string instructions to access unsafe
|
|
* memory. The reason is that MOVS is emulated by the #VC handler by
|
|
* splitting the move up into a read and a write and taking a nested #VC
|
|
* exception on whatever of them is the MMIO access. Using string
|
|
* instructions here would cause infinite nesting.
|
|
*/
|
|
switch (size) {
|
|
case 1:
|
|
if (__get_user(d1, s))
|
|
goto fault;
|
|
memcpy(buf, &d1, 1);
|
|
break;
|
|
case 2:
|
|
if (__get_user(d2, s))
|
|
goto fault;
|
|
memcpy(buf, &d2, 2);
|
|
break;
|
|
case 4:
|
|
if (__get_user(d4, s))
|
|
goto fault;
|
|
memcpy(buf, &d4, 4);
|
|
break;
|
|
case 8:
|
|
if (__get_user(d8, s))
|
|
goto fault;
|
|
memcpy(buf, &d8, 8);
|
|
break;
|
|
default:
|
|
WARN_ONCE(1, "%s: Invalid size: %zu\n", __func__, size);
|
|
return ES_UNSUPPORTED;
|
|
}
|
|
|
|
return ES_OK;
|
|
|
|
fault:
|
|
if (user_mode(ctxt->regs))
|
|
error_code |= X86_PF_USER;
|
|
|
|
ctxt->fi.vector = X86_TRAP_PF;
|
|
ctxt->fi.error_code = error_code;
|
|
ctxt->fi.cr2 = (unsigned long)src;
|
|
|
|
return ES_EXCEPTION;
|
|
}
|
|
|
|
static enum es_result vc_slow_virt_to_phys(struct ghcb *ghcb, struct es_em_ctxt *ctxt,
|
|
unsigned long vaddr, phys_addr_t *paddr)
|
|
{
|
|
unsigned long va = (unsigned long)vaddr;
|
|
unsigned int level;
|
|
phys_addr_t pa;
|
|
pgd_t *pgd;
|
|
pte_t *pte;
|
|
|
|
pgd = __va(read_cr3_pa());
|
|
pgd = &pgd[pgd_index(va)];
|
|
pte = lookup_address_in_pgd(pgd, va, &level);
|
|
if (!pte) {
|
|
ctxt->fi.vector = X86_TRAP_PF;
|
|
ctxt->fi.cr2 = vaddr;
|
|
ctxt->fi.error_code = 0;
|
|
|
|
if (user_mode(ctxt->regs))
|
|
ctxt->fi.error_code |= X86_PF_USER;
|
|
|
|
return ES_EXCEPTION;
|
|
}
|
|
|
|
if (WARN_ON_ONCE(pte_val(*pte) & _PAGE_ENC))
|
|
/* Emulated MMIO to/from encrypted memory not supported */
|
|
return ES_UNSUPPORTED;
|
|
|
|
pa = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
|
|
pa |= va & ~page_level_mask(level);
|
|
|
|
*paddr = pa;
|
|
|
|
return ES_OK;
|
|
}
|
|
|
|
/* Include code shared with pre-decompression boot stage */
|
|
#include "sev-shared.c"
|
|
|
|
static __always_inline void sev_es_put_ghcb(struct ghcb_state *state)
|
|
{
|
|
struct sev_es_runtime_data *data;
|
|
struct ghcb *ghcb;
|
|
|
|
data = this_cpu_read(runtime_data);
|
|
ghcb = &data->ghcb_page;
|
|
|
|
if (state->ghcb) {
|
|
/* Restore GHCB from Backup */
|
|
*ghcb = *state->ghcb;
|
|
data->backup_ghcb_active = false;
|
|
state->ghcb = NULL;
|
|
} else {
|
|
/*
|
|
* Invalidate the GHCB so a VMGEXIT instruction issued
|
|
* from userspace won't appear to be valid.
|
|
*/
|
|
vc_ghcb_invalidate(ghcb);
|
|
data->ghcb_active = false;
|
|
}
|
|
}
|
|
|
|
void noinstr __sev_es_nmi_complete(void)
|
|
{
|
|
struct ghcb_state state;
|
|
struct ghcb *ghcb;
|
|
|
|
ghcb = sev_es_get_ghcb(&state);
|
|
|
|
vc_ghcb_invalidate(ghcb);
|
|
ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_NMI_COMPLETE);
|
|
ghcb_set_sw_exit_info_1(ghcb, 0);
|
|
ghcb_set_sw_exit_info_2(ghcb, 0);
|
|
|
|
sev_es_wr_ghcb_msr(__pa_nodebug(ghcb));
|
|
VMGEXIT();
|
|
|
|
sev_es_put_ghcb(&state);
|
|
}
|
|
|
|
static u64 get_jump_table_addr(void)
|
|
{
|
|
struct ghcb_state state;
|
|
unsigned long flags;
|
|
struct ghcb *ghcb;
|
|
u64 ret = 0;
|
|
|
|
local_irq_save(flags);
|
|
|
|
ghcb = sev_es_get_ghcb(&state);
|
|
|
|
vc_ghcb_invalidate(ghcb);
|
|
ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_JUMP_TABLE);
|
|
ghcb_set_sw_exit_info_1(ghcb, SVM_VMGEXIT_GET_AP_JUMP_TABLE);
|
|
ghcb_set_sw_exit_info_2(ghcb, 0);
|
|
|
|
sev_es_wr_ghcb_msr(__pa(ghcb));
|
|
VMGEXIT();
|
|
|
|
if (ghcb_sw_exit_info_1_is_valid(ghcb) &&
|
|
ghcb_sw_exit_info_2_is_valid(ghcb))
|
|
ret = ghcb->save.sw_exit_info_2;
|
|
|
|
sev_es_put_ghcb(&state);
|
|
|
|
local_irq_restore(flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int sev_es_setup_ap_jump_table(struct real_mode_header *rmh)
|
|
{
|
|
u16 startup_cs, startup_ip;
|
|
phys_addr_t jump_table_pa;
|
|
u64 jump_table_addr;
|
|
u16 __iomem *jump_table;
|
|
|
|
jump_table_addr = get_jump_table_addr();
|
|
|
|
/* On UP guests there is no jump table so this is not a failure */
|
|
if (!jump_table_addr)
|
|
return 0;
|
|
|
|
/* Check if AP Jump Table is page-aligned */
|
|
if (jump_table_addr & ~PAGE_MASK)
|
|
return -EINVAL;
|
|
|
|
jump_table_pa = jump_table_addr & PAGE_MASK;
|
|
|
|
startup_cs = (u16)(rmh->trampoline_start >> 4);
|
|
startup_ip = (u16)(rmh->sev_es_trampoline_start -
|
|
rmh->trampoline_start);
|
|
|
|
jump_table = ioremap_encrypted(jump_table_pa, PAGE_SIZE);
|
|
if (!jump_table)
|
|
return -EIO;
|
|
|
|
writew(startup_ip, &jump_table[0]);
|
|
writew(startup_cs, &jump_table[1]);
|
|
|
|
iounmap(jump_table);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This is needed by the OVMF UEFI firmware which will use whatever it finds in
|
|
* the GHCB MSR as its GHCB to talk to the hypervisor. So make sure the per-cpu
|
|
* runtime GHCBs used by the kernel are also mapped in the EFI page-table.
|
|
*/
|
|
int __init sev_es_efi_map_ghcbs(pgd_t *pgd)
|
|
{
|
|
struct sev_es_runtime_data *data;
|
|
unsigned long address, pflags;
|
|
int cpu;
|
|
u64 pfn;
|
|
|
|
if (!sev_es_active())
|
|
return 0;
|
|
|
|
pflags = _PAGE_NX | _PAGE_RW;
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
data = per_cpu(runtime_data, cpu);
|
|
|
|
address = __pa(&data->ghcb_page);
|
|
pfn = address >> PAGE_SHIFT;
|
|
|
|
if (kernel_map_pages_in_pgd(pgd, pfn, address, 1, pflags))
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static enum es_result vc_handle_msr(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
|
|
{
|
|
struct pt_regs *regs = ctxt->regs;
|
|
enum es_result ret;
|
|
u64 exit_info_1;
|
|
|
|
/* Is it a WRMSR? */
|
|
exit_info_1 = (ctxt->insn.opcode.bytes[1] == 0x30) ? 1 : 0;
|
|
|
|
ghcb_set_rcx(ghcb, regs->cx);
|
|
if (exit_info_1) {
|
|
ghcb_set_rax(ghcb, regs->ax);
|
|
ghcb_set_rdx(ghcb, regs->dx);
|
|
}
|
|
|
|
ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_MSR, exit_info_1, 0);
|
|
|
|
if ((ret == ES_OK) && (!exit_info_1)) {
|
|
regs->ax = ghcb->save.rax;
|
|
regs->dx = ghcb->save.rdx;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This function runs on the first #VC exception after the kernel
|
|
* switched to virtual addresses.
|
|
*/
|
|
static bool __init sev_es_setup_ghcb(void)
|
|
{
|
|
/* First make sure the hypervisor talks a supported protocol. */
|
|
if (!sev_es_negotiate_protocol())
|
|
return false;
|
|
|
|
/*
|
|
* Clear the boot_ghcb. The first exception comes in before the bss
|
|
* section is cleared.
|
|
*/
|
|
memset(&boot_ghcb_page, 0, PAGE_SIZE);
|
|
|
|
/* Alright - Make the boot-ghcb public */
|
|
boot_ghcb = &boot_ghcb_page;
|
|
|
|
return true;
|
|
}
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
static void sev_es_ap_hlt_loop(void)
|
|
{
|
|
struct ghcb_state state;
|
|
struct ghcb *ghcb;
|
|
|
|
ghcb = sev_es_get_ghcb(&state);
|
|
|
|
while (true) {
|
|
vc_ghcb_invalidate(ghcb);
|
|
ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_HLT_LOOP);
|
|
ghcb_set_sw_exit_info_1(ghcb, 0);
|
|
ghcb_set_sw_exit_info_2(ghcb, 0);
|
|
|
|
sev_es_wr_ghcb_msr(__pa(ghcb));
|
|
VMGEXIT();
|
|
|
|
/* Wakeup signal? */
|
|
if (ghcb_sw_exit_info_2_is_valid(ghcb) &&
|
|
ghcb->save.sw_exit_info_2)
|
|
break;
|
|
}
|
|
|
|
sev_es_put_ghcb(&state);
|
|
}
|
|
|
|
/*
|
|
* Play_dead handler when running under SEV-ES. This is needed because
|
|
* the hypervisor can't deliver an SIPI request to restart the AP.
|
|
* Instead the kernel has to issue a VMGEXIT to halt the VCPU until the
|
|
* hypervisor wakes it up again.
|
|
*/
|
|
static void sev_es_play_dead(void)
|
|
{
|
|
play_dead_common();
|
|
|
|
/* IRQs now disabled */
|
|
|
|
sev_es_ap_hlt_loop();
|
|
|
|
/*
|
|
* If we get here, the VCPU was woken up again. Jump to CPU
|
|
* startup code to get it back online.
|
|
*/
|
|
start_cpu0();
|
|
}
|
|
#else /* CONFIG_HOTPLUG_CPU */
|
|
#define sev_es_play_dead native_play_dead
|
|
#endif /* CONFIG_HOTPLUG_CPU */
|
|
|
|
#ifdef CONFIG_SMP
|
|
static void __init sev_es_setup_play_dead(void)
|
|
{
|
|
smp_ops.play_dead = sev_es_play_dead;
|
|
}
|
|
#else
|
|
static inline void sev_es_setup_play_dead(void) { }
|
|
#endif
|
|
|
|
static void __init alloc_runtime_data(int cpu)
|
|
{
|
|
struct sev_es_runtime_data *data;
|
|
|
|
data = memblock_alloc(sizeof(*data), PAGE_SIZE);
|
|
if (!data)
|
|
panic("Can't allocate SEV-ES runtime data");
|
|
|
|
per_cpu(runtime_data, cpu) = data;
|
|
}
|
|
|
|
static void __init init_ghcb(int cpu)
|
|
{
|
|
struct sev_es_runtime_data *data;
|
|
int err;
|
|
|
|
data = per_cpu(runtime_data, cpu);
|
|
|
|
err = early_set_memory_decrypted((unsigned long)&data->ghcb_page,
|
|
sizeof(data->ghcb_page));
|
|
if (err)
|
|
panic("Can't map GHCBs unencrypted");
|
|
|
|
memset(&data->ghcb_page, 0, sizeof(data->ghcb_page));
|
|
|
|
data->ghcb_active = false;
|
|
data->backup_ghcb_active = false;
|
|
}
|
|
|
|
void __init sev_es_init_vc_handling(void)
|
|
{
|
|
int cpu;
|
|
|
|
BUILD_BUG_ON(offsetof(struct sev_es_runtime_data, ghcb_page) % PAGE_SIZE);
|
|
|
|
if (!sev_es_active())
|
|
return;
|
|
|
|
if (!sev_es_check_cpu_features())
|
|
panic("SEV-ES CPU Features missing");
|
|
|
|
/* Enable SEV-ES special handling */
|
|
static_branch_enable(&sev_es_enable_key);
|
|
|
|
/* Initialize per-cpu GHCB pages */
|
|
for_each_possible_cpu(cpu) {
|
|
alloc_runtime_data(cpu);
|
|
init_ghcb(cpu);
|
|
setup_vc_stacks(cpu);
|
|
}
|
|
|
|
sev_es_setup_play_dead();
|
|
|
|
/* Secondary CPUs use the runtime #VC handler */
|
|
initial_vc_handler = (unsigned long)safe_stack_exc_vmm_communication;
|
|
}
|
|
|
|
static void __init vc_early_forward_exception(struct es_em_ctxt *ctxt)
|
|
{
|
|
int trapnr = ctxt->fi.vector;
|
|
|
|
if (trapnr == X86_TRAP_PF)
|
|
native_write_cr2(ctxt->fi.cr2);
|
|
|
|
ctxt->regs->orig_ax = ctxt->fi.error_code;
|
|
do_early_exception(ctxt->regs, trapnr);
|
|
}
|
|
|
|
static long *vc_insn_get_reg(struct es_em_ctxt *ctxt)
|
|
{
|
|
long *reg_array;
|
|
int offset;
|
|
|
|
reg_array = (long *)ctxt->regs;
|
|
offset = insn_get_modrm_reg_off(&ctxt->insn, ctxt->regs);
|
|
|
|
if (offset < 0)
|
|
return NULL;
|
|
|
|
offset /= sizeof(long);
|
|
|
|
return reg_array + offset;
|
|
}
|
|
|
|
static long *vc_insn_get_rm(struct es_em_ctxt *ctxt)
|
|
{
|
|
long *reg_array;
|
|
int offset;
|
|
|
|
reg_array = (long *)ctxt->regs;
|
|
offset = insn_get_modrm_rm_off(&ctxt->insn, ctxt->regs);
|
|
|
|
if (offset < 0)
|
|
return NULL;
|
|
|
|
offset /= sizeof(long);
|
|
|
|
return reg_array + offset;
|
|
}
|
|
static enum es_result vc_do_mmio(struct ghcb *ghcb, struct es_em_ctxt *ctxt,
|
|
unsigned int bytes, bool read)
|
|
{
|
|
u64 exit_code, exit_info_1, exit_info_2;
|
|
unsigned long ghcb_pa = __pa(ghcb);
|
|
enum es_result res;
|
|
phys_addr_t paddr;
|
|
void __user *ref;
|
|
|
|
ref = insn_get_addr_ref(&ctxt->insn, ctxt->regs);
|
|
if (ref == (void __user *)-1L)
|
|
return ES_UNSUPPORTED;
|
|
|
|
exit_code = read ? SVM_VMGEXIT_MMIO_READ : SVM_VMGEXIT_MMIO_WRITE;
|
|
|
|
res = vc_slow_virt_to_phys(ghcb, ctxt, (unsigned long)ref, &paddr);
|
|
if (res != ES_OK) {
|
|
if (res == ES_EXCEPTION && !read)
|
|
ctxt->fi.error_code |= X86_PF_WRITE;
|
|
|
|
return res;
|
|
}
|
|
|
|
exit_info_1 = paddr;
|
|
/* Can never be greater than 8 */
|
|
exit_info_2 = bytes;
|
|
|
|
ghcb_set_sw_scratch(ghcb, ghcb_pa + offsetof(struct ghcb, shared_buffer));
|
|
|
|
return sev_es_ghcb_hv_call(ghcb, ctxt, exit_code, exit_info_1, exit_info_2);
|
|
}
|
|
|
|
static enum es_result vc_handle_mmio_twobyte_ops(struct ghcb *ghcb,
|
|
struct es_em_ctxt *ctxt)
|
|
{
|
|
struct insn *insn = &ctxt->insn;
|
|
unsigned int bytes = 0;
|
|
enum es_result ret;
|
|
int sign_byte;
|
|
long *reg_data;
|
|
|
|
switch (insn->opcode.bytes[1]) {
|
|
/* MMIO Read w/ zero-extension */
|
|
case 0xb6:
|
|
bytes = 1;
|
|
fallthrough;
|
|
case 0xb7:
|
|
if (!bytes)
|
|
bytes = 2;
|
|
|
|
ret = vc_do_mmio(ghcb, ctxt, bytes, true);
|
|
if (ret)
|
|
break;
|
|
|
|
/* Zero extend based on operand size */
|
|
reg_data = vc_insn_get_reg(ctxt);
|
|
if (!reg_data)
|
|
return ES_DECODE_FAILED;
|
|
|
|
memset(reg_data, 0, insn->opnd_bytes);
|
|
|
|
memcpy(reg_data, ghcb->shared_buffer, bytes);
|
|
break;
|
|
|
|
/* MMIO Read w/ sign-extension */
|
|
case 0xbe:
|
|
bytes = 1;
|
|
fallthrough;
|
|
case 0xbf:
|
|
if (!bytes)
|
|
bytes = 2;
|
|
|
|
ret = vc_do_mmio(ghcb, ctxt, bytes, true);
|
|
if (ret)
|
|
break;
|
|
|
|
/* Sign extend based on operand size */
|
|
reg_data = vc_insn_get_reg(ctxt);
|
|
if (!reg_data)
|
|
return ES_DECODE_FAILED;
|
|
|
|
if (bytes == 1) {
|
|
u8 *val = (u8 *)ghcb->shared_buffer;
|
|
|
|
sign_byte = (*val & 0x80) ? 0xff : 0x00;
|
|
} else {
|
|
u16 *val = (u16 *)ghcb->shared_buffer;
|
|
|
|
sign_byte = (*val & 0x8000) ? 0xff : 0x00;
|
|
}
|
|
memset(reg_data, sign_byte, insn->opnd_bytes);
|
|
|
|
memcpy(reg_data, ghcb->shared_buffer, bytes);
|
|
break;
|
|
|
|
default:
|
|
ret = ES_UNSUPPORTED;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* The MOVS instruction has two memory operands, which raises the
|
|
* problem that it is not known whether the access to the source or the
|
|
* destination caused the #VC exception (and hence whether an MMIO read
|
|
* or write operation needs to be emulated).
|
|
*
|
|
* Instead of playing games with walking page-tables and trying to guess
|
|
* whether the source or destination is an MMIO range, split the move
|
|
* into two operations, a read and a write with only one memory operand.
|
|
* This will cause a nested #VC exception on the MMIO address which can
|
|
* then be handled.
|
|
*
|
|
* This implementation has the benefit that it also supports MOVS where
|
|
* source _and_ destination are MMIO regions.
|
|
*
|
|
* It will slow MOVS on MMIO down a lot, but in SEV-ES guests it is a
|
|
* rare operation. If it turns out to be a performance problem the split
|
|
* operations can be moved to memcpy_fromio() and memcpy_toio().
|
|
*/
|
|
static enum es_result vc_handle_mmio_movs(struct es_em_ctxt *ctxt,
|
|
unsigned int bytes)
|
|
{
|
|
unsigned long ds_base, es_base;
|
|
unsigned char *src, *dst;
|
|
unsigned char buffer[8];
|
|
enum es_result ret;
|
|
bool rep;
|
|
int off;
|
|
|
|
ds_base = insn_get_seg_base(ctxt->regs, INAT_SEG_REG_DS);
|
|
es_base = insn_get_seg_base(ctxt->regs, INAT_SEG_REG_ES);
|
|
|
|
if (ds_base == -1L || es_base == -1L) {
|
|
ctxt->fi.vector = X86_TRAP_GP;
|
|
ctxt->fi.error_code = 0;
|
|
return ES_EXCEPTION;
|
|
}
|
|
|
|
src = ds_base + (unsigned char *)ctxt->regs->si;
|
|
dst = es_base + (unsigned char *)ctxt->regs->di;
|
|
|
|
ret = vc_read_mem(ctxt, src, buffer, bytes);
|
|
if (ret != ES_OK)
|
|
return ret;
|
|
|
|
ret = vc_write_mem(ctxt, dst, buffer, bytes);
|
|
if (ret != ES_OK)
|
|
return ret;
|
|
|
|
if (ctxt->regs->flags & X86_EFLAGS_DF)
|
|
off = -bytes;
|
|
else
|
|
off = bytes;
|
|
|
|
ctxt->regs->si += off;
|
|
ctxt->regs->di += off;
|
|
|
|
rep = insn_has_rep_prefix(&ctxt->insn);
|
|
if (rep)
|
|
ctxt->regs->cx -= 1;
|
|
|
|
if (!rep || ctxt->regs->cx == 0)
|
|
return ES_OK;
|
|
else
|
|
return ES_RETRY;
|
|
}
|
|
|
|
static enum es_result vc_handle_mmio(struct ghcb *ghcb,
|
|
struct es_em_ctxt *ctxt)
|
|
{
|
|
struct insn *insn = &ctxt->insn;
|
|
unsigned int bytes = 0;
|
|
enum es_result ret;
|
|
long *reg_data;
|
|
|
|
switch (insn->opcode.bytes[0]) {
|
|
/* MMIO Write */
|
|
case 0x88:
|
|
bytes = 1;
|
|
fallthrough;
|
|
case 0x89:
|
|
if (!bytes)
|
|
bytes = insn->opnd_bytes;
|
|
|
|
reg_data = vc_insn_get_reg(ctxt);
|
|
if (!reg_data)
|
|
return ES_DECODE_FAILED;
|
|
|
|
memcpy(ghcb->shared_buffer, reg_data, bytes);
|
|
|
|
ret = vc_do_mmio(ghcb, ctxt, bytes, false);
|
|
break;
|
|
|
|
case 0xc6:
|
|
bytes = 1;
|
|
fallthrough;
|
|
case 0xc7:
|
|
if (!bytes)
|
|
bytes = insn->opnd_bytes;
|
|
|
|
memcpy(ghcb->shared_buffer, insn->immediate1.bytes, bytes);
|
|
|
|
ret = vc_do_mmio(ghcb, ctxt, bytes, false);
|
|
break;
|
|
|
|
/* MMIO Read */
|
|
case 0x8a:
|
|
bytes = 1;
|
|
fallthrough;
|
|
case 0x8b:
|
|
if (!bytes)
|
|
bytes = insn->opnd_bytes;
|
|
|
|
ret = vc_do_mmio(ghcb, ctxt, bytes, true);
|
|
if (ret)
|
|
break;
|
|
|
|
reg_data = vc_insn_get_reg(ctxt);
|
|
if (!reg_data)
|
|
return ES_DECODE_FAILED;
|
|
|
|
/* Zero-extend for 32-bit operation */
|
|
if (bytes == 4)
|
|
*reg_data = 0;
|
|
|
|
memcpy(reg_data, ghcb->shared_buffer, bytes);
|
|
break;
|
|
|
|
/* MOVS instruction */
|
|
case 0xa4:
|
|
bytes = 1;
|
|
fallthrough;
|
|
case 0xa5:
|
|
if (!bytes)
|
|
bytes = insn->opnd_bytes;
|
|
|
|
ret = vc_handle_mmio_movs(ctxt, bytes);
|
|
break;
|
|
/* Two-Byte Opcodes */
|
|
case 0x0f:
|
|
ret = vc_handle_mmio_twobyte_ops(ghcb, ctxt);
|
|
break;
|
|
default:
|
|
ret = ES_UNSUPPORTED;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static enum es_result vc_handle_dr7_write(struct ghcb *ghcb,
|
|
struct es_em_ctxt *ctxt)
|
|
{
|
|
struct sev_es_runtime_data *data = this_cpu_read(runtime_data);
|
|
long val, *reg = vc_insn_get_rm(ctxt);
|
|
enum es_result ret;
|
|
|
|
if (!reg)
|
|
return ES_DECODE_FAILED;
|
|
|
|
val = *reg;
|
|
|
|
/* Upper 32 bits must be written as zeroes */
|
|
if (val >> 32) {
|
|
ctxt->fi.vector = X86_TRAP_GP;
|
|
ctxt->fi.error_code = 0;
|
|
return ES_EXCEPTION;
|
|
}
|
|
|
|
/* Clear out other reserved bits and set bit 10 */
|
|
val = (val & 0xffff23ffL) | BIT(10);
|
|
|
|
/* Early non-zero writes to DR7 are not supported */
|
|
if (!data && (val & ~DR7_RESET_VALUE))
|
|
return ES_UNSUPPORTED;
|
|
|
|
/* Using a value of 0 for ExitInfo1 means RAX holds the value */
|
|
ghcb_set_rax(ghcb, val);
|
|
ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_WRITE_DR7, 0, 0);
|
|
if (ret != ES_OK)
|
|
return ret;
|
|
|
|
if (data)
|
|
data->dr7 = val;
|
|
|
|
return ES_OK;
|
|
}
|
|
|
|
static enum es_result vc_handle_dr7_read(struct ghcb *ghcb,
|
|
struct es_em_ctxt *ctxt)
|
|
{
|
|
struct sev_es_runtime_data *data = this_cpu_read(runtime_data);
|
|
long *reg = vc_insn_get_rm(ctxt);
|
|
|
|
if (!reg)
|
|
return ES_DECODE_FAILED;
|
|
|
|
if (data)
|
|
*reg = data->dr7;
|
|
else
|
|
*reg = DR7_RESET_VALUE;
|
|
|
|
return ES_OK;
|
|
}
|
|
|
|
static enum es_result vc_handle_wbinvd(struct ghcb *ghcb,
|
|
struct es_em_ctxt *ctxt)
|
|
{
|
|
return sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_WBINVD, 0, 0);
|
|
}
|
|
|
|
static enum es_result vc_handle_rdpmc(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
|
|
{
|
|
enum es_result ret;
|
|
|
|
ghcb_set_rcx(ghcb, ctxt->regs->cx);
|
|
|
|
ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_RDPMC, 0, 0);
|
|
if (ret != ES_OK)
|
|
return ret;
|
|
|
|
if (!(ghcb_rax_is_valid(ghcb) && ghcb_rdx_is_valid(ghcb)))
|
|
return ES_VMM_ERROR;
|
|
|
|
ctxt->regs->ax = ghcb->save.rax;
|
|
ctxt->regs->dx = ghcb->save.rdx;
|
|
|
|
return ES_OK;
|
|
}
|
|
|
|
static enum es_result vc_handle_monitor(struct ghcb *ghcb,
|
|
struct es_em_ctxt *ctxt)
|
|
{
|
|
/*
|
|
* Treat it as a NOP and do not leak a physical address to the
|
|
* hypervisor.
|
|
*/
|
|
return ES_OK;
|
|
}
|
|
|
|
static enum es_result vc_handle_mwait(struct ghcb *ghcb,
|
|
struct es_em_ctxt *ctxt)
|
|
{
|
|
/* Treat the same as MONITOR/MONITORX */
|
|
return ES_OK;
|
|
}
|
|
|
|
static enum es_result vc_handle_vmmcall(struct ghcb *ghcb,
|
|
struct es_em_ctxt *ctxt)
|
|
{
|
|
enum es_result ret;
|
|
|
|
ghcb_set_rax(ghcb, ctxt->regs->ax);
|
|
ghcb_set_cpl(ghcb, user_mode(ctxt->regs) ? 3 : 0);
|
|
|
|
if (x86_platform.hyper.sev_es_hcall_prepare)
|
|
x86_platform.hyper.sev_es_hcall_prepare(ghcb, ctxt->regs);
|
|
|
|
ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_VMMCALL, 0, 0);
|
|
if (ret != ES_OK)
|
|
return ret;
|
|
|
|
if (!ghcb_rax_is_valid(ghcb))
|
|
return ES_VMM_ERROR;
|
|
|
|
ctxt->regs->ax = ghcb->save.rax;
|
|
|
|
/*
|
|
* Call sev_es_hcall_finish() after regs->ax is already set.
|
|
* This allows the hypervisor handler to overwrite it again if
|
|
* necessary.
|
|
*/
|
|
if (x86_platform.hyper.sev_es_hcall_finish &&
|
|
!x86_platform.hyper.sev_es_hcall_finish(ghcb, ctxt->regs))
|
|
return ES_VMM_ERROR;
|
|
|
|
return ES_OK;
|
|
}
|
|
|
|
static enum es_result vc_handle_trap_ac(struct ghcb *ghcb,
|
|
struct es_em_ctxt *ctxt)
|
|
{
|
|
/*
|
|
* Calling ecx_alignment_check() directly does not work, because it
|
|
* enables IRQs and the GHCB is active. Forward the exception and call
|
|
* it later from vc_forward_exception().
|
|
*/
|
|
ctxt->fi.vector = X86_TRAP_AC;
|
|
ctxt->fi.error_code = 0;
|
|
return ES_EXCEPTION;
|
|
}
|
|
|
|
static __always_inline void vc_handle_trap_db(struct pt_regs *regs)
|
|
{
|
|
if (user_mode(regs))
|
|
noist_exc_debug(regs);
|
|
else
|
|
exc_debug(regs);
|
|
}
|
|
|
|
static enum es_result vc_handle_exitcode(struct es_em_ctxt *ctxt,
|
|
struct ghcb *ghcb,
|
|
unsigned long exit_code)
|
|
{
|
|
enum es_result result;
|
|
|
|
switch (exit_code) {
|
|
case SVM_EXIT_READ_DR7:
|
|
result = vc_handle_dr7_read(ghcb, ctxt);
|
|
break;
|
|
case SVM_EXIT_WRITE_DR7:
|
|
result = vc_handle_dr7_write(ghcb, ctxt);
|
|
break;
|
|
case SVM_EXIT_EXCP_BASE + X86_TRAP_AC:
|
|
result = vc_handle_trap_ac(ghcb, ctxt);
|
|
break;
|
|
case SVM_EXIT_RDTSC:
|
|
case SVM_EXIT_RDTSCP:
|
|
result = vc_handle_rdtsc(ghcb, ctxt, exit_code);
|
|
break;
|
|
case SVM_EXIT_RDPMC:
|
|
result = vc_handle_rdpmc(ghcb, ctxt);
|
|
break;
|
|
case SVM_EXIT_INVD:
|
|
pr_err_ratelimited("#VC exception for INVD??? Seriously???\n");
|
|
result = ES_UNSUPPORTED;
|
|
break;
|
|
case SVM_EXIT_CPUID:
|
|
result = vc_handle_cpuid(ghcb, ctxt);
|
|
break;
|
|
case SVM_EXIT_IOIO:
|
|
result = vc_handle_ioio(ghcb, ctxt);
|
|
break;
|
|
case SVM_EXIT_MSR:
|
|
result = vc_handle_msr(ghcb, ctxt);
|
|
break;
|
|
case SVM_EXIT_VMMCALL:
|
|
result = vc_handle_vmmcall(ghcb, ctxt);
|
|
break;
|
|
case SVM_EXIT_WBINVD:
|
|
result = vc_handle_wbinvd(ghcb, ctxt);
|
|
break;
|
|
case SVM_EXIT_MONITOR:
|
|
result = vc_handle_monitor(ghcb, ctxt);
|
|
break;
|
|
case SVM_EXIT_MWAIT:
|
|
result = vc_handle_mwait(ghcb, ctxt);
|
|
break;
|
|
case SVM_EXIT_NPF:
|
|
result = vc_handle_mmio(ghcb, ctxt);
|
|
break;
|
|
default:
|
|
/*
|
|
* Unexpected #VC exception
|
|
*/
|
|
result = ES_UNSUPPORTED;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
static __always_inline void vc_forward_exception(struct es_em_ctxt *ctxt)
|
|
{
|
|
long error_code = ctxt->fi.error_code;
|
|
int trapnr = ctxt->fi.vector;
|
|
|
|
ctxt->regs->orig_ax = ctxt->fi.error_code;
|
|
|
|
switch (trapnr) {
|
|
case X86_TRAP_GP:
|
|
exc_general_protection(ctxt->regs, error_code);
|
|
break;
|
|
case X86_TRAP_UD:
|
|
exc_invalid_op(ctxt->regs);
|
|
break;
|
|
case X86_TRAP_PF:
|
|
write_cr2(ctxt->fi.cr2);
|
|
exc_page_fault(ctxt->regs, error_code);
|
|
break;
|
|
case X86_TRAP_AC:
|
|
exc_alignment_check(ctxt->regs, error_code);
|
|
break;
|
|
default:
|
|
pr_emerg("Unsupported exception in #VC instruction emulation - can't continue\n");
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
static __always_inline bool on_vc_fallback_stack(struct pt_regs *regs)
|
|
{
|
|
unsigned long sp = (unsigned long)regs;
|
|
|
|
return (sp >= __this_cpu_ist_bottom_va(VC2) && sp < __this_cpu_ist_top_va(VC2));
|
|
}
|
|
|
|
/*
|
|
* Main #VC exception handler. It is called when the entry code was able to
|
|
* switch off the IST to a safe kernel stack.
|
|
*
|
|
* With the current implementation it is always possible to switch to a safe
|
|
* stack because #VC exceptions only happen at known places, like intercepted
|
|
* instructions or accesses to MMIO areas/IO ports. They can also happen with
|
|
* code instrumentation when the hypervisor intercepts #DB, but the critical
|
|
* paths are forbidden to be instrumented, so #DB exceptions currently also
|
|
* only happen in safe places.
|
|
*/
|
|
DEFINE_IDTENTRY_VC_SAFE_STACK(exc_vmm_communication)
|
|
{
|
|
irqentry_state_t irq_state;
|
|
struct ghcb_state state;
|
|
struct es_em_ctxt ctxt;
|
|
enum es_result result;
|
|
struct ghcb *ghcb;
|
|
|
|
/*
|
|
* Handle #DB before calling into !noinstr code to avoid recursive #DB.
|
|
*/
|
|
if (error_code == SVM_EXIT_EXCP_BASE + X86_TRAP_DB) {
|
|
vc_handle_trap_db(regs);
|
|
return;
|
|
}
|
|
|
|
irq_state = irqentry_nmi_enter(regs);
|
|
lockdep_assert_irqs_disabled();
|
|
instrumentation_begin();
|
|
|
|
/*
|
|
* This is invoked through an interrupt gate, so IRQs are disabled. The
|
|
* code below might walk page-tables for user or kernel addresses, so
|
|
* keep the IRQs disabled to protect us against concurrent TLB flushes.
|
|
*/
|
|
|
|
ghcb = sev_es_get_ghcb(&state);
|
|
|
|
vc_ghcb_invalidate(ghcb);
|
|
result = vc_init_em_ctxt(&ctxt, regs, error_code);
|
|
|
|
if (result == ES_OK)
|
|
result = vc_handle_exitcode(&ctxt, ghcb, error_code);
|
|
|
|
sev_es_put_ghcb(&state);
|
|
|
|
/* Done - now check the result */
|
|
switch (result) {
|
|
case ES_OK:
|
|
vc_finish_insn(&ctxt);
|
|
break;
|
|
case ES_UNSUPPORTED:
|
|
pr_err_ratelimited("Unsupported exit-code 0x%02lx in early #VC exception (IP: 0x%lx)\n",
|
|
error_code, regs->ip);
|
|
goto fail;
|
|
case ES_VMM_ERROR:
|
|
pr_err_ratelimited("Failure in communication with VMM (exit-code 0x%02lx IP: 0x%lx)\n",
|
|
error_code, regs->ip);
|
|
goto fail;
|
|
case ES_DECODE_FAILED:
|
|
pr_err_ratelimited("Failed to decode instruction (exit-code 0x%02lx IP: 0x%lx)\n",
|
|
error_code, regs->ip);
|
|
goto fail;
|
|
case ES_EXCEPTION:
|
|
vc_forward_exception(&ctxt);
|
|
break;
|
|
case ES_RETRY:
|
|
/* Nothing to do */
|
|
break;
|
|
default:
|
|
pr_emerg("Unknown result in %s():%d\n", __func__, result);
|
|
/*
|
|
* Emulating the instruction which caused the #VC exception
|
|
* failed - can't continue so print debug information
|
|
*/
|
|
BUG();
|
|
}
|
|
|
|
out:
|
|
instrumentation_end();
|
|
irqentry_nmi_exit(regs, irq_state);
|
|
|
|
return;
|
|
|
|
fail:
|
|
if (user_mode(regs)) {
|
|
/*
|
|
* Do not kill the machine if user-space triggered the
|
|
* exception. Send SIGBUS instead and let user-space deal with
|
|
* it.
|
|
*/
|
|
force_sig_fault(SIGBUS, BUS_OBJERR, (void __user *)0);
|
|
} else {
|
|
pr_emerg("PANIC: Unhandled #VC exception in kernel space (result=%d)\n",
|
|
result);
|
|
|
|
/* Show some debug info */
|
|
show_regs(regs);
|
|
|
|
/* Ask hypervisor to sev_es_terminate */
|
|
sev_es_terminate(GHCB_SEV_ES_REASON_GENERAL_REQUEST);
|
|
|
|
/* If that fails and we get here - just panic */
|
|
panic("Returned from Terminate-Request to Hypervisor\n");
|
|
}
|
|
|
|
goto out;
|
|
}
|
|
|
|
/* This handler runs on the #VC fall-back stack. It can cause further #VC exceptions */
|
|
DEFINE_IDTENTRY_VC_IST(exc_vmm_communication)
|
|
{
|
|
instrumentation_begin();
|
|
panic("Can't handle #VC exception from unsupported context\n");
|
|
instrumentation_end();
|
|
}
|
|
|
|
DEFINE_IDTENTRY_VC(exc_vmm_communication)
|
|
{
|
|
if (likely(!on_vc_fallback_stack(regs)))
|
|
safe_stack_exc_vmm_communication(regs, error_code);
|
|
else
|
|
ist_exc_vmm_communication(regs, error_code);
|
|
}
|
|
|
|
bool __init handle_vc_boot_ghcb(struct pt_regs *regs)
|
|
{
|
|
unsigned long exit_code = regs->orig_ax;
|
|
struct es_em_ctxt ctxt;
|
|
enum es_result result;
|
|
|
|
/* Do initial setup or terminate the guest */
|
|
if (unlikely(boot_ghcb == NULL && !sev_es_setup_ghcb()))
|
|
sev_es_terminate(GHCB_SEV_ES_REASON_GENERAL_REQUEST);
|
|
|
|
vc_ghcb_invalidate(boot_ghcb);
|
|
|
|
result = vc_init_em_ctxt(&ctxt, regs, exit_code);
|
|
if (result == ES_OK)
|
|
result = vc_handle_exitcode(&ctxt, boot_ghcb, exit_code);
|
|
|
|
/* Done - now check the result */
|
|
switch (result) {
|
|
case ES_OK:
|
|
vc_finish_insn(&ctxt);
|
|
break;
|
|
case ES_UNSUPPORTED:
|
|
early_printk("PANIC: Unsupported exit-code 0x%02lx in early #VC exception (IP: 0x%lx)\n",
|
|
exit_code, regs->ip);
|
|
goto fail;
|
|
case ES_VMM_ERROR:
|
|
early_printk("PANIC: Failure in communication with VMM (exit-code 0x%02lx IP: 0x%lx)\n",
|
|
exit_code, regs->ip);
|
|
goto fail;
|
|
case ES_DECODE_FAILED:
|
|
early_printk("PANIC: Failed to decode instruction (exit-code 0x%02lx IP: 0x%lx)\n",
|
|
exit_code, regs->ip);
|
|
goto fail;
|
|
case ES_EXCEPTION:
|
|
vc_early_forward_exception(&ctxt);
|
|
break;
|
|
case ES_RETRY:
|
|
/* Nothing to do */
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
return true;
|
|
|
|
fail:
|
|
show_regs(regs);
|
|
|
|
while (true)
|
|
halt();
|
|
}
|