253a496d8e
syzkaller and the fault injector showed that I was wrong to assume that
we could ignore percpu shadow allocation failures.
Handle failures properly. Merge all the allocated areas back into the
free list and release the shadow, then clean up and return NULL. The
shadow is released unconditionally, which relies upon the fact that the
release function is able to tolerate pages not being present.
Also clean up shadows in the recovery path - currently they are not
released, which leaks a bit of memory.
Link: http://lkml.kernel.org/r/20191205140407.1874-3-dja@axtens.net
Fixes: 3c5c3cfb9e
("kasan: support backing vmalloc space with real shadow memory")
Signed-off-by: Daniel Axtens <dja@axtens.net>
Reported-by: syzbot+82e323920b78d54aaed5@syzkaller.appspotmail.com
Reported-by: syzbot+59b7daa4315e07a994f1@syzkaller.appspotmail.com
Reviewed-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Uladzislau Rezki (Sony) <urezki@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
3682 lines
93 KiB
C
3682 lines
93 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* linux/mm/vmalloc.c
|
|
*
|
|
* Copyright (C) 1993 Linus Torvalds
|
|
* Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
|
|
* SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
|
|
* Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
|
|
* Numa awareness, Christoph Lameter, SGI, June 2005
|
|
*/
|
|
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/module.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/sched/signal.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/set_memory.h>
|
|
#include <linux/debugobjects.h>
|
|
#include <linux/kallsyms.h>
|
|
#include <linux/list.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/rbtree.h>
|
|
#include <linux/radix-tree.h>
|
|
#include <linux/rcupdate.h>
|
|
#include <linux/pfn.h>
|
|
#include <linux/kmemleak.h>
|
|
#include <linux/atomic.h>
|
|
#include <linux/compiler.h>
|
|
#include <linux/llist.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/rbtree_augmented.h>
|
|
|
|
#include <linux/uaccess.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/shmparam.h>
|
|
|
|
#include "internal.h"
|
|
|
|
struct vfree_deferred {
|
|
struct llist_head list;
|
|
struct work_struct wq;
|
|
};
|
|
static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
|
|
|
|
static void __vunmap(const void *, int);
|
|
|
|
static void free_work(struct work_struct *w)
|
|
{
|
|
struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
|
|
struct llist_node *t, *llnode;
|
|
|
|
llist_for_each_safe(llnode, t, llist_del_all(&p->list))
|
|
__vunmap((void *)llnode, 1);
|
|
}
|
|
|
|
/*** Page table manipulation functions ***/
|
|
|
|
static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
|
|
{
|
|
pte_t *pte;
|
|
|
|
pte = pte_offset_kernel(pmd, addr);
|
|
do {
|
|
pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
|
|
WARN_ON(!pte_none(ptent) && !pte_present(ptent));
|
|
} while (pte++, addr += PAGE_SIZE, addr != end);
|
|
}
|
|
|
|
static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
|
|
{
|
|
pmd_t *pmd;
|
|
unsigned long next;
|
|
|
|
pmd = pmd_offset(pud, addr);
|
|
do {
|
|
next = pmd_addr_end(addr, end);
|
|
if (pmd_clear_huge(pmd))
|
|
continue;
|
|
if (pmd_none_or_clear_bad(pmd))
|
|
continue;
|
|
vunmap_pte_range(pmd, addr, next);
|
|
} while (pmd++, addr = next, addr != end);
|
|
}
|
|
|
|
static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end)
|
|
{
|
|
pud_t *pud;
|
|
unsigned long next;
|
|
|
|
pud = pud_offset(p4d, addr);
|
|
do {
|
|
next = pud_addr_end(addr, end);
|
|
if (pud_clear_huge(pud))
|
|
continue;
|
|
if (pud_none_or_clear_bad(pud))
|
|
continue;
|
|
vunmap_pmd_range(pud, addr, next);
|
|
} while (pud++, addr = next, addr != end);
|
|
}
|
|
|
|
static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end)
|
|
{
|
|
p4d_t *p4d;
|
|
unsigned long next;
|
|
|
|
p4d = p4d_offset(pgd, addr);
|
|
do {
|
|
next = p4d_addr_end(addr, end);
|
|
if (p4d_clear_huge(p4d))
|
|
continue;
|
|
if (p4d_none_or_clear_bad(p4d))
|
|
continue;
|
|
vunmap_pud_range(p4d, addr, next);
|
|
} while (p4d++, addr = next, addr != end);
|
|
}
|
|
|
|
static void vunmap_page_range(unsigned long addr, unsigned long end)
|
|
{
|
|
pgd_t *pgd;
|
|
unsigned long next;
|
|
|
|
BUG_ON(addr >= end);
|
|
pgd = pgd_offset_k(addr);
|
|
do {
|
|
next = pgd_addr_end(addr, end);
|
|
if (pgd_none_or_clear_bad(pgd))
|
|
continue;
|
|
vunmap_p4d_range(pgd, addr, next);
|
|
} while (pgd++, addr = next, addr != end);
|
|
}
|
|
|
|
static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
|
|
unsigned long end, pgprot_t prot, struct page **pages, int *nr)
|
|
{
|
|
pte_t *pte;
|
|
|
|
/*
|
|
* nr is a running index into the array which helps higher level
|
|
* callers keep track of where we're up to.
|
|
*/
|
|
|
|
pte = pte_alloc_kernel(pmd, addr);
|
|
if (!pte)
|
|
return -ENOMEM;
|
|
do {
|
|
struct page *page = pages[*nr];
|
|
|
|
if (WARN_ON(!pte_none(*pte)))
|
|
return -EBUSY;
|
|
if (WARN_ON(!page))
|
|
return -ENOMEM;
|
|
set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
|
|
(*nr)++;
|
|
} while (pte++, addr += PAGE_SIZE, addr != end);
|
|
return 0;
|
|
}
|
|
|
|
static int vmap_pmd_range(pud_t *pud, unsigned long addr,
|
|
unsigned long end, pgprot_t prot, struct page **pages, int *nr)
|
|
{
|
|
pmd_t *pmd;
|
|
unsigned long next;
|
|
|
|
pmd = pmd_alloc(&init_mm, pud, addr);
|
|
if (!pmd)
|
|
return -ENOMEM;
|
|
do {
|
|
next = pmd_addr_end(addr, end);
|
|
if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
|
|
return -ENOMEM;
|
|
} while (pmd++, addr = next, addr != end);
|
|
return 0;
|
|
}
|
|
|
|
static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
|
|
unsigned long end, pgprot_t prot, struct page **pages, int *nr)
|
|
{
|
|
pud_t *pud;
|
|
unsigned long next;
|
|
|
|
pud = pud_alloc(&init_mm, p4d, addr);
|
|
if (!pud)
|
|
return -ENOMEM;
|
|
do {
|
|
next = pud_addr_end(addr, end);
|
|
if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
|
|
return -ENOMEM;
|
|
} while (pud++, addr = next, addr != end);
|
|
return 0;
|
|
}
|
|
|
|
static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
|
|
unsigned long end, pgprot_t prot, struct page **pages, int *nr)
|
|
{
|
|
p4d_t *p4d;
|
|
unsigned long next;
|
|
|
|
p4d = p4d_alloc(&init_mm, pgd, addr);
|
|
if (!p4d)
|
|
return -ENOMEM;
|
|
do {
|
|
next = p4d_addr_end(addr, end);
|
|
if (vmap_pud_range(p4d, addr, next, prot, pages, nr))
|
|
return -ENOMEM;
|
|
} while (p4d++, addr = next, addr != end);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
|
|
* will have pfns corresponding to the "pages" array.
|
|
*
|
|
* Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
|
|
*/
|
|
static int vmap_page_range_noflush(unsigned long start, unsigned long end,
|
|
pgprot_t prot, struct page **pages)
|
|
{
|
|
pgd_t *pgd;
|
|
unsigned long next;
|
|
unsigned long addr = start;
|
|
int err = 0;
|
|
int nr = 0;
|
|
|
|
BUG_ON(addr >= end);
|
|
pgd = pgd_offset_k(addr);
|
|
do {
|
|
next = pgd_addr_end(addr, end);
|
|
err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr);
|
|
if (err)
|
|
return err;
|
|
} while (pgd++, addr = next, addr != end);
|
|
|
|
return nr;
|
|
}
|
|
|
|
static int vmap_page_range(unsigned long start, unsigned long end,
|
|
pgprot_t prot, struct page **pages)
|
|
{
|
|
int ret;
|
|
|
|
ret = vmap_page_range_noflush(start, end, prot, pages);
|
|
flush_cache_vmap(start, end);
|
|
return ret;
|
|
}
|
|
|
|
int is_vmalloc_or_module_addr(const void *x)
|
|
{
|
|
/*
|
|
* ARM, x86-64 and sparc64 put modules in a special place,
|
|
* and fall back on vmalloc() if that fails. Others
|
|
* just put it in the vmalloc space.
|
|
*/
|
|
#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
|
|
unsigned long addr = (unsigned long)x;
|
|
if (addr >= MODULES_VADDR && addr < MODULES_END)
|
|
return 1;
|
|
#endif
|
|
return is_vmalloc_addr(x);
|
|
}
|
|
|
|
/*
|
|
* Walk a vmap address to the struct page it maps.
|
|
*/
|
|
struct page *vmalloc_to_page(const void *vmalloc_addr)
|
|
{
|
|
unsigned long addr = (unsigned long) vmalloc_addr;
|
|
struct page *page = NULL;
|
|
pgd_t *pgd = pgd_offset_k(addr);
|
|
p4d_t *p4d;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *ptep, pte;
|
|
|
|
/*
|
|
* XXX we might need to change this if we add VIRTUAL_BUG_ON for
|
|
* architectures that do not vmalloc module space
|
|
*/
|
|
VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
|
|
|
|
if (pgd_none(*pgd))
|
|
return NULL;
|
|
p4d = p4d_offset(pgd, addr);
|
|
if (p4d_none(*p4d))
|
|
return NULL;
|
|
pud = pud_offset(p4d, addr);
|
|
|
|
/*
|
|
* Don't dereference bad PUD or PMD (below) entries. This will also
|
|
* identify huge mappings, which we may encounter on architectures
|
|
* that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
|
|
* identified as vmalloc addresses by is_vmalloc_addr(), but are
|
|
* not [unambiguously] associated with a struct page, so there is
|
|
* no correct value to return for them.
|
|
*/
|
|
WARN_ON_ONCE(pud_bad(*pud));
|
|
if (pud_none(*pud) || pud_bad(*pud))
|
|
return NULL;
|
|
pmd = pmd_offset(pud, addr);
|
|
WARN_ON_ONCE(pmd_bad(*pmd));
|
|
if (pmd_none(*pmd) || pmd_bad(*pmd))
|
|
return NULL;
|
|
|
|
ptep = pte_offset_map(pmd, addr);
|
|
pte = *ptep;
|
|
if (pte_present(pte))
|
|
page = pte_page(pte);
|
|
pte_unmap(ptep);
|
|
return page;
|
|
}
|
|
EXPORT_SYMBOL(vmalloc_to_page);
|
|
|
|
/*
|
|
* Map a vmalloc()-space virtual address to the physical page frame number.
|
|
*/
|
|
unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
|
|
{
|
|
return page_to_pfn(vmalloc_to_page(vmalloc_addr));
|
|
}
|
|
EXPORT_SYMBOL(vmalloc_to_pfn);
|
|
|
|
|
|
/*** Global kva allocator ***/
|
|
|
|
#define DEBUG_AUGMENT_PROPAGATE_CHECK 0
|
|
#define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
|
|
|
|
|
|
static DEFINE_SPINLOCK(vmap_area_lock);
|
|
static DEFINE_SPINLOCK(free_vmap_area_lock);
|
|
/* Export for kexec only */
|
|
LIST_HEAD(vmap_area_list);
|
|
static LLIST_HEAD(vmap_purge_list);
|
|
static struct rb_root vmap_area_root = RB_ROOT;
|
|
static bool vmap_initialized __read_mostly;
|
|
|
|
/*
|
|
* This kmem_cache is used for vmap_area objects. Instead of
|
|
* allocating from slab we reuse an object from this cache to
|
|
* make things faster. Especially in "no edge" splitting of
|
|
* free block.
|
|
*/
|
|
static struct kmem_cache *vmap_area_cachep;
|
|
|
|
/*
|
|
* This linked list is used in pair with free_vmap_area_root.
|
|
* It gives O(1) access to prev/next to perform fast coalescing.
|
|
*/
|
|
static LIST_HEAD(free_vmap_area_list);
|
|
|
|
/*
|
|
* This augment red-black tree represents the free vmap space.
|
|
* All vmap_area objects in this tree are sorted by va->va_start
|
|
* address. It is used for allocation and merging when a vmap
|
|
* object is released.
|
|
*
|
|
* Each vmap_area node contains a maximum available free block
|
|
* of its sub-tree, right or left. Therefore it is possible to
|
|
* find a lowest match of free area.
|
|
*/
|
|
static struct rb_root free_vmap_area_root = RB_ROOT;
|
|
|
|
/*
|
|
* Preload a CPU with one object for "no edge" split case. The
|
|
* aim is to get rid of allocations from the atomic context, thus
|
|
* to use more permissive allocation masks.
|
|
*/
|
|
static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
|
|
|
|
static __always_inline unsigned long
|
|
va_size(struct vmap_area *va)
|
|
{
|
|
return (va->va_end - va->va_start);
|
|
}
|
|
|
|
static __always_inline unsigned long
|
|
get_subtree_max_size(struct rb_node *node)
|
|
{
|
|
struct vmap_area *va;
|
|
|
|
va = rb_entry_safe(node, struct vmap_area, rb_node);
|
|
return va ? va->subtree_max_size : 0;
|
|
}
|
|
|
|
/*
|
|
* Gets called when remove the node and rotate.
|
|
*/
|
|
static __always_inline unsigned long
|
|
compute_subtree_max_size(struct vmap_area *va)
|
|
{
|
|
return max3(va_size(va),
|
|
get_subtree_max_size(va->rb_node.rb_left),
|
|
get_subtree_max_size(va->rb_node.rb_right));
|
|
}
|
|
|
|
RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
|
|
struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
|
|
|
|
static void purge_vmap_area_lazy(void);
|
|
static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
|
|
static unsigned long lazy_max_pages(void);
|
|
|
|
static atomic_long_t nr_vmalloc_pages;
|
|
|
|
unsigned long vmalloc_nr_pages(void)
|
|
{
|
|
return atomic_long_read(&nr_vmalloc_pages);
|
|
}
|
|
|
|
static struct vmap_area *__find_vmap_area(unsigned long addr)
|
|
{
|
|
struct rb_node *n = vmap_area_root.rb_node;
|
|
|
|
while (n) {
|
|
struct vmap_area *va;
|
|
|
|
va = rb_entry(n, struct vmap_area, rb_node);
|
|
if (addr < va->va_start)
|
|
n = n->rb_left;
|
|
else if (addr >= va->va_end)
|
|
n = n->rb_right;
|
|
else
|
|
return va;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* This function returns back addresses of parent node
|
|
* and its left or right link for further processing.
|
|
*/
|
|
static __always_inline struct rb_node **
|
|
find_va_links(struct vmap_area *va,
|
|
struct rb_root *root, struct rb_node *from,
|
|
struct rb_node **parent)
|
|
{
|
|
struct vmap_area *tmp_va;
|
|
struct rb_node **link;
|
|
|
|
if (root) {
|
|
link = &root->rb_node;
|
|
if (unlikely(!*link)) {
|
|
*parent = NULL;
|
|
return link;
|
|
}
|
|
} else {
|
|
link = &from;
|
|
}
|
|
|
|
/*
|
|
* Go to the bottom of the tree. When we hit the last point
|
|
* we end up with parent rb_node and correct direction, i name
|
|
* it link, where the new va->rb_node will be attached to.
|
|
*/
|
|
do {
|
|
tmp_va = rb_entry(*link, struct vmap_area, rb_node);
|
|
|
|
/*
|
|
* During the traversal we also do some sanity check.
|
|
* Trigger the BUG() if there are sides(left/right)
|
|
* or full overlaps.
|
|
*/
|
|
if (va->va_start < tmp_va->va_end &&
|
|
va->va_end <= tmp_va->va_start)
|
|
link = &(*link)->rb_left;
|
|
else if (va->va_end > tmp_va->va_start &&
|
|
va->va_start >= tmp_va->va_end)
|
|
link = &(*link)->rb_right;
|
|
else
|
|
BUG();
|
|
} while (*link);
|
|
|
|
*parent = &tmp_va->rb_node;
|
|
return link;
|
|
}
|
|
|
|
static __always_inline struct list_head *
|
|
get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
|
|
{
|
|
struct list_head *list;
|
|
|
|
if (unlikely(!parent))
|
|
/*
|
|
* The red-black tree where we try to find VA neighbors
|
|
* before merging or inserting is empty, i.e. it means
|
|
* there is no free vmap space. Normally it does not
|
|
* happen but we handle this case anyway.
|
|
*/
|
|
return NULL;
|
|
|
|
list = &rb_entry(parent, struct vmap_area, rb_node)->list;
|
|
return (&parent->rb_right == link ? list->next : list);
|
|
}
|
|
|
|
static __always_inline void
|
|
link_va(struct vmap_area *va, struct rb_root *root,
|
|
struct rb_node *parent, struct rb_node **link, struct list_head *head)
|
|
{
|
|
/*
|
|
* VA is still not in the list, but we can
|
|
* identify its future previous list_head node.
|
|
*/
|
|
if (likely(parent)) {
|
|
head = &rb_entry(parent, struct vmap_area, rb_node)->list;
|
|
if (&parent->rb_right != link)
|
|
head = head->prev;
|
|
}
|
|
|
|
/* Insert to the rb-tree */
|
|
rb_link_node(&va->rb_node, parent, link);
|
|
if (root == &free_vmap_area_root) {
|
|
/*
|
|
* Some explanation here. Just perform simple insertion
|
|
* to the tree. We do not set va->subtree_max_size to
|
|
* its current size before calling rb_insert_augmented().
|
|
* It is because of we populate the tree from the bottom
|
|
* to parent levels when the node _is_ in the tree.
|
|
*
|
|
* Therefore we set subtree_max_size to zero after insertion,
|
|
* to let __augment_tree_propagate_from() puts everything to
|
|
* the correct order later on.
|
|
*/
|
|
rb_insert_augmented(&va->rb_node,
|
|
root, &free_vmap_area_rb_augment_cb);
|
|
va->subtree_max_size = 0;
|
|
} else {
|
|
rb_insert_color(&va->rb_node, root);
|
|
}
|
|
|
|
/* Address-sort this list */
|
|
list_add(&va->list, head);
|
|
}
|
|
|
|
static __always_inline void
|
|
unlink_va(struct vmap_area *va, struct rb_root *root)
|
|
{
|
|
if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
|
|
return;
|
|
|
|
if (root == &free_vmap_area_root)
|
|
rb_erase_augmented(&va->rb_node,
|
|
root, &free_vmap_area_rb_augment_cb);
|
|
else
|
|
rb_erase(&va->rb_node, root);
|
|
|
|
list_del(&va->list);
|
|
RB_CLEAR_NODE(&va->rb_node);
|
|
}
|
|
|
|
#if DEBUG_AUGMENT_PROPAGATE_CHECK
|
|
static void
|
|
augment_tree_propagate_check(struct rb_node *n)
|
|
{
|
|
struct vmap_area *va;
|
|
struct rb_node *node;
|
|
unsigned long size;
|
|
bool found = false;
|
|
|
|
if (n == NULL)
|
|
return;
|
|
|
|
va = rb_entry(n, struct vmap_area, rb_node);
|
|
size = va->subtree_max_size;
|
|
node = n;
|
|
|
|
while (node) {
|
|
va = rb_entry(node, struct vmap_area, rb_node);
|
|
|
|
if (get_subtree_max_size(node->rb_left) == size) {
|
|
node = node->rb_left;
|
|
} else {
|
|
if (va_size(va) == size) {
|
|
found = true;
|
|
break;
|
|
}
|
|
|
|
node = node->rb_right;
|
|
}
|
|
}
|
|
|
|
if (!found) {
|
|
va = rb_entry(n, struct vmap_area, rb_node);
|
|
pr_emerg("tree is corrupted: %lu, %lu\n",
|
|
va_size(va), va->subtree_max_size);
|
|
}
|
|
|
|
augment_tree_propagate_check(n->rb_left);
|
|
augment_tree_propagate_check(n->rb_right);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* This function populates subtree_max_size from bottom to upper
|
|
* levels starting from VA point. The propagation must be done
|
|
* when VA size is modified by changing its va_start/va_end. Or
|
|
* in case of newly inserting of VA to the tree.
|
|
*
|
|
* It means that __augment_tree_propagate_from() must be called:
|
|
* - After VA has been inserted to the tree(free path);
|
|
* - After VA has been shrunk(allocation path);
|
|
* - After VA has been increased(merging path).
|
|
*
|
|
* Please note that, it does not mean that upper parent nodes
|
|
* and their subtree_max_size are recalculated all the time up
|
|
* to the root node.
|
|
*
|
|
* 4--8
|
|
* /\
|
|
* / \
|
|
* / \
|
|
* 2--2 8--8
|
|
*
|
|
* For example if we modify the node 4, shrinking it to 2, then
|
|
* no any modification is required. If we shrink the node 2 to 1
|
|
* its subtree_max_size is updated only, and set to 1. If we shrink
|
|
* the node 8 to 6, then its subtree_max_size is set to 6 and parent
|
|
* node becomes 4--6.
|
|
*/
|
|
static __always_inline void
|
|
augment_tree_propagate_from(struct vmap_area *va)
|
|
{
|
|
struct rb_node *node = &va->rb_node;
|
|
unsigned long new_va_sub_max_size;
|
|
|
|
while (node) {
|
|
va = rb_entry(node, struct vmap_area, rb_node);
|
|
new_va_sub_max_size = compute_subtree_max_size(va);
|
|
|
|
/*
|
|
* If the newly calculated maximum available size of the
|
|
* subtree is equal to the current one, then it means that
|
|
* the tree is propagated correctly. So we have to stop at
|
|
* this point to save cycles.
|
|
*/
|
|
if (va->subtree_max_size == new_va_sub_max_size)
|
|
break;
|
|
|
|
va->subtree_max_size = new_va_sub_max_size;
|
|
node = rb_parent(&va->rb_node);
|
|
}
|
|
|
|
#if DEBUG_AUGMENT_PROPAGATE_CHECK
|
|
augment_tree_propagate_check(free_vmap_area_root.rb_node);
|
|
#endif
|
|
}
|
|
|
|
static void
|
|
insert_vmap_area(struct vmap_area *va,
|
|
struct rb_root *root, struct list_head *head)
|
|
{
|
|
struct rb_node **link;
|
|
struct rb_node *parent;
|
|
|
|
link = find_va_links(va, root, NULL, &parent);
|
|
link_va(va, root, parent, link, head);
|
|
}
|
|
|
|
static void
|
|
insert_vmap_area_augment(struct vmap_area *va,
|
|
struct rb_node *from, struct rb_root *root,
|
|
struct list_head *head)
|
|
{
|
|
struct rb_node **link;
|
|
struct rb_node *parent;
|
|
|
|
if (from)
|
|
link = find_va_links(va, NULL, from, &parent);
|
|
else
|
|
link = find_va_links(va, root, NULL, &parent);
|
|
|
|
link_va(va, root, parent, link, head);
|
|
augment_tree_propagate_from(va);
|
|
}
|
|
|
|
/*
|
|
* Merge de-allocated chunk of VA memory with previous
|
|
* and next free blocks. If coalesce is not done a new
|
|
* free area is inserted. If VA has been merged, it is
|
|
* freed.
|
|
*/
|
|
static __always_inline struct vmap_area *
|
|
merge_or_add_vmap_area(struct vmap_area *va,
|
|
struct rb_root *root, struct list_head *head)
|
|
{
|
|
struct vmap_area *sibling;
|
|
struct list_head *next;
|
|
struct rb_node **link;
|
|
struct rb_node *parent;
|
|
bool merged = false;
|
|
|
|
/*
|
|
* Find a place in the tree where VA potentially will be
|
|
* inserted, unless it is merged with its sibling/siblings.
|
|
*/
|
|
link = find_va_links(va, root, NULL, &parent);
|
|
|
|
/*
|
|
* Get next node of VA to check if merging can be done.
|
|
*/
|
|
next = get_va_next_sibling(parent, link);
|
|
if (unlikely(next == NULL))
|
|
goto insert;
|
|
|
|
/*
|
|
* start end
|
|
* | |
|
|
* |<------VA------>|<-----Next----->|
|
|
* | |
|
|
* start end
|
|
*/
|
|
if (next != head) {
|
|
sibling = list_entry(next, struct vmap_area, list);
|
|
if (sibling->va_start == va->va_end) {
|
|
sibling->va_start = va->va_start;
|
|
|
|
/* Check and update the tree if needed. */
|
|
augment_tree_propagate_from(sibling);
|
|
|
|
/* Free vmap_area object. */
|
|
kmem_cache_free(vmap_area_cachep, va);
|
|
|
|
/* Point to the new merged area. */
|
|
va = sibling;
|
|
merged = true;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* start end
|
|
* | |
|
|
* |<-----Prev----->|<------VA------>|
|
|
* | |
|
|
* start end
|
|
*/
|
|
if (next->prev != head) {
|
|
sibling = list_entry(next->prev, struct vmap_area, list);
|
|
if (sibling->va_end == va->va_start) {
|
|
sibling->va_end = va->va_end;
|
|
|
|
/* Check and update the tree if needed. */
|
|
augment_tree_propagate_from(sibling);
|
|
|
|
if (merged)
|
|
unlink_va(va, root);
|
|
|
|
/* Free vmap_area object. */
|
|
kmem_cache_free(vmap_area_cachep, va);
|
|
|
|
/* Point to the new merged area. */
|
|
va = sibling;
|
|
merged = true;
|
|
}
|
|
}
|
|
|
|
insert:
|
|
if (!merged) {
|
|
link_va(va, root, parent, link, head);
|
|
augment_tree_propagate_from(va);
|
|
}
|
|
|
|
return va;
|
|
}
|
|
|
|
static __always_inline bool
|
|
is_within_this_va(struct vmap_area *va, unsigned long size,
|
|
unsigned long align, unsigned long vstart)
|
|
{
|
|
unsigned long nva_start_addr;
|
|
|
|
if (va->va_start > vstart)
|
|
nva_start_addr = ALIGN(va->va_start, align);
|
|
else
|
|
nva_start_addr = ALIGN(vstart, align);
|
|
|
|
/* Can be overflowed due to big size or alignment. */
|
|
if (nva_start_addr + size < nva_start_addr ||
|
|
nva_start_addr < vstart)
|
|
return false;
|
|
|
|
return (nva_start_addr + size <= va->va_end);
|
|
}
|
|
|
|
/*
|
|
* Find the first free block(lowest start address) in the tree,
|
|
* that will accomplish the request corresponding to passing
|
|
* parameters.
|
|
*/
|
|
static __always_inline struct vmap_area *
|
|
find_vmap_lowest_match(unsigned long size,
|
|
unsigned long align, unsigned long vstart)
|
|
{
|
|
struct vmap_area *va;
|
|
struct rb_node *node;
|
|
unsigned long length;
|
|
|
|
/* Start from the root. */
|
|
node = free_vmap_area_root.rb_node;
|
|
|
|
/* Adjust the search size for alignment overhead. */
|
|
length = size + align - 1;
|
|
|
|
while (node) {
|
|
va = rb_entry(node, struct vmap_area, rb_node);
|
|
|
|
if (get_subtree_max_size(node->rb_left) >= length &&
|
|
vstart < va->va_start) {
|
|
node = node->rb_left;
|
|
} else {
|
|
if (is_within_this_va(va, size, align, vstart))
|
|
return va;
|
|
|
|
/*
|
|
* Does not make sense to go deeper towards the right
|
|
* sub-tree if it does not have a free block that is
|
|
* equal or bigger to the requested search length.
|
|
*/
|
|
if (get_subtree_max_size(node->rb_right) >= length) {
|
|
node = node->rb_right;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* OK. We roll back and find the first right sub-tree,
|
|
* that will satisfy the search criteria. It can happen
|
|
* only once due to "vstart" restriction.
|
|
*/
|
|
while ((node = rb_parent(node))) {
|
|
va = rb_entry(node, struct vmap_area, rb_node);
|
|
if (is_within_this_va(va, size, align, vstart))
|
|
return va;
|
|
|
|
if (get_subtree_max_size(node->rb_right) >= length &&
|
|
vstart <= va->va_start) {
|
|
node = node->rb_right;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
|
|
#include <linux/random.h>
|
|
|
|
static struct vmap_area *
|
|
find_vmap_lowest_linear_match(unsigned long size,
|
|
unsigned long align, unsigned long vstart)
|
|
{
|
|
struct vmap_area *va;
|
|
|
|
list_for_each_entry(va, &free_vmap_area_list, list) {
|
|
if (!is_within_this_va(va, size, align, vstart))
|
|
continue;
|
|
|
|
return va;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void
|
|
find_vmap_lowest_match_check(unsigned long size)
|
|
{
|
|
struct vmap_area *va_1, *va_2;
|
|
unsigned long vstart;
|
|
unsigned int rnd;
|
|
|
|
get_random_bytes(&rnd, sizeof(rnd));
|
|
vstart = VMALLOC_START + rnd;
|
|
|
|
va_1 = find_vmap_lowest_match(size, 1, vstart);
|
|
va_2 = find_vmap_lowest_linear_match(size, 1, vstart);
|
|
|
|
if (va_1 != va_2)
|
|
pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
|
|
va_1, va_2, vstart);
|
|
}
|
|
#endif
|
|
|
|
enum fit_type {
|
|
NOTHING_FIT = 0,
|
|
FL_FIT_TYPE = 1, /* full fit */
|
|
LE_FIT_TYPE = 2, /* left edge fit */
|
|
RE_FIT_TYPE = 3, /* right edge fit */
|
|
NE_FIT_TYPE = 4 /* no edge fit */
|
|
};
|
|
|
|
static __always_inline enum fit_type
|
|
classify_va_fit_type(struct vmap_area *va,
|
|
unsigned long nva_start_addr, unsigned long size)
|
|
{
|
|
enum fit_type type;
|
|
|
|
/* Check if it is within VA. */
|
|
if (nva_start_addr < va->va_start ||
|
|
nva_start_addr + size > va->va_end)
|
|
return NOTHING_FIT;
|
|
|
|
/* Now classify. */
|
|
if (va->va_start == nva_start_addr) {
|
|
if (va->va_end == nva_start_addr + size)
|
|
type = FL_FIT_TYPE;
|
|
else
|
|
type = LE_FIT_TYPE;
|
|
} else if (va->va_end == nva_start_addr + size) {
|
|
type = RE_FIT_TYPE;
|
|
} else {
|
|
type = NE_FIT_TYPE;
|
|
}
|
|
|
|
return type;
|
|
}
|
|
|
|
static __always_inline int
|
|
adjust_va_to_fit_type(struct vmap_area *va,
|
|
unsigned long nva_start_addr, unsigned long size,
|
|
enum fit_type type)
|
|
{
|
|
struct vmap_area *lva = NULL;
|
|
|
|
if (type == FL_FIT_TYPE) {
|
|
/*
|
|
* No need to split VA, it fully fits.
|
|
*
|
|
* | |
|
|
* V NVA V
|
|
* |---------------|
|
|
*/
|
|
unlink_va(va, &free_vmap_area_root);
|
|
kmem_cache_free(vmap_area_cachep, va);
|
|
} else if (type == LE_FIT_TYPE) {
|
|
/*
|
|
* Split left edge of fit VA.
|
|
*
|
|
* | |
|
|
* V NVA V R
|
|
* |-------|-------|
|
|
*/
|
|
va->va_start += size;
|
|
} else if (type == RE_FIT_TYPE) {
|
|
/*
|
|
* Split right edge of fit VA.
|
|
*
|
|
* | |
|
|
* L V NVA V
|
|
* |-------|-------|
|
|
*/
|
|
va->va_end = nva_start_addr;
|
|
} else if (type == NE_FIT_TYPE) {
|
|
/*
|
|
* Split no edge of fit VA.
|
|
*
|
|
* | |
|
|
* L V NVA V R
|
|
* |---|-------|---|
|
|
*/
|
|
lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
|
|
if (unlikely(!lva)) {
|
|
/*
|
|
* For percpu allocator we do not do any pre-allocation
|
|
* and leave it as it is. The reason is it most likely
|
|
* never ends up with NE_FIT_TYPE splitting. In case of
|
|
* percpu allocations offsets and sizes are aligned to
|
|
* fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
|
|
* are its main fitting cases.
|
|
*
|
|
* There are a few exceptions though, as an example it is
|
|
* a first allocation (early boot up) when we have "one"
|
|
* big free space that has to be split.
|
|
*
|
|
* Also we can hit this path in case of regular "vmap"
|
|
* allocations, if "this" current CPU was not preloaded.
|
|
* See the comment in alloc_vmap_area() why. If so, then
|
|
* GFP_NOWAIT is used instead to get an extra object for
|
|
* split purpose. That is rare and most time does not
|
|
* occur.
|
|
*
|
|
* What happens if an allocation gets failed. Basically,
|
|
* an "overflow" path is triggered to purge lazily freed
|
|
* areas to free some memory, then, the "retry" path is
|
|
* triggered to repeat one more time. See more details
|
|
* in alloc_vmap_area() function.
|
|
*/
|
|
lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
|
|
if (!lva)
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Build the remainder.
|
|
*/
|
|
lva->va_start = va->va_start;
|
|
lva->va_end = nva_start_addr;
|
|
|
|
/*
|
|
* Shrink this VA to remaining size.
|
|
*/
|
|
va->va_start = nva_start_addr + size;
|
|
} else {
|
|
return -1;
|
|
}
|
|
|
|
if (type != FL_FIT_TYPE) {
|
|
augment_tree_propagate_from(va);
|
|
|
|
if (lva) /* type == NE_FIT_TYPE */
|
|
insert_vmap_area_augment(lva, &va->rb_node,
|
|
&free_vmap_area_root, &free_vmap_area_list);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Returns a start address of the newly allocated area, if success.
|
|
* Otherwise a vend is returned that indicates failure.
|
|
*/
|
|
static __always_inline unsigned long
|
|
__alloc_vmap_area(unsigned long size, unsigned long align,
|
|
unsigned long vstart, unsigned long vend)
|
|
{
|
|
unsigned long nva_start_addr;
|
|
struct vmap_area *va;
|
|
enum fit_type type;
|
|
int ret;
|
|
|
|
va = find_vmap_lowest_match(size, align, vstart);
|
|
if (unlikely(!va))
|
|
return vend;
|
|
|
|
if (va->va_start > vstart)
|
|
nva_start_addr = ALIGN(va->va_start, align);
|
|
else
|
|
nva_start_addr = ALIGN(vstart, align);
|
|
|
|
/* Check the "vend" restriction. */
|
|
if (nva_start_addr + size > vend)
|
|
return vend;
|
|
|
|
/* Classify what we have found. */
|
|
type = classify_va_fit_type(va, nva_start_addr, size);
|
|
if (WARN_ON_ONCE(type == NOTHING_FIT))
|
|
return vend;
|
|
|
|
/* Update the free vmap_area. */
|
|
ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
|
|
if (ret)
|
|
return vend;
|
|
|
|
#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
|
|
find_vmap_lowest_match_check(size);
|
|
#endif
|
|
|
|
return nva_start_addr;
|
|
}
|
|
|
|
/*
|
|
* Free a region of KVA allocated by alloc_vmap_area
|
|
*/
|
|
static void free_vmap_area(struct vmap_area *va)
|
|
{
|
|
/*
|
|
* Remove from the busy tree/list.
|
|
*/
|
|
spin_lock(&vmap_area_lock);
|
|
unlink_va(va, &vmap_area_root);
|
|
spin_unlock(&vmap_area_lock);
|
|
|
|
/*
|
|
* Insert/Merge it back to the free tree/list.
|
|
*/
|
|
spin_lock(&free_vmap_area_lock);
|
|
merge_or_add_vmap_area(va, &free_vmap_area_root, &free_vmap_area_list);
|
|
spin_unlock(&free_vmap_area_lock);
|
|
}
|
|
|
|
/*
|
|
* Allocate a region of KVA of the specified size and alignment, within the
|
|
* vstart and vend.
|
|
*/
|
|
static struct vmap_area *alloc_vmap_area(unsigned long size,
|
|
unsigned long align,
|
|
unsigned long vstart, unsigned long vend,
|
|
int node, gfp_t gfp_mask)
|
|
{
|
|
struct vmap_area *va, *pva;
|
|
unsigned long addr;
|
|
int purged = 0;
|
|
int ret;
|
|
|
|
BUG_ON(!size);
|
|
BUG_ON(offset_in_page(size));
|
|
BUG_ON(!is_power_of_2(align));
|
|
|
|
if (unlikely(!vmap_initialized))
|
|
return ERR_PTR(-EBUSY);
|
|
|
|
might_sleep();
|
|
gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
|
|
|
|
va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
|
|
if (unlikely(!va))
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
/*
|
|
* Only scan the relevant parts containing pointers to other objects
|
|
* to avoid false negatives.
|
|
*/
|
|
kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
|
|
|
|
retry:
|
|
/*
|
|
* Preload this CPU with one extra vmap_area object. It is used
|
|
* when fit type of free area is NE_FIT_TYPE. Please note, it
|
|
* does not guarantee that an allocation occurs on a CPU that
|
|
* is preloaded, instead we minimize the case when it is not.
|
|
* It can happen because of cpu migration, because there is a
|
|
* race until the below spinlock is taken.
|
|
*
|
|
* The preload is done in non-atomic context, thus it allows us
|
|
* to use more permissive allocation masks to be more stable under
|
|
* low memory condition and high memory pressure. In rare case,
|
|
* if not preloaded, GFP_NOWAIT is used.
|
|
*
|
|
* Set "pva" to NULL here, because of "retry" path.
|
|
*/
|
|
pva = NULL;
|
|
|
|
if (!this_cpu_read(ne_fit_preload_node))
|
|
/*
|
|
* Even if it fails we do not really care about that.
|
|
* Just proceed as it is. If needed "overflow" path
|
|
* will refill the cache we allocate from.
|
|
*/
|
|
pva = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
|
|
|
|
spin_lock(&free_vmap_area_lock);
|
|
|
|
if (pva && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva))
|
|
kmem_cache_free(vmap_area_cachep, pva);
|
|
|
|
/*
|
|
* If an allocation fails, the "vend" address is
|
|
* returned. Therefore trigger the overflow path.
|
|
*/
|
|
addr = __alloc_vmap_area(size, align, vstart, vend);
|
|
spin_unlock(&free_vmap_area_lock);
|
|
|
|
if (unlikely(addr == vend))
|
|
goto overflow;
|
|
|
|
va->va_start = addr;
|
|
va->va_end = addr + size;
|
|
va->vm = NULL;
|
|
|
|
|
|
spin_lock(&vmap_area_lock);
|
|
insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
|
|
spin_unlock(&vmap_area_lock);
|
|
|
|
BUG_ON(!IS_ALIGNED(va->va_start, align));
|
|
BUG_ON(va->va_start < vstart);
|
|
BUG_ON(va->va_end > vend);
|
|
|
|
ret = kasan_populate_vmalloc(addr, size);
|
|
if (ret) {
|
|
free_vmap_area(va);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
return va;
|
|
|
|
overflow:
|
|
if (!purged) {
|
|
purge_vmap_area_lazy();
|
|
purged = 1;
|
|
goto retry;
|
|
}
|
|
|
|
if (gfpflags_allow_blocking(gfp_mask)) {
|
|
unsigned long freed = 0;
|
|
blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
|
|
if (freed > 0) {
|
|
purged = 0;
|
|
goto retry;
|
|
}
|
|
}
|
|
|
|
if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
|
|
pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
|
|
size);
|
|
|
|
kmem_cache_free(vmap_area_cachep, va);
|
|
return ERR_PTR(-EBUSY);
|
|
}
|
|
|
|
int register_vmap_purge_notifier(struct notifier_block *nb)
|
|
{
|
|
return blocking_notifier_chain_register(&vmap_notify_list, nb);
|
|
}
|
|
EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
|
|
|
|
int unregister_vmap_purge_notifier(struct notifier_block *nb)
|
|
{
|
|
return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
|
|
}
|
|
EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
|
|
|
|
/*
|
|
* Clear the pagetable entries of a given vmap_area
|
|
*/
|
|
static void unmap_vmap_area(struct vmap_area *va)
|
|
{
|
|
vunmap_page_range(va->va_start, va->va_end);
|
|
}
|
|
|
|
/*
|
|
* lazy_max_pages is the maximum amount of virtual address space we gather up
|
|
* before attempting to purge with a TLB flush.
|
|
*
|
|
* There is a tradeoff here: a larger number will cover more kernel page tables
|
|
* and take slightly longer to purge, but it will linearly reduce the number of
|
|
* global TLB flushes that must be performed. It would seem natural to scale
|
|
* this number up linearly with the number of CPUs (because vmapping activity
|
|
* could also scale linearly with the number of CPUs), however it is likely
|
|
* that in practice, workloads might be constrained in other ways that mean
|
|
* vmap activity will not scale linearly with CPUs. Also, I want to be
|
|
* conservative and not introduce a big latency on huge systems, so go with
|
|
* a less aggressive log scale. It will still be an improvement over the old
|
|
* code, and it will be simple to change the scale factor if we find that it
|
|
* becomes a problem on bigger systems.
|
|
*/
|
|
static unsigned long lazy_max_pages(void)
|
|
{
|
|
unsigned int log;
|
|
|
|
log = fls(num_online_cpus());
|
|
|
|
return log * (32UL * 1024 * 1024 / PAGE_SIZE);
|
|
}
|
|
|
|
static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
|
|
|
|
/*
|
|
* Serialize vmap purging. There is no actual criticial section protected
|
|
* by this look, but we want to avoid concurrent calls for performance
|
|
* reasons and to make the pcpu_get_vm_areas more deterministic.
|
|
*/
|
|
static DEFINE_MUTEX(vmap_purge_lock);
|
|
|
|
/* for per-CPU blocks */
|
|
static void purge_fragmented_blocks_allcpus(void);
|
|
|
|
/*
|
|
* called before a call to iounmap() if the caller wants vm_area_struct's
|
|
* immediately freed.
|
|
*/
|
|
void set_iounmap_nonlazy(void)
|
|
{
|
|
atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
|
|
}
|
|
|
|
/*
|
|
* Purges all lazily-freed vmap areas.
|
|
*/
|
|
static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
|
|
{
|
|
unsigned long resched_threshold;
|
|
struct llist_node *valist;
|
|
struct vmap_area *va;
|
|
struct vmap_area *n_va;
|
|
|
|
lockdep_assert_held(&vmap_purge_lock);
|
|
|
|
valist = llist_del_all(&vmap_purge_list);
|
|
if (unlikely(valist == NULL))
|
|
return false;
|
|
|
|
/*
|
|
* First make sure the mappings are removed from all page-tables
|
|
* before they are freed.
|
|
*/
|
|
vmalloc_sync_all();
|
|
|
|
/*
|
|
* TODO: to calculate a flush range without looping.
|
|
* The list can be up to lazy_max_pages() elements.
|
|
*/
|
|
llist_for_each_entry(va, valist, purge_list) {
|
|
if (va->va_start < start)
|
|
start = va->va_start;
|
|
if (va->va_end > end)
|
|
end = va->va_end;
|
|
}
|
|
|
|
flush_tlb_kernel_range(start, end);
|
|
resched_threshold = lazy_max_pages() << 1;
|
|
|
|
spin_lock(&free_vmap_area_lock);
|
|
llist_for_each_entry_safe(va, n_va, valist, purge_list) {
|
|
unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
|
|
unsigned long orig_start = va->va_start;
|
|
unsigned long orig_end = va->va_end;
|
|
|
|
/*
|
|
* Finally insert or merge lazily-freed area. It is
|
|
* detached and there is no need to "unlink" it from
|
|
* anything.
|
|
*/
|
|
va = merge_or_add_vmap_area(va, &free_vmap_area_root,
|
|
&free_vmap_area_list);
|
|
|
|
if (is_vmalloc_or_module_addr((void *)orig_start))
|
|
kasan_release_vmalloc(orig_start, orig_end,
|
|
va->va_start, va->va_end);
|
|
|
|
atomic_long_sub(nr, &vmap_lazy_nr);
|
|
|
|
if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
|
|
cond_resched_lock(&free_vmap_area_lock);
|
|
}
|
|
spin_unlock(&free_vmap_area_lock);
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Kick off a purge of the outstanding lazy areas. Don't bother if somebody
|
|
* is already purging.
|
|
*/
|
|
static void try_purge_vmap_area_lazy(void)
|
|
{
|
|
if (mutex_trylock(&vmap_purge_lock)) {
|
|
__purge_vmap_area_lazy(ULONG_MAX, 0);
|
|
mutex_unlock(&vmap_purge_lock);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Kick off a purge of the outstanding lazy areas.
|
|
*/
|
|
static void purge_vmap_area_lazy(void)
|
|
{
|
|
mutex_lock(&vmap_purge_lock);
|
|
purge_fragmented_blocks_allcpus();
|
|
__purge_vmap_area_lazy(ULONG_MAX, 0);
|
|
mutex_unlock(&vmap_purge_lock);
|
|
}
|
|
|
|
/*
|
|
* Free a vmap area, caller ensuring that the area has been unmapped
|
|
* and flush_cache_vunmap had been called for the correct range
|
|
* previously.
|
|
*/
|
|
static void free_vmap_area_noflush(struct vmap_area *va)
|
|
{
|
|
unsigned long nr_lazy;
|
|
|
|
spin_lock(&vmap_area_lock);
|
|
unlink_va(va, &vmap_area_root);
|
|
spin_unlock(&vmap_area_lock);
|
|
|
|
nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
|
|
PAGE_SHIFT, &vmap_lazy_nr);
|
|
|
|
/* After this point, we may free va at any time */
|
|
llist_add(&va->purge_list, &vmap_purge_list);
|
|
|
|
if (unlikely(nr_lazy > lazy_max_pages()))
|
|
try_purge_vmap_area_lazy();
|
|
}
|
|
|
|
/*
|
|
* Free and unmap a vmap area
|
|
*/
|
|
static void free_unmap_vmap_area(struct vmap_area *va)
|
|
{
|
|
flush_cache_vunmap(va->va_start, va->va_end);
|
|
unmap_vmap_area(va);
|
|
if (debug_pagealloc_enabled())
|
|
flush_tlb_kernel_range(va->va_start, va->va_end);
|
|
|
|
free_vmap_area_noflush(va);
|
|
}
|
|
|
|
static struct vmap_area *find_vmap_area(unsigned long addr)
|
|
{
|
|
struct vmap_area *va;
|
|
|
|
spin_lock(&vmap_area_lock);
|
|
va = __find_vmap_area(addr);
|
|
spin_unlock(&vmap_area_lock);
|
|
|
|
return va;
|
|
}
|
|
|
|
/*** Per cpu kva allocator ***/
|
|
|
|
/*
|
|
* vmap space is limited especially on 32 bit architectures. Ensure there is
|
|
* room for at least 16 percpu vmap blocks per CPU.
|
|
*/
|
|
/*
|
|
* If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
|
|
* to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
|
|
* instead (we just need a rough idea)
|
|
*/
|
|
#if BITS_PER_LONG == 32
|
|
#define VMALLOC_SPACE (128UL*1024*1024)
|
|
#else
|
|
#define VMALLOC_SPACE (128UL*1024*1024*1024)
|
|
#endif
|
|
|
|
#define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
|
|
#define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
|
|
#define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
|
|
#define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
|
|
#define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
|
|
#define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
|
|
#define VMAP_BBMAP_BITS \
|
|
VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
|
|
VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
|
|
VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
|
|
|
|
#define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
|
|
|
|
struct vmap_block_queue {
|
|
spinlock_t lock;
|
|
struct list_head free;
|
|
};
|
|
|
|
struct vmap_block {
|
|
spinlock_t lock;
|
|
struct vmap_area *va;
|
|
unsigned long free, dirty;
|
|
unsigned long dirty_min, dirty_max; /*< dirty range */
|
|
struct list_head free_list;
|
|
struct rcu_head rcu_head;
|
|
struct list_head purge;
|
|
};
|
|
|
|
/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
|
|
static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
|
|
|
|
/*
|
|
* Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
|
|
* in the free path. Could get rid of this if we change the API to return a
|
|
* "cookie" from alloc, to be passed to free. But no big deal yet.
|
|
*/
|
|
static DEFINE_SPINLOCK(vmap_block_tree_lock);
|
|
static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
|
|
|
|
/*
|
|
* We should probably have a fallback mechanism to allocate virtual memory
|
|
* out of partially filled vmap blocks. However vmap block sizing should be
|
|
* fairly reasonable according to the vmalloc size, so it shouldn't be a
|
|
* big problem.
|
|
*/
|
|
|
|
static unsigned long addr_to_vb_idx(unsigned long addr)
|
|
{
|
|
addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
|
|
addr /= VMAP_BLOCK_SIZE;
|
|
return addr;
|
|
}
|
|
|
|
static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
|
|
{
|
|
unsigned long addr;
|
|
|
|
addr = va_start + (pages_off << PAGE_SHIFT);
|
|
BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
|
|
return (void *)addr;
|
|
}
|
|
|
|
/**
|
|
* new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
|
|
* block. Of course pages number can't exceed VMAP_BBMAP_BITS
|
|
* @order: how many 2^order pages should be occupied in newly allocated block
|
|
* @gfp_mask: flags for the page level allocator
|
|
*
|
|
* Return: virtual address in a newly allocated block or ERR_PTR(-errno)
|
|
*/
|
|
static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
|
|
{
|
|
struct vmap_block_queue *vbq;
|
|
struct vmap_block *vb;
|
|
struct vmap_area *va;
|
|
unsigned long vb_idx;
|
|
int node, err;
|
|
void *vaddr;
|
|
|
|
node = numa_node_id();
|
|
|
|
vb = kmalloc_node(sizeof(struct vmap_block),
|
|
gfp_mask & GFP_RECLAIM_MASK, node);
|
|
if (unlikely(!vb))
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
|
|
VMALLOC_START, VMALLOC_END,
|
|
node, gfp_mask);
|
|
if (IS_ERR(va)) {
|
|
kfree(vb);
|
|
return ERR_CAST(va);
|
|
}
|
|
|
|
err = radix_tree_preload(gfp_mask);
|
|
if (unlikely(err)) {
|
|
kfree(vb);
|
|
free_vmap_area(va);
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
vaddr = vmap_block_vaddr(va->va_start, 0);
|
|
spin_lock_init(&vb->lock);
|
|
vb->va = va;
|
|
/* At least something should be left free */
|
|
BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
|
|
vb->free = VMAP_BBMAP_BITS - (1UL << order);
|
|
vb->dirty = 0;
|
|
vb->dirty_min = VMAP_BBMAP_BITS;
|
|
vb->dirty_max = 0;
|
|
INIT_LIST_HEAD(&vb->free_list);
|
|
|
|
vb_idx = addr_to_vb_idx(va->va_start);
|
|
spin_lock(&vmap_block_tree_lock);
|
|
err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
|
|
spin_unlock(&vmap_block_tree_lock);
|
|
BUG_ON(err);
|
|
radix_tree_preload_end();
|
|
|
|
vbq = &get_cpu_var(vmap_block_queue);
|
|
spin_lock(&vbq->lock);
|
|
list_add_tail_rcu(&vb->free_list, &vbq->free);
|
|
spin_unlock(&vbq->lock);
|
|
put_cpu_var(vmap_block_queue);
|
|
|
|
return vaddr;
|
|
}
|
|
|
|
static void free_vmap_block(struct vmap_block *vb)
|
|
{
|
|
struct vmap_block *tmp;
|
|
unsigned long vb_idx;
|
|
|
|
vb_idx = addr_to_vb_idx(vb->va->va_start);
|
|
spin_lock(&vmap_block_tree_lock);
|
|
tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
|
|
spin_unlock(&vmap_block_tree_lock);
|
|
BUG_ON(tmp != vb);
|
|
|
|
free_vmap_area_noflush(vb->va);
|
|
kfree_rcu(vb, rcu_head);
|
|
}
|
|
|
|
static void purge_fragmented_blocks(int cpu)
|
|
{
|
|
LIST_HEAD(purge);
|
|
struct vmap_block *vb;
|
|
struct vmap_block *n_vb;
|
|
struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
|
|
|
|
rcu_read_lock();
|
|
list_for_each_entry_rcu(vb, &vbq->free, free_list) {
|
|
|
|
if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
|
|
continue;
|
|
|
|
spin_lock(&vb->lock);
|
|
if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
|
|
vb->free = 0; /* prevent further allocs after releasing lock */
|
|
vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
|
|
vb->dirty_min = 0;
|
|
vb->dirty_max = VMAP_BBMAP_BITS;
|
|
spin_lock(&vbq->lock);
|
|
list_del_rcu(&vb->free_list);
|
|
spin_unlock(&vbq->lock);
|
|
spin_unlock(&vb->lock);
|
|
list_add_tail(&vb->purge, &purge);
|
|
} else
|
|
spin_unlock(&vb->lock);
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
list_for_each_entry_safe(vb, n_vb, &purge, purge) {
|
|
list_del(&vb->purge);
|
|
free_vmap_block(vb);
|
|
}
|
|
}
|
|
|
|
static void purge_fragmented_blocks_allcpus(void)
|
|
{
|
|
int cpu;
|
|
|
|
for_each_possible_cpu(cpu)
|
|
purge_fragmented_blocks(cpu);
|
|
}
|
|
|
|
static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
|
|
{
|
|
struct vmap_block_queue *vbq;
|
|
struct vmap_block *vb;
|
|
void *vaddr = NULL;
|
|
unsigned int order;
|
|
|
|
BUG_ON(offset_in_page(size));
|
|
BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
|
|
if (WARN_ON(size == 0)) {
|
|
/*
|
|
* Allocating 0 bytes isn't what caller wants since
|
|
* get_order(0) returns funny result. Just warn and terminate
|
|
* early.
|
|
*/
|
|
return NULL;
|
|
}
|
|
order = get_order(size);
|
|
|
|
rcu_read_lock();
|
|
vbq = &get_cpu_var(vmap_block_queue);
|
|
list_for_each_entry_rcu(vb, &vbq->free, free_list) {
|
|
unsigned long pages_off;
|
|
|
|
spin_lock(&vb->lock);
|
|
if (vb->free < (1UL << order)) {
|
|
spin_unlock(&vb->lock);
|
|
continue;
|
|
}
|
|
|
|
pages_off = VMAP_BBMAP_BITS - vb->free;
|
|
vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
|
|
vb->free -= 1UL << order;
|
|
if (vb->free == 0) {
|
|
spin_lock(&vbq->lock);
|
|
list_del_rcu(&vb->free_list);
|
|
spin_unlock(&vbq->lock);
|
|
}
|
|
|
|
spin_unlock(&vb->lock);
|
|
break;
|
|
}
|
|
|
|
put_cpu_var(vmap_block_queue);
|
|
rcu_read_unlock();
|
|
|
|
/* Allocate new block if nothing was found */
|
|
if (!vaddr)
|
|
vaddr = new_vmap_block(order, gfp_mask);
|
|
|
|
return vaddr;
|
|
}
|
|
|
|
static void vb_free(const void *addr, unsigned long size)
|
|
{
|
|
unsigned long offset;
|
|
unsigned long vb_idx;
|
|
unsigned int order;
|
|
struct vmap_block *vb;
|
|
|
|
BUG_ON(offset_in_page(size));
|
|
BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
|
|
|
|
flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
|
|
|
|
order = get_order(size);
|
|
|
|
offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
|
|
offset >>= PAGE_SHIFT;
|
|
|
|
vb_idx = addr_to_vb_idx((unsigned long)addr);
|
|
rcu_read_lock();
|
|
vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
|
|
rcu_read_unlock();
|
|
BUG_ON(!vb);
|
|
|
|
vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
|
|
|
|
if (debug_pagealloc_enabled())
|
|
flush_tlb_kernel_range((unsigned long)addr,
|
|
(unsigned long)addr + size);
|
|
|
|
spin_lock(&vb->lock);
|
|
|
|
/* Expand dirty range */
|
|
vb->dirty_min = min(vb->dirty_min, offset);
|
|
vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
|
|
|
|
vb->dirty += 1UL << order;
|
|
if (vb->dirty == VMAP_BBMAP_BITS) {
|
|
BUG_ON(vb->free);
|
|
spin_unlock(&vb->lock);
|
|
free_vmap_block(vb);
|
|
} else
|
|
spin_unlock(&vb->lock);
|
|
}
|
|
|
|
static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
|
|
{
|
|
int cpu;
|
|
|
|
if (unlikely(!vmap_initialized))
|
|
return;
|
|
|
|
might_sleep();
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
|
|
struct vmap_block *vb;
|
|
|
|
rcu_read_lock();
|
|
list_for_each_entry_rcu(vb, &vbq->free, free_list) {
|
|
spin_lock(&vb->lock);
|
|
if (vb->dirty) {
|
|
unsigned long va_start = vb->va->va_start;
|
|
unsigned long s, e;
|
|
|
|
s = va_start + (vb->dirty_min << PAGE_SHIFT);
|
|
e = va_start + (vb->dirty_max << PAGE_SHIFT);
|
|
|
|
start = min(s, start);
|
|
end = max(e, end);
|
|
|
|
flush = 1;
|
|
}
|
|
spin_unlock(&vb->lock);
|
|
}
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
mutex_lock(&vmap_purge_lock);
|
|
purge_fragmented_blocks_allcpus();
|
|
if (!__purge_vmap_area_lazy(start, end) && flush)
|
|
flush_tlb_kernel_range(start, end);
|
|
mutex_unlock(&vmap_purge_lock);
|
|
}
|
|
|
|
/**
|
|
* vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
|
|
*
|
|
* The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
|
|
* to amortize TLB flushing overheads. What this means is that any page you
|
|
* have now, may, in a former life, have been mapped into kernel virtual
|
|
* address by the vmap layer and so there might be some CPUs with TLB entries
|
|
* still referencing that page (additional to the regular 1:1 kernel mapping).
|
|
*
|
|
* vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
|
|
* be sure that none of the pages we have control over will have any aliases
|
|
* from the vmap layer.
|
|
*/
|
|
void vm_unmap_aliases(void)
|
|
{
|
|
unsigned long start = ULONG_MAX, end = 0;
|
|
int flush = 0;
|
|
|
|
_vm_unmap_aliases(start, end, flush);
|
|
}
|
|
EXPORT_SYMBOL_GPL(vm_unmap_aliases);
|
|
|
|
/**
|
|
* vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
|
|
* @mem: the pointer returned by vm_map_ram
|
|
* @count: the count passed to that vm_map_ram call (cannot unmap partial)
|
|
*/
|
|
void vm_unmap_ram(const void *mem, unsigned int count)
|
|
{
|
|
unsigned long size = (unsigned long)count << PAGE_SHIFT;
|
|
unsigned long addr = (unsigned long)mem;
|
|
struct vmap_area *va;
|
|
|
|
might_sleep();
|
|
BUG_ON(!addr);
|
|
BUG_ON(addr < VMALLOC_START);
|
|
BUG_ON(addr > VMALLOC_END);
|
|
BUG_ON(!PAGE_ALIGNED(addr));
|
|
|
|
kasan_poison_vmalloc(mem, size);
|
|
|
|
if (likely(count <= VMAP_MAX_ALLOC)) {
|
|
debug_check_no_locks_freed(mem, size);
|
|
vb_free(mem, size);
|
|
return;
|
|
}
|
|
|
|
va = find_vmap_area(addr);
|
|
BUG_ON(!va);
|
|
debug_check_no_locks_freed((void *)va->va_start,
|
|
(va->va_end - va->va_start));
|
|
free_unmap_vmap_area(va);
|
|
}
|
|
EXPORT_SYMBOL(vm_unmap_ram);
|
|
|
|
/**
|
|
* vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
|
|
* @pages: an array of pointers to the pages to be mapped
|
|
* @count: number of pages
|
|
* @node: prefer to allocate data structures on this node
|
|
* @prot: memory protection to use. PAGE_KERNEL for regular RAM
|
|
*
|
|
* If you use this function for less than VMAP_MAX_ALLOC pages, it could be
|
|
* faster than vmap so it's good. But if you mix long-life and short-life
|
|
* objects with vm_map_ram(), it could consume lots of address space through
|
|
* fragmentation (especially on a 32bit machine). You could see failures in
|
|
* the end. Please use this function for short-lived objects.
|
|
*
|
|
* Returns: a pointer to the address that has been mapped, or %NULL on failure
|
|
*/
|
|
void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
|
|
{
|
|
unsigned long size = (unsigned long)count << PAGE_SHIFT;
|
|
unsigned long addr;
|
|
void *mem;
|
|
|
|
if (likely(count <= VMAP_MAX_ALLOC)) {
|
|
mem = vb_alloc(size, GFP_KERNEL);
|
|
if (IS_ERR(mem))
|
|
return NULL;
|
|
addr = (unsigned long)mem;
|
|
} else {
|
|
struct vmap_area *va;
|
|
va = alloc_vmap_area(size, PAGE_SIZE,
|
|
VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
|
|
if (IS_ERR(va))
|
|
return NULL;
|
|
|
|
addr = va->va_start;
|
|
mem = (void *)addr;
|
|
}
|
|
|
|
kasan_unpoison_vmalloc(mem, size);
|
|
|
|
if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
|
|
vm_unmap_ram(mem, count);
|
|
return NULL;
|
|
}
|
|
return mem;
|
|
}
|
|
EXPORT_SYMBOL(vm_map_ram);
|
|
|
|
static struct vm_struct *vmlist __initdata;
|
|
|
|
/**
|
|
* vm_area_add_early - add vmap area early during boot
|
|
* @vm: vm_struct to add
|
|
*
|
|
* This function is used to add fixed kernel vm area to vmlist before
|
|
* vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
|
|
* should contain proper values and the other fields should be zero.
|
|
*
|
|
* DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
|
|
*/
|
|
void __init vm_area_add_early(struct vm_struct *vm)
|
|
{
|
|
struct vm_struct *tmp, **p;
|
|
|
|
BUG_ON(vmap_initialized);
|
|
for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
|
|
if (tmp->addr >= vm->addr) {
|
|
BUG_ON(tmp->addr < vm->addr + vm->size);
|
|
break;
|
|
} else
|
|
BUG_ON(tmp->addr + tmp->size > vm->addr);
|
|
}
|
|
vm->next = *p;
|
|
*p = vm;
|
|
}
|
|
|
|
/**
|
|
* vm_area_register_early - register vmap area early during boot
|
|
* @vm: vm_struct to register
|
|
* @align: requested alignment
|
|
*
|
|
* This function is used to register kernel vm area before
|
|
* vmalloc_init() is called. @vm->size and @vm->flags should contain
|
|
* proper values on entry and other fields should be zero. On return,
|
|
* vm->addr contains the allocated address.
|
|
*
|
|
* DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
|
|
*/
|
|
void __init vm_area_register_early(struct vm_struct *vm, size_t align)
|
|
{
|
|
static size_t vm_init_off __initdata;
|
|
unsigned long addr;
|
|
|
|
addr = ALIGN(VMALLOC_START + vm_init_off, align);
|
|
vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
|
|
|
|
vm->addr = (void *)addr;
|
|
|
|
vm_area_add_early(vm);
|
|
}
|
|
|
|
static void vmap_init_free_space(void)
|
|
{
|
|
unsigned long vmap_start = 1;
|
|
const unsigned long vmap_end = ULONG_MAX;
|
|
struct vmap_area *busy, *free;
|
|
|
|
/*
|
|
* B F B B B F
|
|
* -|-----|.....|-----|-----|-----|.....|-
|
|
* | The KVA space |
|
|
* |<--------------------------------->|
|
|
*/
|
|
list_for_each_entry(busy, &vmap_area_list, list) {
|
|
if (busy->va_start - vmap_start > 0) {
|
|
free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
|
|
if (!WARN_ON_ONCE(!free)) {
|
|
free->va_start = vmap_start;
|
|
free->va_end = busy->va_start;
|
|
|
|
insert_vmap_area_augment(free, NULL,
|
|
&free_vmap_area_root,
|
|
&free_vmap_area_list);
|
|
}
|
|
}
|
|
|
|
vmap_start = busy->va_end;
|
|
}
|
|
|
|
if (vmap_end - vmap_start > 0) {
|
|
free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
|
|
if (!WARN_ON_ONCE(!free)) {
|
|
free->va_start = vmap_start;
|
|
free->va_end = vmap_end;
|
|
|
|
insert_vmap_area_augment(free, NULL,
|
|
&free_vmap_area_root,
|
|
&free_vmap_area_list);
|
|
}
|
|
}
|
|
}
|
|
|
|
void __init vmalloc_init(void)
|
|
{
|
|
struct vmap_area *va;
|
|
struct vm_struct *tmp;
|
|
int i;
|
|
|
|
/*
|
|
* Create the cache for vmap_area objects.
|
|
*/
|
|
vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
|
|
|
|
for_each_possible_cpu(i) {
|
|
struct vmap_block_queue *vbq;
|
|
struct vfree_deferred *p;
|
|
|
|
vbq = &per_cpu(vmap_block_queue, i);
|
|
spin_lock_init(&vbq->lock);
|
|
INIT_LIST_HEAD(&vbq->free);
|
|
p = &per_cpu(vfree_deferred, i);
|
|
init_llist_head(&p->list);
|
|
INIT_WORK(&p->wq, free_work);
|
|
}
|
|
|
|
/* Import existing vmlist entries. */
|
|
for (tmp = vmlist; tmp; tmp = tmp->next) {
|
|
va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
|
|
if (WARN_ON_ONCE(!va))
|
|
continue;
|
|
|
|
va->va_start = (unsigned long)tmp->addr;
|
|
va->va_end = va->va_start + tmp->size;
|
|
va->vm = tmp;
|
|
insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
|
|
}
|
|
|
|
/*
|
|
* Now we can initialize a free vmap space.
|
|
*/
|
|
vmap_init_free_space();
|
|
vmap_initialized = true;
|
|
}
|
|
|
|
/**
|
|
* map_kernel_range_noflush - map kernel VM area with the specified pages
|
|
* @addr: start of the VM area to map
|
|
* @size: size of the VM area to map
|
|
* @prot: page protection flags to use
|
|
* @pages: pages to map
|
|
*
|
|
* Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
|
|
* specify should have been allocated using get_vm_area() and its
|
|
* friends.
|
|
*
|
|
* NOTE:
|
|
* This function does NOT do any cache flushing. The caller is
|
|
* responsible for calling flush_cache_vmap() on to-be-mapped areas
|
|
* before calling this function.
|
|
*
|
|
* RETURNS:
|
|
* The number of pages mapped on success, -errno on failure.
|
|
*/
|
|
int map_kernel_range_noflush(unsigned long addr, unsigned long size,
|
|
pgprot_t prot, struct page **pages)
|
|
{
|
|
return vmap_page_range_noflush(addr, addr + size, prot, pages);
|
|
}
|
|
|
|
/**
|
|
* unmap_kernel_range_noflush - unmap kernel VM area
|
|
* @addr: start of the VM area to unmap
|
|
* @size: size of the VM area to unmap
|
|
*
|
|
* Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
|
|
* specify should have been allocated using get_vm_area() and its
|
|
* friends.
|
|
*
|
|
* NOTE:
|
|
* This function does NOT do any cache flushing. The caller is
|
|
* responsible for calling flush_cache_vunmap() on to-be-mapped areas
|
|
* before calling this function and flush_tlb_kernel_range() after.
|
|
*/
|
|
void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
|
|
{
|
|
vunmap_page_range(addr, addr + size);
|
|
}
|
|
EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
|
|
|
|
/**
|
|
* unmap_kernel_range - unmap kernel VM area and flush cache and TLB
|
|
* @addr: start of the VM area to unmap
|
|
* @size: size of the VM area to unmap
|
|
*
|
|
* Similar to unmap_kernel_range_noflush() but flushes vcache before
|
|
* the unmapping and tlb after.
|
|
*/
|
|
void unmap_kernel_range(unsigned long addr, unsigned long size)
|
|
{
|
|
unsigned long end = addr + size;
|
|
|
|
flush_cache_vunmap(addr, end);
|
|
vunmap_page_range(addr, end);
|
|
flush_tlb_kernel_range(addr, end);
|
|
}
|
|
EXPORT_SYMBOL_GPL(unmap_kernel_range);
|
|
|
|
int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
|
|
{
|
|
unsigned long addr = (unsigned long)area->addr;
|
|
unsigned long end = addr + get_vm_area_size(area);
|
|
int err;
|
|
|
|
err = vmap_page_range(addr, end, prot, pages);
|
|
|
|
return err > 0 ? 0 : err;
|
|
}
|
|
EXPORT_SYMBOL_GPL(map_vm_area);
|
|
|
|
static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
|
|
struct vmap_area *va, unsigned long flags, const void *caller)
|
|
{
|
|
vm->flags = flags;
|
|
vm->addr = (void *)va->va_start;
|
|
vm->size = va->va_end - va->va_start;
|
|
vm->caller = caller;
|
|
va->vm = vm;
|
|
}
|
|
|
|
static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
|
|
unsigned long flags, const void *caller)
|
|
{
|
|
spin_lock(&vmap_area_lock);
|
|
setup_vmalloc_vm_locked(vm, va, flags, caller);
|
|
spin_unlock(&vmap_area_lock);
|
|
}
|
|
|
|
static void clear_vm_uninitialized_flag(struct vm_struct *vm)
|
|
{
|
|
/*
|
|
* Before removing VM_UNINITIALIZED,
|
|
* we should make sure that vm has proper values.
|
|
* Pair with smp_rmb() in show_numa_info().
|
|
*/
|
|
smp_wmb();
|
|
vm->flags &= ~VM_UNINITIALIZED;
|
|
}
|
|
|
|
static struct vm_struct *__get_vm_area_node(unsigned long size,
|
|
unsigned long align, unsigned long flags, unsigned long start,
|
|
unsigned long end, int node, gfp_t gfp_mask, const void *caller)
|
|
{
|
|
struct vmap_area *va;
|
|
struct vm_struct *area;
|
|
unsigned long requested_size = size;
|
|
|
|
BUG_ON(in_interrupt());
|
|
size = PAGE_ALIGN(size);
|
|
if (unlikely(!size))
|
|
return NULL;
|
|
|
|
if (flags & VM_IOREMAP)
|
|
align = 1ul << clamp_t(int, get_count_order_long(size),
|
|
PAGE_SHIFT, IOREMAP_MAX_ORDER);
|
|
|
|
area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
|
|
if (unlikely(!area))
|
|
return NULL;
|
|
|
|
if (!(flags & VM_NO_GUARD))
|
|
size += PAGE_SIZE;
|
|
|
|
va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
|
|
if (IS_ERR(va)) {
|
|
kfree(area);
|
|
return NULL;
|
|
}
|
|
|
|
kasan_unpoison_vmalloc((void *)va->va_start, requested_size);
|
|
|
|
setup_vmalloc_vm(area, va, flags, caller);
|
|
|
|
return area;
|
|
}
|
|
|
|
struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
|
|
unsigned long start, unsigned long end)
|
|
{
|
|
return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
|
|
GFP_KERNEL, __builtin_return_address(0));
|
|
}
|
|
EXPORT_SYMBOL_GPL(__get_vm_area);
|
|
|
|
struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
|
|
unsigned long start, unsigned long end,
|
|
const void *caller)
|
|
{
|
|
return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
|
|
GFP_KERNEL, caller);
|
|
}
|
|
|
|
/**
|
|
* get_vm_area - reserve a contiguous kernel virtual area
|
|
* @size: size of the area
|
|
* @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
|
|
*
|
|
* Search an area of @size in the kernel virtual mapping area,
|
|
* and reserved it for out purposes. Returns the area descriptor
|
|
* on success or %NULL on failure.
|
|
*
|
|
* Return: the area descriptor on success or %NULL on failure.
|
|
*/
|
|
struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
|
|
{
|
|
return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
|
|
NUMA_NO_NODE, GFP_KERNEL,
|
|
__builtin_return_address(0));
|
|
}
|
|
|
|
struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
|
|
const void *caller)
|
|
{
|
|
return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
|
|
NUMA_NO_NODE, GFP_KERNEL, caller);
|
|
}
|
|
|
|
/**
|
|
* find_vm_area - find a continuous kernel virtual area
|
|
* @addr: base address
|
|
*
|
|
* Search for the kernel VM area starting at @addr, and return it.
|
|
* It is up to the caller to do all required locking to keep the returned
|
|
* pointer valid.
|
|
*
|
|
* Return: pointer to the found area or %NULL on faulure
|
|
*/
|
|
struct vm_struct *find_vm_area(const void *addr)
|
|
{
|
|
struct vmap_area *va;
|
|
|
|
va = find_vmap_area((unsigned long)addr);
|
|
if (!va)
|
|
return NULL;
|
|
|
|
return va->vm;
|
|
}
|
|
|
|
/**
|
|
* remove_vm_area - find and remove a continuous kernel virtual area
|
|
* @addr: base address
|
|
*
|
|
* Search for the kernel VM area starting at @addr, and remove it.
|
|
* This function returns the found VM area, but using it is NOT safe
|
|
* on SMP machines, except for its size or flags.
|
|
*
|
|
* Return: pointer to the found area or %NULL on faulure
|
|
*/
|
|
struct vm_struct *remove_vm_area(const void *addr)
|
|
{
|
|
struct vmap_area *va;
|
|
|
|
might_sleep();
|
|
|
|
spin_lock(&vmap_area_lock);
|
|
va = __find_vmap_area((unsigned long)addr);
|
|
if (va && va->vm) {
|
|
struct vm_struct *vm = va->vm;
|
|
|
|
va->vm = NULL;
|
|
spin_unlock(&vmap_area_lock);
|
|
|
|
kasan_free_shadow(vm);
|
|
free_unmap_vmap_area(va);
|
|
|
|
return vm;
|
|
}
|
|
|
|
spin_unlock(&vmap_area_lock);
|
|
return NULL;
|
|
}
|
|
|
|
static inline void set_area_direct_map(const struct vm_struct *area,
|
|
int (*set_direct_map)(struct page *page))
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < area->nr_pages; i++)
|
|
if (page_address(area->pages[i]))
|
|
set_direct_map(area->pages[i]);
|
|
}
|
|
|
|
/* Handle removing and resetting vm mappings related to the vm_struct. */
|
|
static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
|
|
{
|
|
unsigned long start = ULONG_MAX, end = 0;
|
|
int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
|
|
int flush_dmap = 0;
|
|
int i;
|
|
|
|
remove_vm_area(area->addr);
|
|
|
|
/* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
|
|
if (!flush_reset)
|
|
return;
|
|
|
|
/*
|
|
* If not deallocating pages, just do the flush of the VM area and
|
|
* return.
|
|
*/
|
|
if (!deallocate_pages) {
|
|
vm_unmap_aliases();
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If execution gets here, flush the vm mapping and reset the direct
|
|
* map. Find the start and end range of the direct mappings to make sure
|
|
* the vm_unmap_aliases() flush includes the direct map.
|
|
*/
|
|
for (i = 0; i < area->nr_pages; i++) {
|
|
unsigned long addr = (unsigned long)page_address(area->pages[i]);
|
|
if (addr) {
|
|
start = min(addr, start);
|
|
end = max(addr + PAGE_SIZE, end);
|
|
flush_dmap = 1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Set direct map to something invalid so that it won't be cached if
|
|
* there are any accesses after the TLB flush, then flush the TLB and
|
|
* reset the direct map permissions to the default.
|
|
*/
|
|
set_area_direct_map(area, set_direct_map_invalid_noflush);
|
|
_vm_unmap_aliases(start, end, flush_dmap);
|
|
set_area_direct_map(area, set_direct_map_default_noflush);
|
|
}
|
|
|
|
static void __vunmap(const void *addr, int deallocate_pages)
|
|
{
|
|
struct vm_struct *area;
|
|
|
|
if (!addr)
|
|
return;
|
|
|
|
if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
|
|
addr))
|
|
return;
|
|
|
|
area = find_vm_area(addr);
|
|
if (unlikely(!area)) {
|
|
WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
|
|
addr);
|
|
return;
|
|
}
|
|
|
|
debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
|
|
debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
|
|
|
|
kasan_poison_vmalloc(area->addr, area->size);
|
|
|
|
vm_remove_mappings(area, deallocate_pages);
|
|
|
|
if (deallocate_pages) {
|
|
int i;
|
|
|
|
for (i = 0; i < area->nr_pages; i++) {
|
|
struct page *page = area->pages[i];
|
|
|
|
BUG_ON(!page);
|
|
__free_pages(page, 0);
|
|
}
|
|
atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
|
|
|
|
kvfree(area->pages);
|
|
}
|
|
|
|
kfree(area);
|
|
return;
|
|
}
|
|
|
|
static inline void __vfree_deferred(const void *addr)
|
|
{
|
|
/*
|
|
* Use raw_cpu_ptr() because this can be called from preemptible
|
|
* context. Preemption is absolutely fine here, because the llist_add()
|
|
* implementation is lockless, so it works even if we are adding to
|
|
* nother cpu's list. schedule_work() should be fine with this too.
|
|
*/
|
|
struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
|
|
|
|
if (llist_add((struct llist_node *)addr, &p->list))
|
|
schedule_work(&p->wq);
|
|
}
|
|
|
|
/**
|
|
* vfree_atomic - release memory allocated by vmalloc()
|
|
* @addr: memory base address
|
|
*
|
|
* This one is just like vfree() but can be called in any atomic context
|
|
* except NMIs.
|
|
*/
|
|
void vfree_atomic(const void *addr)
|
|
{
|
|
BUG_ON(in_nmi());
|
|
|
|
kmemleak_free(addr);
|
|
|
|
if (!addr)
|
|
return;
|
|
__vfree_deferred(addr);
|
|
}
|
|
|
|
static void __vfree(const void *addr)
|
|
{
|
|
if (unlikely(in_interrupt()))
|
|
__vfree_deferred(addr);
|
|
else
|
|
__vunmap(addr, 1);
|
|
}
|
|
|
|
/**
|
|
* vfree - release memory allocated by vmalloc()
|
|
* @addr: memory base address
|
|
*
|
|
* Free the virtually continuous memory area starting at @addr, as
|
|
* obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
|
|
* NULL, no operation is performed.
|
|
*
|
|
* Must not be called in NMI context (strictly speaking, only if we don't
|
|
* have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
|
|
* conventions for vfree() arch-depenedent would be a really bad idea)
|
|
*
|
|
* May sleep if called *not* from interrupt context.
|
|
*
|
|
* NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
|
|
*/
|
|
void vfree(const void *addr)
|
|
{
|
|
BUG_ON(in_nmi());
|
|
|
|
kmemleak_free(addr);
|
|
|
|
might_sleep_if(!in_interrupt());
|
|
|
|
if (!addr)
|
|
return;
|
|
|
|
__vfree(addr);
|
|
}
|
|
EXPORT_SYMBOL(vfree);
|
|
|
|
/**
|
|
* vunmap - release virtual mapping obtained by vmap()
|
|
* @addr: memory base address
|
|
*
|
|
* Free the virtually contiguous memory area starting at @addr,
|
|
* which was created from the page array passed to vmap().
|
|
*
|
|
* Must not be called in interrupt context.
|
|
*/
|
|
void vunmap(const void *addr)
|
|
{
|
|
BUG_ON(in_interrupt());
|
|
might_sleep();
|
|
if (addr)
|
|
__vunmap(addr, 0);
|
|
}
|
|
EXPORT_SYMBOL(vunmap);
|
|
|
|
/**
|
|
* vmap - map an array of pages into virtually contiguous space
|
|
* @pages: array of page pointers
|
|
* @count: number of pages to map
|
|
* @flags: vm_area->flags
|
|
* @prot: page protection for the mapping
|
|
*
|
|
* Maps @count pages from @pages into contiguous kernel virtual
|
|
* space.
|
|
*
|
|
* Return: the address of the area or %NULL on failure
|
|
*/
|
|
void *vmap(struct page **pages, unsigned int count,
|
|
unsigned long flags, pgprot_t prot)
|
|
{
|
|
struct vm_struct *area;
|
|
unsigned long size; /* In bytes */
|
|
|
|
might_sleep();
|
|
|
|
if (count > totalram_pages())
|
|
return NULL;
|
|
|
|
size = (unsigned long)count << PAGE_SHIFT;
|
|
area = get_vm_area_caller(size, flags, __builtin_return_address(0));
|
|
if (!area)
|
|
return NULL;
|
|
|
|
if (map_vm_area(area, prot, pages)) {
|
|
vunmap(area->addr);
|
|
return NULL;
|
|
}
|
|
|
|
return area->addr;
|
|
}
|
|
EXPORT_SYMBOL(vmap);
|
|
|
|
static void *__vmalloc_node(unsigned long size, unsigned long align,
|
|
gfp_t gfp_mask, pgprot_t prot,
|
|
int node, const void *caller);
|
|
static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
|
|
pgprot_t prot, int node)
|
|
{
|
|
struct page **pages;
|
|
unsigned int nr_pages, array_size, i;
|
|
const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
|
|
const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
|
|
const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
|
|
0 :
|
|
__GFP_HIGHMEM;
|
|
|
|
nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
|
|
array_size = (nr_pages * sizeof(struct page *));
|
|
|
|
/* Please note that the recursion is strictly bounded. */
|
|
if (array_size > PAGE_SIZE) {
|
|
pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
|
|
PAGE_KERNEL, node, area->caller);
|
|
} else {
|
|
pages = kmalloc_node(array_size, nested_gfp, node);
|
|
}
|
|
|
|
if (!pages) {
|
|
remove_vm_area(area->addr);
|
|
kfree(area);
|
|
return NULL;
|
|
}
|
|
|
|
area->pages = pages;
|
|
area->nr_pages = nr_pages;
|
|
|
|
for (i = 0; i < area->nr_pages; i++) {
|
|
struct page *page;
|
|
|
|
if (node == NUMA_NO_NODE)
|
|
page = alloc_page(alloc_mask|highmem_mask);
|
|
else
|
|
page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
|
|
|
|
if (unlikely(!page)) {
|
|
/* Successfully allocated i pages, free them in __vunmap() */
|
|
area->nr_pages = i;
|
|
atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
|
|
goto fail;
|
|
}
|
|
area->pages[i] = page;
|
|
if (gfpflags_allow_blocking(gfp_mask))
|
|
cond_resched();
|
|
}
|
|
atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
|
|
|
|
if (map_vm_area(area, prot, pages))
|
|
goto fail;
|
|
return area->addr;
|
|
|
|
fail:
|
|
warn_alloc(gfp_mask, NULL,
|
|
"vmalloc: allocation failure, allocated %ld of %ld bytes",
|
|
(area->nr_pages*PAGE_SIZE), area->size);
|
|
__vfree(area->addr);
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* __vmalloc_node_range - allocate virtually contiguous memory
|
|
* @size: allocation size
|
|
* @align: desired alignment
|
|
* @start: vm area range start
|
|
* @end: vm area range end
|
|
* @gfp_mask: flags for the page level allocator
|
|
* @prot: protection mask for the allocated pages
|
|
* @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
|
|
* @node: node to use for allocation or NUMA_NO_NODE
|
|
* @caller: caller's return address
|
|
*
|
|
* Allocate enough pages to cover @size from the page level
|
|
* allocator with @gfp_mask flags. Map them into contiguous
|
|
* kernel virtual space, using a pagetable protection of @prot.
|
|
*
|
|
* Return: the address of the area or %NULL on failure
|
|
*/
|
|
void *__vmalloc_node_range(unsigned long size, unsigned long align,
|
|
unsigned long start, unsigned long end, gfp_t gfp_mask,
|
|
pgprot_t prot, unsigned long vm_flags, int node,
|
|
const void *caller)
|
|
{
|
|
struct vm_struct *area;
|
|
void *addr;
|
|
unsigned long real_size = size;
|
|
|
|
size = PAGE_ALIGN(size);
|
|
if (!size || (size >> PAGE_SHIFT) > totalram_pages())
|
|
goto fail;
|
|
|
|
area = __get_vm_area_node(real_size, align, VM_ALLOC | VM_UNINITIALIZED |
|
|
vm_flags, start, end, node, gfp_mask, caller);
|
|
if (!area)
|
|
goto fail;
|
|
|
|
addr = __vmalloc_area_node(area, gfp_mask, prot, node);
|
|
if (!addr)
|
|
return NULL;
|
|
|
|
/*
|
|
* In this function, newly allocated vm_struct has VM_UNINITIALIZED
|
|
* flag. It means that vm_struct is not fully initialized.
|
|
* Now, it is fully initialized, so remove this flag here.
|
|
*/
|
|
clear_vm_uninitialized_flag(area);
|
|
|
|
kmemleak_vmalloc(area, size, gfp_mask);
|
|
|
|
return addr;
|
|
|
|
fail:
|
|
warn_alloc(gfp_mask, NULL,
|
|
"vmalloc: allocation failure: %lu bytes", real_size);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* This is only for performance analysis of vmalloc and stress purpose.
|
|
* It is required by vmalloc test module, therefore do not use it other
|
|
* than that.
|
|
*/
|
|
#ifdef CONFIG_TEST_VMALLOC_MODULE
|
|
EXPORT_SYMBOL_GPL(__vmalloc_node_range);
|
|
#endif
|
|
|
|
/**
|
|
* __vmalloc_node - allocate virtually contiguous memory
|
|
* @size: allocation size
|
|
* @align: desired alignment
|
|
* @gfp_mask: flags for the page level allocator
|
|
* @prot: protection mask for the allocated pages
|
|
* @node: node to use for allocation or NUMA_NO_NODE
|
|
* @caller: caller's return address
|
|
*
|
|
* Allocate enough pages to cover @size from the page level
|
|
* allocator with @gfp_mask flags. Map them into contiguous
|
|
* kernel virtual space, using a pagetable protection of @prot.
|
|
*
|
|
* Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
|
|
* and __GFP_NOFAIL are not supported
|
|
*
|
|
* Any use of gfp flags outside of GFP_KERNEL should be consulted
|
|
* with mm people.
|
|
*
|
|
* Return: pointer to the allocated memory or %NULL on error
|
|
*/
|
|
static void *__vmalloc_node(unsigned long size, unsigned long align,
|
|
gfp_t gfp_mask, pgprot_t prot,
|
|
int node, const void *caller)
|
|
{
|
|
return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
|
|
gfp_mask, prot, 0, node, caller);
|
|
}
|
|
|
|
void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
|
|
{
|
|
return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
|
|
__builtin_return_address(0));
|
|
}
|
|
EXPORT_SYMBOL(__vmalloc);
|
|
|
|
static inline void *__vmalloc_node_flags(unsigned long size,
|
|
int node, gfp_t flags)
|
|
{
|
|
return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
|
|
node, __builtin_return_address(0));
|
|
}
|
|
|
|
|
|
void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags,
|
|
void *caller)
|
|
{
|
|
return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller);
|
|
}
|
|
|
|
/**
|
|
* vmalloc - allocate virtually contiguous memory
|
|
* @size: allocation size
|
|
*
|
|
* Allocate enough pages to cover @size from the page level
|
|
* allocator and map them into contiguous kernel virtual space.
|
|
*
|
|
* For tight control over page level allocator and protection flags
|
|
* use __vmalloc() instead.
|
|
*
|
|
* Return: pointer to the allocated memory or %NULL on error
|
|
*/
|
|
void *vmalloc(unsigned long size)
|
|
{
|
|
return __vmalloc_node_flags(size, NUMA_NO_NODE,
|
|
GFP_KERNEL);
|
|
}
|
|
EXPORT_SYMBOL(vmalloc);
|
|
|
|
/**
|
|
* vzalloc - allocate virtually contiguous memory with zero fill
|
|
* @size: allocation size
|
|
*
|
|
* Allocate enough pages to cover @size from the page level
|
|
* allocator and map them into contiguous kernel virtual space.
|
|
* The memory allocated is set to zero.
|
|
*
|
|
* For tight control over page level allocator and protection flags
|
|
* use __vmalloc() instead.
|
|
*
|
|
* Return: pointer to the allocated memory or %NULL on error
|
|
*/
|
|
void *vzalloc(unsigned long size)
|
|
{
|
|
return __vmalloc_node_flags(size, NUMA_NO_NODE,
|
|
GFP_KERNEL | __GFP_ZERO);
|
|
}
|
|
EXPORT_SYMBOL(vzalloc);
|
|
|
|
/**
|
|
* vmalloc_user - allocate zeroed virtually contiguous memory for userspace
|
|
* @size: allocation size
|
|
*
|
|
* The resulting memory area is zeroed so it can be mapped to userspace
|
|
* without leaking data.
|
|
*
|
|
* Return: pointer to the allocated memory or %NULL on error
|
|
*/
|
|
void *vmalloc_user(unsigned long size)
|
|
{
|
|
return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
|
|
GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
|
|
VM_USERMAP, NUMA_NO_NODE,
|
|
__builtin_return_address(0));
|
|
}
|
|
EXPORT_SYMBOL(vmalloc_user);
|
|
|
|
/**
|
|
* vmalloc_node - allocate memory on a specific node
|
|
* @size: allocation size
|
|
* @node: numa node
|
|
*
|
|
* Allocate enough pages to cover @size from the page level
|
|
* allocator and map them into contiguous kernel virtual space.
|
|
*
|
|
* For tight control over page level allocator and protection flags
|
|
* use __vmalloc() instead.
|
|
*
|
|
* Return: pointer to the allocated memory or %NULL on error
|
|
*/
|
|
void *vmalloc_node(unsigned long size, int node)
|
|
{
|
|
return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL,
|
|
node, __builtin_return_address(0));
|
|
}
|
|
EXPORT_SYMBOL(vmalloc_node);
|
|
|
|
/**
|
|
* vzalloc_node - allocate memory on a specific node with zero fill
|
|
* @size: allocation size
|
|
* @node: numa node
|
|
*
|
|
* Allocate enough pages to cover @size from the page level
|
|
* allocator and map them into contiguous kernel virtual space.
|
|
* The memory allocated is set to zero.
|
|
*
|
|
* For tight control over page level allocator and protection flags
|
|
* use __vmalloc_node() instead.
|
|
*
|
|
* Return: pointer to the allocated memory or %NULL on error
|
|
*/
|
|
void *vzalloc_node(unsigned long size, int node)
|
|
{
|
|
return __vmalloc_node_flags(size, node,
|
|
GFP_KERNEL | __GFP_ZERO);
|
|
}
|
|
EXPORT_SYMBOL(vzalloc_node);
|
|
|
|
/**
|
|
* vmalloc_user_node_flags - allocate memory for userspace on a specific node
|
|
* @size: allocation size
|
|
* @node: numa node
|
|
* @flags: flags for the page level allocator
|
|
*
|
|
* The resulting memory area is zeroed so it can be mapped to userspace
|
|
* without leaking data.
|
|
*
|
|
* Return: pointer to the allocated memory or %NULL on error
|
|
*/
|
|
void *vmalloc_user_node_flags(unsigned long size, int node, gfp_t flags)
|
|
{
|
|
return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
|
|
flags | __GFP_ZERO, PAGE_KERNEL,
|
|
VM_USERMAP, node,
|
|
__builtin_return_address(0));
|
|
}
|
|
EXPORT_SYMBOL(vmalloc_user_node_flags);
|
|
|
|
/**
|
|
* vmalloc_exec - allocate virtually contiguous, executable memory
|
|
* @size: allocation size
|
|
*
|
|
* Kernel-internal function to allocate enough pages to cover @size
|
|
* the page level allocator and map them into contiguous and
|
|
* executable kernel virtual space.
|
|
*
|
|
* For tight control over page level allocator and protection flags
|
|
* use __vmalloc() instead.
|
|
*
|
|
* Return: pointer to the allocated memory or %NULL on error
|
|
*/
|
|
void *vmalloc_exec(unsigned long size)
|
|
{
|
|
return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
|
|
GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
|
|
NUMA_NO_NODE, __builtin_return_address(0));
|
|
}
|
|
|
|
#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
|
|
#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
|
|
#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
|
|
#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
|
|
#else
|
|
/*
|
|
* 64b systems should always have either DMA or DMA32 zones. For others
|
|
* GFP_DMA32 should do the right thing and use the normal zone.
|
|
*/
|
|
#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
|
|
#endif
|
|
|
|
/**
|
|
* vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
|
|
* @size: allocation size
|
|
*
|
|
* Allocate enough 32bit PA addressable pages to cover @size from the
|
|
* page level allocator and map them into contiguous kernel virtual space.
|
|
*
|
|
* Return: pointer to the allocated memory or %NULL on error
|
|
*/
|
|
void *vmalloc_32(unsigned long size)
|
|
{
|
|
return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
|
|
NUMA_NO_NODE, __builtin_return_address(0));
|
|
}
|
|
EXPORT_SYMBOL(vmalloc_32);
|
|
|
|
/**
|
|
* vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
|
|
* @size: allocation size
|
|
*
|
|
* The resulting memory area is 32bit addressable and zeroed so it can be
|
|
* mapped to userspace without leaking data.
|
|
*
|
|
* Return: pointer to the allocated memory or %NULL on error
|
|
*/
|
|
void *vmalloc_32_user(unsigned long size)
|
|
{
|
|
return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
|
|
GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
|
|
VM_USERMAP, NUMA_NO_NODE,
|
|
__builtin_return_address(0));
|
|
}
|
|
EXPORT_SYMBOL(vmalloc_32_user);
|
|
|
|
/*
|
|
* small helper routine , copy contents to buf from addr.
|
|
* If the page is not present, fill zero.
|
|
*/
|
|
|
|
static int aligned_vread(char *buf, char *addr, unsigned long count)
|
|
{
|
|
struct page *p;
|
|
int copied = 0;
|
|
|
|
while (count) {
|
|
unsigned long offset, length;
|
|
|
|
offset = offset_in_page(addr);
|
|
length = PAGE_SIZE - offset;
|
|
if (length > count)
|
|
length = count;
|
|
p = vmalloc_to_page(addr);
|
|
/*
|
|
* To do safe access to this _mapped_ area, we need
|
|
* lock. But adding lock here means that we need to add
|
|
* overhead of vmalloc()/vfree() calles for this _debug_
|
|
* interface, rarely used. Instead of that, we'll use
|
|
* kmap() and get small overhead in this access function.
|
|
*/
|
|
if (p) {
|
|
/*
|
|
* we can expect USER0 is not used (see vread/vwrite's
|
|
* function description)
|
|
*/
|
|
void *map = kmap_atomic(p);
|
|
memcpy(buf, map + offset, length);
|
|
kunmap_atomic(map);
|
|
} else
|
|
memset(buf, 0, length);
|
|
|
|
addr += length;
|
|
buf += length;
|
|
copied += length;
|
|
count -= length;
|
|
}
|
|
return copied;
|
|
}
|
|
|
|
static int aligned_vwrite(char *buf, char *addr, unsigned long count)
|
|
{
|
|
struct page *p;
|
|
int copied = 0;
|
|
|
|
while (count) {
|
|
unsigned long offset, length;
|
|
|
|
offset = offset_in_page(addr);
|
|
length = PAGE_SIZE - offset;
|
|
if (length > count)
|
|
length = count;
|
|
p = vmalloc_to_page(addr);
|
|
/*
|
|
* To do safe access to this _mapped_ area, we need
|
|
* lock. But adding lock here means that we need to add
|
|
* overhead of vmalloc()/vfree() calles for this _debug_
|
|
* interface, rarely used. Instead of that, we'll use
|
|
* kmap() and get small overhead in this access function.
|
|
*/
|
|
if (p) {
|
|
/*
|
|
* we can expect USER0 is not used (see vread/vwrite's
|
|
* function description)
|
|
*/
|
|
void *map = kmap_atomic(p);
|
|
memcpy(map + offset, buf, length);
|
|
kunmap_atomic(map);
|
|
}
|
|
addr += length;
|
|
buf += length;
|
|
copied += length;
|
|
count -= length;
|
|
}
|
|
return copied;
|
|
}
|
|
|
|
/**
|
|
* vread() - read vmalloc area in a safe way.
|
|
* @buf: buffer for reading data
|
|
* @addr: vm address.
|
|
* @count: number of bytes to be read.
|
|
*
|
|
* This function checks that addr is a valid vmalloc'ed area, and
|
|
* copy data from that area to a given buffer. If the given memory range
|
|
* of [addr...addr+count) includes some valid address, data is copied to
|
|
* proper area of @buf. If there are memory holes, they'll be zero-filled.
|
|
* IOREMAP area is treated as memory hole and no copy is done.
|
|
*
|
|
* If [addr...addr+count) doesn't includes any intersects with alive
|
|
* vm_struct area, returns 0. @buf should be kernel's buffer.
|
|
*
|
|
* Note: In usual ops, vread() is never necessary because the caller
|
|
* should know vmalloc() area is valid and can use memcpy().
|
|
* This is for routines which have to access vmalloc area without
|
|
* any information, as /dev/kmem.
|
|
*
|
|
* Return: number of bytes for which addr and buf should be increased
|
|
* (same number as @count) or %0 if [addr...addr+count) doesn't
|
|
* include any intersection with valid vmalloc area
|
|
*/
|
|
long vread(char *buf, char *addr, unsigned long count)
|
|
{
|
|
struct vmap_area *va;
|
|
struct vm_struct *vm;
|
|
char *vaddr, *buf_start = buf;
|
|
unsigned long buflen = count;
|
|
unsigned long n;
|
|
|
|
/* Don't allow overflow */
|
|
if ((unsigned long) addr + count < count)
|
|
count = -(unsigned long) addr;
|
|
|
|
spin_lock(&vmap_area_lock);
|
|
list_for_each_entry(va, &vmap_area_list, list) {
|
|
if (!count)
|
|
break;
|
|
|
|
if (!va->vm)
|
|
continue;
|
|
|
|
vm = va->vm;
|
|
vaddr = (char *) vm->addr;
|
|
if (addr >= vaddr + get_vm_area_size(vm))
|
|
continue;
|
|
while (addr < vaddr) {
|
|
if (count == 0)
|
|
goto finished;
|
|
*buf = '\0';
|
|
buf++;
|
|
addr++;
|
|
count--;
|
|
}
|
|
n = vaddr + get_vm_area_size(vm) - addr;
|
|
if (n > count)
|
|
n = count;
|
|
if (!(vm->flags & VM_IOREMAP))
|
|
aligned_vread(buf, addr, n);
|
|
else /* IOREMAP area is treated as memory hole */
|
|
memset(buf, 0, n);
|
|
buf += n;
|
|
addr += n;
|
|
count -= n;
|
|
}
|
|
finished:
|
|
spin_unlock(&vmap_area_lock);
|
|
|
|
if (buf == buf_start)
|
|
return 0;
|
|
/* zero-fill memory holes */
|
|
if (buf != buf_start + buflen)
|
|
memset(buf, 0, buflen - (buf - buf_start));
|
|
|
|
return buflen;
|
|
}
|
|
|
|
/**
|
|
* vwrite() - write vmalloc area in a safe way.
|
|
* @buf: buffer for source data
|
|
* @addr: vm address.
|
|
* @count: number of bytes to be read.
|
|
*
|
|
* This function checks that addr is a valid vmalloc'ed area, and
|
|
* copy data from a buffer to the given addr. If specified range of
|
|
* [addr...addr+count) includes some valid address, data is copied from
|
|
* proper area of @buf. If there are memory holes, no copy to hole.
|
|
* IOREMAP area is treated as memory hole and no copy is done.
|
|
*
|
|
* If [addr...addr+count) doesn't includes any intersects with alive
|
|
* vm_struct area, returns 0. @buf should be kernel's buffer.
|
|
*
|
|
* Note: In usual ops, vwrite() is never necessary because the caller
|
|
* should know vmalloc() area is valid and can use memcpy().
|
|
* This is for routines which have to access vmalloc area without
|
|
* any information, as /dev/kmem.
|
|
*
|
|
* Return: number of bytes for which addr and buf should be
|
|
* increased (same number as @count) or %0 if [addr...addr+count)
|
|
* doesn't include any intersection with valid vmalloc area
|
|
*/
|
|
long vwrite(char *buf, char *addr, unsigned long count)
|
|
{
|
|
struct vmap_area *va;
|
|
struct vm_struct *vm;
|
|
char *vaddr;
|
|
unsigned long n, buflen;
|
|
int copied = 0;
|
|
|
|
/* Don't allow overflow */
|
|
if ((unsigned long) addr + count < count)
|
|
count = -(unsigned long) addr;
|
|
buflen = count;
|
|
|
|
spin_lock(&vmap_area_lock);
|
|
list_for_each_entry(va, &vmap_area_list, list) {
|
|
if (!count)
|
|
break;
|
|
|
|
if (!va->vm)
|
|
continue;
|
|
|
|
vm = va->vm;
|
|
vaddr = (char *) vm->addr;
|
|
if (addr >= vaddr + get_vm_area_size(vm))
|
|
continue;
|
|
while (addr < vaddr) {
|
|
if (count == 0)
|
|
goto finished;
|
|
buf++;
|
|
addr++;
|
|
count--;
|
|
}
|
|
n = vaddr + get_vm_area_size(vm) - addr;
|
|
if (n > count)
|
|
n = count;
|
|
if (!(vm->flags & VM_IOREMAP)) {
|
|
aligned_vwrite(buf, addr, n);
|
|
copied++;
|
|
}
|
|
buf += n;
|
|
addr += n;
|
|
count -= n;
|
|
}
|
|
finished:
|
|
spin_unlock(&vmap_area_lock);
|
|
if (!copied)
|
|
return 0;
|
|
return buflen;
|
|
}
|
|
|
|
/**
|
|
* remap_vmalloc_range_partial - map vmalloc pages to userspace
|
|
* @vma: vma to cover
|
|
* @uaddr: target user address to start at
|
|
* @kaddr: virtual address of vmalloc kernel memory
|
|
* @size: size of map area
|
|
*
|
|
* Returns: 0 for success, -Exxx on failure
|
|
*
|
|
* This function checks that @kaddr is a valid vmalloc'ed area,
|
|
* and that it is big enough to cover the range starting at
|
|
* @uaddr in @vma. Will return failure if that criteria isn't
|
|
* met.
|
|
*
|
|
* Similar to remap_pfn_range() (see mm/memory.c)
|
|
*/
|
|
int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
|
|
void *kaddr, unsigned long size)
|
|
{
|
|
struct vm_struct *area;
|
|
|
|
size = PAGE_ALIGN(size);
|
|
|
|
if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
|
|
return -EINVAL;
|
|
|
|
area = find_vm_area(kaddr);
|
|
if (!area)
|
|
return -EINVAL;
|
|
|
|
if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
|
|
return -EINVAL;
|
|
|
|
if (kaddr + size > area->addr + get_vm_area_size(area))
|
|
return -EINVAL;
|
|
|
|
do {
|
|
struct page *page = vmalloc_to_page(kaddr);
|
|
int ret;
|
|
|
|
ret = vm_insert_page(vma, uaddr, page);
|
|
if (ret)
|
|
return ret;
|
|
|
|
uaddr += PAGE_SIZE;
|
|
kaddr += PAGE_SIZE;
|
|
size -= PAGE_SIZE;
|
|
} while (size > 0);
|
|
|
|
vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(remap_vmalloc_range_partial);
|
|
|
|
/**
|
|
* remap_vmalloc_range - map vmalloc pages to userspace
|
|
* @vma: vma to cover (map full range of vma)
|
|
* @addr: vmalloc memory
|
|
* @pgoff: number of pages into addr before first page to map
|
|
*
|
|
* Returns: 0 for success, -Exxx on failure
|
|
*
|
|
* This function checks that addr is a valid vmalloc'ed area, and
|
|
* that it is big enough to cover the vma. Will return failure if
|
|
* that criteria isn't met.
|
|
*
|
|
* Similar to remap_pfn_range() (see mm/memory.c)
|
|
*/
|
|
int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
|
|
unsigned long pgoff)
|
|
{
|
|
return remap_vmalloc_range_partial(vma, vma->vm_start,
|
|
addr + (pgoff << PAGE_SHIFT),
|
|
vma->vm_end - vma->vm_start);
|
|
}
|
|
EXPORT_SYMBOL(remap_vmalloc_range);
|
|
|
|
/*
|
|
* Implement a stub for vmalloc_sync_all() if the architecture chose not to
|
|
* have one.
|
|
*
|
|
* The purpose of this function is to make sure the vmalloc area
|
|
* mappings are identical in all page-tables in the system.
|
|
*/
|
|
void __weak vmalloc_sync_all(void)
|
|
{
|
|
}
|
|
|
|
|
|
static int f(pte_t *pte, unsigned long addr, void *data)
|
|
{
|
|
pte_t ***p = data;
|
|
|
|
if (p) {
|
|
*(*p) = pte;
|
|
(*p)++;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* alloc_vm_area - allocate a range of kernel address space
|
|
* @size: size of the area
|
|
* @ptes: returns the PTEs for the address space
|
|
*
|
|
* Returns: NULL on failure, vm_struct on success
|
|
*
|
|
* This function reserves a range of kernel address space, and
|
|
* allocates pagetables to map that range. No actual mappings
|
|
* are created.
|
|
*
|
|
* If @ptes is non-NULL, pointers to the PTEs (in init_mm)
|
|
* allocated for the VM area are returned.
|
|
*/
|
|
struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
|
|
{
|
|
struct vm_struct *area;
|
|
|
|
area = get_vm_area_caller(size, VM_IOREMAP,
|
|
__builtin_return_address(0));
|
|
if (area == NULL)
|
|
return NULL;
|
|
|
|
/*
|
|
* This ensures that page tables are constructed for this region
|
|
* of kernel virtual address space and mapped into init_mm.
|
|
*/
|
|
if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
|
|
size, f, ptes ? &ptes : NULL)) {
|
|
free_vm_area(area);
|
|
return NULL;
|
|
}
|
|
|
|
return area;
|
|
}
|
|
EXPORT_SYMBOL_GPL(alloc_vm_area);
|
|
|
|
void free_vm_area(struct vm_struct *area)
|
|
{
|
|
struct vm_struct *ret;
|
|
ret = remove_vm_area(area->addr);
|
|
BUG_ON(ret != area);
|
|
kfree(area);
|
|
}
|
|
EXPORT_SYMBOL_GPL(free_vm_area);
|
|
|
|
#ifdef CONFIG_SMP
|
|
static struct vmap_area *node_to_va(struct rb_node *n)
|
|
{
|
|
return rb_entry_safe(n, struct vmap_area, rb_node);
|
|
}
|
|
|
|
/**
|
|
* pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
|
|
* @addr: target address
|
|
*
|
|
* Returns: vmap_area if it is found. If there is no such area
|
|
* the first highest(reverse order) vmap_area is returned
|
|
* i.e. va->va_start < addr && va->va_end < addr or NULL
|
|
* if there are no any areas before @addr.
|
|
*/
|
|
static struct vmap_area *
|
|
pvm_find_va_enclose_addr(unsigned long addr)
|
|
{
|
|
struct vmap_area *va, *tmp;
|
|
struct rb_node *n;
|
|
|
|
n = free_vmap_area_root.rb_node;
|
|
va = NULL;
|
|
|
|
while (n) {
|
|
tmp = rb_entry(n, struct vmap_area, rb_node);
|
|
if (tmp->va_start <= addr) {
|
|
va = tmp;
|
|
if (tmp->va_end >= addr)
|
|
break;
|
|
|
|
n = n->rb_right;
|
|
} else {
|
|
n = n->rb_left;
|
|
}
|
|
}
|
|
|
|
return va;
|
|
}
|
|
|
|
/**
|
|
* pvm_determine_end_from_reverse - find the highest aligned address
|
|
* of free block below VMALLOC_END
|
|
* @va:
|
|
* in - the VA we start the search(reverse order);
|
|
* out - the VA with the highest aligned end address.
|
|
*
|
|
* Returns: determined end address within vmap_area
|
|
*/
|
|
static unsigned long
|
|
pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
|
|
{
|
|
unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
|
|
unsigned long addr;
|
|
|
|
if (likely(*va)) {
|
|
list_for_each_entry_from_reverse((*va),
|
|
&free_vmap_area_list, list) {
|
|
addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
|
|
if ((*va)->va_start < addr)
|
|
return addr;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
|
|
* @offsets: array containing offset of each area
|
|
* @sizes: array containing size of each area
|
|
* @nr_vms: the number of areas to allocate
|
|
* @align: alignment, all entries in @offsets and @sizes must be aligned to this
|
|
*
|
|
* Returns: kmalloc'd vm_struct pointer array pointing to allocated
|
|
* vm_structs on success, %NULL on failure
|
|
*
|
|
* Percpu allocator wants to use congruent vm areas so that it can
|
|
* maintain the offsets among percpu areas. This function allocates
|
|
* congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
|
|
* be scattered pretty far, distance between two areas easily going up
|
|
* to gigabytes. To avoid interacting with regular vmallocs, these
|
|
* areas are allocated from top.
|
|
*
|
|
* Despite its complicated look, this allocator is rather simple. It
|
|
* does everything top-down and scans free blocks from the end looking
|
|
* for matching base. While scanning, if any of the areas do not fit the
|
|
* base address is pulled down to fit the area. Scanning is repeated till
|
|
* all the areas fit and then all necessary data structures are inserted
|
|
* and the result is returned.
|
|
*/
|
|
struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
|
|
const size_t *sizes, int nr_vms,
|
|
size_t align)
|
|
{
|
|
const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
|
|
const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
|
|
struct vmap_area **vas, *va;
|
|
struct vm_struct **vms;
|
|
int area, area2, last_area, term_area;
|
|
unsigned long base, start, size, end, last_end, orig_start, orig_end;
|
|
bool purged = false;
|
|
enum fit_type type;
|
|
|
|
/* verify parameters and allocate data structures */
|
|
BUG_ON(offset_in_page(align) || !is_power_of_2(align));
|
|
for (last_area = 0, area = 0; area < nr_vms; area++) {
|
|
start = offsets[area];
|
|
end = start + sizes[area];
|
|
|
|
/* is everything aligned properly? */
|
|
BUG_ON(!IS_ALIGNED(offsets[area], align));
|
|
BUG_ON(!IS_ALIGNED(sizes[area], align));
|
|
|
|
/* detect the area with the highest address */
|
|
if (start > offsets[last_area])
|
|
last_area = area;
|
|
|
|
for (area2 = area + 1; area2 < nr_vms; area2++) {
|
|
unsigned long start2 = offsets[area2];
|
|
unsigned long end2 = start2 + sizes[area2];
|
|
|
|
BUG_ON(start2 < end && start < end2);
|
|
}
|
|
}
|
|
last_end = offsets[last_area] + sizes[last_area];
|
|
|
|
if (vmalloc_end - vmalloc_start < last_end) {
|
|
WARN_ON(true);
|
|
return NULL;
|
|
}
|
|
|
|
vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
|
|
vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
|
|
if (!vas || !vms)
|
|
goto err_free2;
|
|
|
|
for (area = 0; area < nr_vms; area++) {
|
|
vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
|
|
vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
|
|
if (!vas[area] || !vms[area])
|
|
goto err_free;
|
|
}
|
|
retry:
|
|
spin_lock(&free_vmap_area_lock);
|
|
|
|
/* start scanning - we scan from the top, begin with the last area */
|
|
area = term_area = last_area;
|
|
start = offsets[area];
|
|
end = start + sizes[area];
|
|
|
|
va = pvm_find_va_enclose_addr(vmalloc_end);
|
|
base = pvm_determine_end_from_reverse(&va, align) - end;
|
|
|
|
while (true) {
|
|
/*
|
|
* base might have underflowed, add last_end before
|
|
* comparing.
|
|
*/
|
|
if (base + last_end < vmalloc_start + last_end)
|
|
goto overflow;
|
|
|
|
/*
|
|
* Fitting base has not been found.
|
|
*/
|
|
if (va == NULL)
|
|
goto overflow;
|
|
|
|
/*
|
|
* If required width exeeds current VA block, move
|
|
* base downwards and then recheck.
|
|
*/
|
|
if (base + end > va->va_end) {
|
|
base = pvm_determine_end_from_reverse(&va, align) - end;
|
|
term_area = area;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* If this VA does not fit, move base downwards and recheck.
|
|
*/
|
|
if (base + start < va->va_start) {
|
|
va = node_to_va(rb_prev(&va->rb_node));
|
|
base = pvm_determine_end_from_reverse(&va, align) - end;
|
|
term_area = area;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* This area fits, move on to the previous one. If
|
|
* the previous one is the terminal one, we're done.
|
|
*/
|
|
area = (area + nr_vms - 1) % nr_vms;
|
|
if (area == term_area)
|
|
break;
|
|
|
|
start = offsets[area];
|
|
end = start + sizes[area];
|
|
va = pvm_find_va_enclose_addr(base + end);
|
|
}
|
|
|
|
/* we've found a fitting base, insert all va's */
|
|
for (area = 0; area < nr_vms; area++) {
|
|
int ret;
|
|
|
|
start = base + offsets[area];
|
|
size = sizes[area];
|
|
|
|
va = pvm_find_va_enclose_addr(start);
|
|
if (WARN_ON_ONCE(va == NULL))
|
|
/* It is a BUG(), but trigger recovery instead. */
|
|
goto recovery;
|
|
|
|
type = classify_va_fit_type(va, start, size);
|
|
if (WARN_ON_ONCE(type == NOTHING_FIT))
|
|
/* It is a BUG(), but trigger recovery instead. */
|
|
goto recovery;
|
|
|
|
ret = adjust_va_to_fit_type(va, start, size, type);
|
|
if (unlikely(ret))
|
|
goto recovery;
|
|
|
|
/* Allocated area. */
|
|
va = vas[area];
|
|
va->va_start = start;
|
|
va->va_end = start + size;
|
|
}
|
|
|
|
spin_unlock(&free_vmap_area_lock);
|
|
|
|
/* populate the kasan shadow space */
|
|
for (area = 0; area < nr_vms; area++) {
|
|
if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
|
|
goto err_free_shadow;
|
|
|
|
kasan_unpoison_vmalloc((void *)vas[area]->va_start,
|
|
sizes[area]);
|
|
}
|
|
|
|
/* insert all vm's */
|
|
spin_lock(&vmap_area_lock);
|
|
for (area = 0; area < nr_vms; area++) {
|
|
insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
|
|
|
|
setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
|
|
pcpu_get_vm_areas);
|
|
}
|
|
spin_unlock(&vmap_area_lock);
|
|
|
|
kfree(vas);
|
|
return vms;
|
|
|
|
recovery:
|
|
/*
|
|
* Remove previously allocated areas. There is no
|
|
* need in removing these areas from the busy tree,
|
|
* because they are inserted only on the final step
|
|
* and when pcpu_get_vm_areas() is success.
|
|
*/
|
|
while (area--) {
|
|
orig_start = vas[area]->va_start;
|
|
orig_end = vas[area]->va_end;
|
|
va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root,
|
|
&free_vmap_area_list);
|
|
kasan_release_vmalloc(orig_start, orig_end,
|
|
va->va_start, va->va_end);
|
|
vas[area] = NULL;
|
|
}
|
|
|
|
overflow:
|
|
spin_unlock(&free_vmap_area_lock);
|
|
if (!purged) {
|
|
purge_vmap_area_lazy();
|
|
purged = true;
|
|
|
|
/* Before "retry", check if we recover. */
|
|
for (area = 0; area < nr_vms; area++) {
|
|
if (vas[area])
|
|
continue;
|
|
|
|
vas[area] = kmem_cache_zalloc(
|
|
vmap_area_cachep, GFP_KERNEL);
|
|
if (!vas[area])
|
|
goto err_free;
|
|
}
|
|
|
|
goto retry;
|
|
}
|
|
|
|
err_free:
|
|
for (area = 0; area < nr_vms; area++) {
|
|
if (vas[area])
|
|
kmem_cache_free(vmap_area_cachep, vas[area]);
|
|
|
|
kfree(vms[area]);
|
|
}
|
|
err_free2:
|
|
kfree(vas);
|
|
kfree(vms);
|
|
return NULL;
|
|
|
|
err_free_shadow:
|
|
spin_lock(&free_vmap_area_lock);
|
|
/*
|
|
* We release all the vmalloc shadows, even the ones for regions that
|
|
* hadn't been successfully added. This relies on kasan_release_vmalloc
|
|
* being able to tolerate this case.
|
|
*/
|
|
for (area = 0; area < nr_vms; area++) {
|
|
orig_start = vas[area]->va_start;
|
|
orig_end = vas[area]->va_end;
|
|
va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root,
|
|
&free_vmap_area_list);
|
|
kasan_release_vmalloc(orig_start, orig_end,
|
|
va->va_start, va->va_end);
|
|
vas[area] = NULL;
|
|
kfree(vms[area]);
|
|
}
|
|
spin_unlock(&free_vmap_area_lock);
|
|
kfree(vas);
|
|
kfree(vms);
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* pcpu_free_vm_areas - free vmalloc areas for percpu allocator
|
|
* @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
|
|
* @nr_vms: the number of allocated areas
|
|
*
|
|
* Free vm_structs and the array allocated by pcpu_get_vm_areas().
|
|
*/
|
|
void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < nr_vms; i++)
|
|
free_vm_area(vms[i]);
|
|
kfree(vms);
|
|
}
|
|
#endif /* CONFIG_SMP */
|
|
|
|
#ifdef CONFIG_PROC_FS
|
|
static void *s_start(struct seq_file *m, loff_t *pos)
|
|
__acquires(&vmap_purge_lock)
|
|
__acquires(&vmap_area_lock)
|
|
{
|
|
mutex_lock(&vmap_purge_lock);
|
|
spin_lock(&vmap_area_lock);
|
|
|
|
return seq_list_start(&vmap_area_list, *pos);
|
|
}
|
|
|
|
static void *s_next(struct seq_file *m, void *p, loff_t *pos)
|
|
{
|
|
return seq_list_next(p, &vmap_area_list, pos);
|
|
}
|
|
|
|
static void s_stop(struct seq_file *m, void *p)
|
|
__releases(&vmap_purge_lock)
|
|
__releases(&vmap_area_lock)
|
|
{
|
|
mutex_unlock(&vmap_purge_lock);
|
|
spin_unlock(&vmap_area_lock);
|
|
}
|
|
|
|
static void show_numa_info(struct seq_file *m, struct vm_struct *v)
|
|
{
|
|
if (IS_ENABLED(CONFIG_NUMA)) {
|
|
unsigned int nr, *counters = m->private;
|
|
|
|
if (!counters)
|
|
return;
|
|
|
|
if (v->flags & VM_UNINITIALIZED)
|
|
return;
|
|
/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
|
|
smp_rmb();
|
|
|
|
memset(counters, 0, nr_node_ids * sizeof(unsigned int));
|
|
|
|
for (nr = 0; nr < v->nr_pages; nr++)
|
|
counters[page_to_nid(v->pages[nr])]++;
|
|
|
|
for_each_node_state(nr, N_HIGH_MEMORY)
|
|
if (counters[nr])
|
|
seq_printf(m, " N%u=%u", nr, counters[nr]);
|
|
}
|
|
}
|
|
|
|
static void show_purge_info(struct seq_file *m)
|
|
{
|
|
struct llist_node *head;
|
|
struct vmap_area *va;
|
|
|
|
head = READ_ONCE(vmap_purge_list.first);
|
|
if (head == NULL)
|
|
return;
|
|
|
|
llist_for_each_entry(va, head, purge_list) {
|
|
seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
|
|
(void *)va->va_start, (void *)va->va_end,
|
|
va->va_end - va->va_start);
|
|
}
|
|
}
|
|
|
|
static int s_show(struct seq_file *m, void *p)
|
|
{
|
|
struct vmap_area *va;
|
|
struct vm_struct *v;
|
|
|
|
va = list_entry(p, struct vmap_area, list);
|
|
|
|
/*
|
|
* s_show can encounter race with remove_vm_area, !vm on behalf
|
|
* of vmap area is being tear down or vm_map_ram allocation.
|
|
*/
|
|
if (!va->vm) {
|
|
seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
|
|
(void *)va->va_start, (void *)va->va_end,
|
|
va->va_end - va->va_start);
|
|
|
|
return 0;
|
|
}
|
|
|
|
v = va->vm;
|
|
|
|
seq_printf(m, "0x%pK-0x%pK %7ld",
|
|
v->addr, v->addr + v->size, v->size);
|
|
|
|
if (v->caller)
|
|
seq_printf(m, " %pS", v->caller);
|
|
|
|
if (v->nr_pages)
|
|
seq_printf(m, " pages=%d", v->nr_pages);
|
|
|
|
if (v->phys_addr)
|
|
seq_printf(m, " phys=%pa", &v->phys_addr);
|
|
|
|
if (v->flags & VM_IOREMAP)
|
|
seq_puts(m, " ioremap");
|
|
|
|
if (v->flags & VM_ALLOC)
|
|
seq_puts(m, " vmalloc");
|
|
|
|
if (v->flags & VM_MAP)
|
|
seq_puts(m, " vmap");
|
|
|
|
if (v->flags & VM_USERMAP)
|
|
seq_puts(m, " user");
|
|
|
|
if (v->flags & VM_DMA_COHERENT)
|
|
seq_puts(m, " dma-coherent");
|
|
|
|
if (is_vmalloc_addr(v->pages))
|
|
seq_puts(m, " vpages");
|
|
|
|
show_numa_info(m, v);
|
|
seq_putc(m, '\n');
|
|
|
|
/*
|
|
* As a final step, dump "unpurged" areas. Note,
|
|
* that entire "/proc/vmallocinfo" output will not
|
|
* be address sorted, because the purge list is not
|
|
* sorted.
|
|
*/
|
|
if (list_is_last(&va->list, &vmap_area_list))
|
|
show_purge_info(m);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct seq_operations vmalloc_op = {
|
|
.start = s_start,
|
|
.next = s_next,
|
|
.stop = s_stop,
|
|
.show = s_show,
|
|
};
|
|
|
|
static int __init proc_vmalloc_init(void)
|
|
{
|
|
if (IS_ENABLED(CONFIG_NUMA))
|
|
proc_create_seq_private("vmallocinfo", 0400, NULL,
|
|
&vmalloc_op,
|
|
nr_node_ids * sizeof(unsigned int), NULL);
|
|
else
|
|
proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
|
|
return 0;
|
|
}
|
|
module_init(proc_vmalloc_init);
|
|
|
|
#endif
|