linux/fs/nfs/nfs4proc.c
Cong Wang 2b86ce2db3 nfs: remove the second argument of k[un]map_atomic()
Signed-off-by: Cong Wang <amwang@redhat.com>
2012-03-20 21:48:24 +08:00

6309 lines
169 KiB
C

/*
* fs/nfs/nfs4proc.c
*
* Client-side procedure declarations for NFSv4.
*
* Copyright (c) 2002 The Regents of the University of Michigan.
* All rights reserved.
*
* Kendrick Smith <kmsmith@umich.edu>
* Andy Adamson <andros@umich.edu>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <linux/mm.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/ratelimit.h>
#include <linux/printk.h>
#include <linux/slab.h>
#include <linux/sunrpc/clnt.h>
#include <linux/sunrpc/gss_api.h>
#include <linux/nfs.h>
#include <linux/nfs4.h>
#include <linux/nfs_fs.h>
#include <linux/nfs_page.h>
#include <linux/nfs_mount.h>
#include <linux/namei.h>
#include <linux/mount.h>
#include <linux/module.h>
#include <linux/nfs_idmap.h>
#include <linux/sunrpc/bc_xprt.h>
#include <linux/xattr.h>
#include <linux/utsname.h>
#include <linux/freezer.h>
#include "nfs4_fs.h"
#include "delegation.h"
#include "internal.h"
#include "iostat.h"
#include "callback.h"
#include "pnfs.h"
#define NFSDBG_FACILITY NFSDBG_PROC
#define NFS4_POLL_RETRY_MIN (HZ/10)
#define NFS4_POLL_RETRY_MAX (15*HZ)
#define NFS4_MAX_LOOP_ON_RECOVER (10)
struct nfs4_opendata;
static int _nfs4_proc_open(struct nfs4_opendata *data);
static int _nfs4_recover_proc_open(struct nfs4_opendata *data);
static int nfs4_do_fsinfo(struct nfs_server *, struct nfs_fh *, struct nfs_fsinfo *);
static int nfs4_async_handle_error(struct rpc_task *, const struct nfs_server *, struct nfs4_state *);
static int _nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fattr *fattr);
static int nfs4_do_setattr(struct inode *inode, struct rpc_cred *cred,
struct nfs_fattr *fattr, struct iattr *sattr,
struct nfs4_state *state);
#ifdef CONFIG_NFS_V4_1
static int nfs41_test_stateid(struct nfs_server *, struct nfs4_state *);
static int nfs41_free_stateid(struct nfs_server *, struct nfs4_state *);
#endif
/* Prevent leaks of NFSv4 errors into userland */
static int nfs4_map_errors(int err)
{
if (err >= -1000)
return err;
switch (err) {
case -NFS4ERR_RESOURCE:
return -EREMOTEIO;
case -NFS4ERR_WRONGSEC:
return -EPERM;
case -NFS4ERR_BADOWNER:
case -NFS4ERR_BADNAME:
return -EINVAL;
default:
dprintk("%s could not handle NFSv4 error %d\n",
__func__, -err);
break;
}
return -EIO;
}
/*
* This is our standard bitmap for GETATTR requests.
*/
const u32 nfs4_fattr_bitmap[2] = {
FATTR4_WORD0_TYPE
| FATTR4_WORD0_CHANGE
| FATTR4_WORD0_SIZE
| FATTR4_WORD0_FSID
| FATTR4_WORD0_FILEID,
FATTR4_WORD1_MODE
| FATTR4_WORD1_NUMLINKS
| FATTR4_WORD1_OWNER
| FATTR4_WORD1_OWNER_GROUP
| FATTR4_WORD1_RAWDEV
| FATTR4_WORD1_SPACE_USED
| FATTR4_WORD1_TIME_ACCESS
| FATTR4_WORD1_TIME_METADATA
| FATTR4_WORD1_TIME_MODIFY
};
const u32 nfs4_statfs_bitmap[2] = {
FATTR4_WORD0_FILES_AVAIL
| FATTR4_WORD0_FILES_FREE
| FATTR4_WORD0_FILES_TOTAL,
FATTR4_WORD1_SPACE_AVAIL
| FATTR4_WORD1_SPACE_FREE
| FATTR4_WORD1_SPACE_TOTAL
};
const u32 nfs4_pathconf_bitmap[2] = {
FATTR4_WORD0_MAXLINK
| FATTR4_WORD0_MAXNAME,
0
};
const u32 nfs4_fsinfo_bitmap[3] = { FATTR4_WORD0_MAXFILESIZE
| FATTR4_WORD0_MAXREAD
| FATTR4_WORD0_MAXWRITE
| FATTR4_WORD0_LEASE_TIME,
FATTR4_WORD1_TIME_DELTA
| FATTR4_WORD1_FS_LAYOUT_TYPES,
FATTR4_WORD2_LAYOUT_BLKSIZE
};
const u32 nfs4_fs_locations_bitmap[2] = {
FATTR4_WORD0_TYPE
| FATTR4_WORD0_CHANGE
| FATTR4_WORD0_SIZE
| FATTR4_WORD0_FSID
| FATTR4_WORD0_FILEID
| FATTR4_WORD0_FS_LOCATIONS,
FATTR4_WORD1_MODE
| FATTR4_WORD1_NUMLINKS
| FATTR4_WORD1_OWNER
| FATTR4_WORD1_OWNER_GROUP
| FATTR4_WORD1_RAWDEV
| FATTR4_WORD1_SPACE_USED
| FATTR4_WORD1_TIME_ACCESS
| FATTR4_WORD1_TIME_METADATA
| FATTR4_WORD1_TIME_MODIFY
| FATTR4_WORD1_MOUNTED_ON_FILEID
};
static void nfs4_setup_readdir(u64 cookie, __be32 *verifier, struct dentry *dentry,
struct nfs4_readdir_arg *readdir)
{
__be32 *start, *p;
BUG_ON(readdir->count < 80);
if (cookie > 2) {
readdir->cookie = cookie;
memcpy(&readdir->verifier, verifier, sizeof(readdir->verifier));
return;
}
readdir->cookie = 0;
memset(&readdir->verifier, 0, sizeof(readdir->verifier));
if (cookie == 2)
return;
/*
* NFSv4 servers do not return entries for '.' and '..'
* Therefore, we fake these entries here. We let '.'
* have cookie 0 and '..' have cookie 1. Note that
* when talking to the server, we always send cookie 0
* instead of 1 or 2.
*/
start = p = kmap_atomic(*readdir->pages);
if (cookie == 0) {
*p++ = xdr_one; /* next */
*p++ = xdr_zero; /* cookie, first word */
*p++ = xdr_one; /* cookie, second word */
*p++ = xdr_one; /* entry len */
memcpy(p, ".\0\0\0", 4); /* entry */
p++;
*p++ = xdr_one; /* bitmap length */
*p++ = htonl(FATTR4_WORD0_FILEID); /* bitmap */
*p++ = htonl(8); /* attribute buffer length */
p = xdr_encode_hyper(p, NFS_FILEID(dentry->d_inode));
}
*p++ = xdr_one; /* next */
*p++ = xdr_zero; /* cookie, first word */
*p++ = xdr_two; /* cookie, second word */
*p++ = xdr_two; /* entry len */
memcpy(p, "..\0\0", 4); /* entry */
p++;
*p++ = xdr_one; /* bitmap length */
*p++ = htonl(FATTR4_WORD0_FILEID); /* bitmap */
*p++ = htonl(8); /* attribute buffer length */
p = xdr_encode_hyper(p, NFS_FILEID(dentry->d_parent->d_inode));
readdir->pgbase = (char *)p - (char *)start;
readdir->count -= readdir->pgbase;
kunmap_atomic(start);
}
static int nfs4_wait_clnt_recover(struct nfs_client *clp)
{
int res;
might_sleep();
res = wait_on_bit(&clp->cl_state, NFS4CLNT_MANAGER_RUNNING,
nfs_wait_bit_killable, TASK_KILLABLE);
return res;
}
static int nfs4_delay(struct rpc_clnt *clnt, long *timeout)
{
int res = 0;
might_sleep();
if (*timeout <= 0)
*timeout = NFS4_POLL_RETRY_MIN;
if (*timeout > NFS4_POLL_RETRY_MAX)
*timeout = NFS4_POLL_RETRY_MAX;
freezable_schedule_timeout_killable(*timeout);
if (fatal_signal_pending(current))
res = -ERESTARTSYS;
*timeout <<= 1;
return res;
}
/* This is the error handling routine for processes that are allowed
* to sleep.
*/
static int nfs4_handle_exception(struct nfs_server *server, int errorcode, struct nfs4_exception *exception)
{
struct nfs_client *clp = server->nfs_client;
struct nfs4_state *state = exception->state;
int ret = errorcode;
exception->retry = 0;
switch(errorcode) {
case 0:
return 0;
case -NFS4ERR_ADMIN_REVOKED:
case -NFS4ERR_BAD_STATEID:
case -NFS4ERR_OPENMODE:
if (state == NULL)
break;
nfs4_schedule_stateid_recovery(server, state);
goto wait_on_recovery;
case -NFS4ERR_EXPIRED:
if (state != NULL)
nfs4_schedule_stateid_recovery(server, state);
case -NFS4ERR_STALE_STATEID:
case -NFS4ERR_STALE_CLIENTID:
nfs4_schedule_lease_recovery(clp);
goto wait_on_recovery;
#if defined(CONFIG_NFS_V4_1)
case -NFS4ERR_BADSESSION:
case -NFS4ERR_BADSLOT:
case -NFS4ERR_BAD_HIGH_SLOT:
case -NFS4ERR_CONN_NOT_BOUND_TO_SESSION:
case -NFS4ERR_DEADSESSION:
case -NFS4ERR_SEQ_FALSE_RETRY:
case -NFS4ERR_SEQ_MISORDERED:
dprintk("%s ERROR: %d Reset session\n", __func__,
errorcode);
nfs4_schedule_session_recovery(clp->cl_session);
exception->retry = 1;
break;
#endif /* defined(CONFIG_NFS_V4_1) */
case -NFS4ERR_FILE_OPEN:
if (exception->timeout > HZ) {
/* We have retried a decent amount, time to
* fail
*/
ret = -EBUSY;
break;
}
case -NFS4ERR_GRACE:
case -NFS4ERR_DELAY:
case -EKEYEXPIRED:
ret = nfs4_delay(server->client, &exception->timeout);
if (ret != 0)
break;
case -NFS4ERR_RETRY_UNCACHED_REP:
case -NFS4ERR_OLD_STATEID:
exception->retry = 1;
break;
case -NFS4ERR_BADOWNER:
/* The following works around a Linux server bug! */
case -NFS4ERR_BADNAME:
if (server->caps & NFS_CAP_UIDGID_NOMAP) {
server->caps &= ~NFS_CAP_UIDGID_NOMAP;
exception->retry = 1;
printk(KERN_WARNING "NFS: v4 server %s "
"does not accept raw "
"uid/gids. "
"Reenabling the idmapper.\n",
server->nfs_client->cl_hostname);
}
}
/* We failed to handle the error */
return nfs4_map_errors(ret);
wait_on_recovery:
ret = nfs4_wait_clnt_recover(clp);
if (ret == 0)
exception->retry = 1;
return ret;
}
static void do_renew_lease(struct nfs_client *clp, unsigned long timestamp)
{
spin_lock(&clp->cl_lock);
if (time_before(clp->cl_last_renewal,timestamp))
clp->cl_last_renewal = timestamp;
spin_unlock(&clp->cl_lock);
}
static void renew_lease(const struct nfs_server *server, unsigned long timestamp)
{
do_renew_lease(server->nfs_client, timestamp);
}
#if defined(CONFIG_NFS_V4_1)
/*
* nfs4_free_slot - free a slot and efficiently update slot table.
*
* freeing a slot is trivially done by clearing its respective bit
* in the bitmap.
* If the freed slotid equals highest_used_slotid we want to update it
* so that the server would be able to size down the slot table if needed,
* otherwise we know that the highest_used_slotid is still in use.
* When updating highest_used_slotid there may be "holes" in the bitmap
* so we need to scan down from highest_used_slotid to 0 looking for the now
* highest slotid in use.
* If none found, highest_used_slotid is set to -1.
*
* Must be called while holding tbl->slot_tbl_lock
*/
static void
nfs4_free_slot(struct nfs4_slot_table *tbl, u8 free_slotid)
{
int slotid = free_slotid;
BUG_ON(slotid < 0 || slotid >= NFS4_MAX_SLOT_TABLE);
/* clear used bit in bitmap */
__clear_bit(slotid, tbl->used_slots);
/* update highest_used_slotid when it is freed */
if (slotid == tbl->highest_used_slotid) {
slotid = find_last_bit(tbl->used_slots, tbl->max_slots);
if (slotid < tbl->max_slots)
tbl->highest_used_slotid = slotid;
else
tbl->highest_used_slotid = -1;
}
dprintk("%s: free_slotid %u highest_used_slotid %d\n", __func__,
free_slotid, tbl->highest_used_slotid);
}
/*
* Signal state manager thread if session fore channel is drained
*/
static void nfs4_check_drain_fc_complete(struct nfs4_session *ses)
{
struct rpc_task *task;
if (!test_bit(NFS4_SESSION_DRAINING, &ses->session_state)) {
task = rpc_wake_up_next(&ses->fc_slot_table.slot_tbl_waitq);
if (task)
rpc_task_set_priority(task, RPC_PRIORITY_PRIVILEGED);
return;
}
if (ses->fc_slot_table.highest_used_slotid != -1)
return;
dprintk("%s COMPLETE: Session Fore Channel Drained\n", __func__);
complete(&ses->fc_slot_table.complete);
}
/*
* Signal state manager thread if session back channel is drained
*/
void nfs4_check_drain_bc_complete(struct nfs4_session *ses)
{
if (!test_bit(NFS4_SESSION_DRAINING, &ses->session_state) ||
ses->bc_slot_table.highest_used_slotid != -1)
return;
dprintk("%s COMPLETE: Session Back Channel Drained\n", __func__);
complete(&ses->bc_slot_table.complete);
}
static void nfs41_sequence_free_slot(struct nfs4_sequence_res *res)
{
struct nfs4_slot_table *tbl;
tbl = &res->sr_session->fc_slot_table;
if (!res->sr_slot) {
/* just wake up the next guy waiting since
* we may have not consumed a slot after all */
dprintk("%s: No slot\n", __func__);
return;
}
spin_lock(&tbl->slot_tbl_lock);
nfs4_free_slot(tbl, res->sr_slot - tbl->slots);
nfs4_check_drain_fc_complete(res->sr_session);
spin_unlock(&tbl->slot_tbl_lock);
res->sr_slot = NULL;
}
static int nfs41_sequence_done(struct rpc_task *task, struct nfs4_sequence_res *res)
{
unsigned long timestamp;
struct nfs_client *clp;
/*
* sr_status remains 1 if an RPC level error occurred. The server
* may or may not have processed the sequence operation..
* Proceed as if the server received and processed the sequence
* operation.
*/
if (res->sr_status == 1)
res->sr_status = NFS_OK;
/* don't increment the sequence number if the task wasn't sent */
if (!RPC_WAS_SENT(task))
goto out;
/* Check the SEQUENCE operation status */
switch (res->sr_status) {
case 0:
/* Update the slot's sequence and clientid lease timer */
++res->sr_slot->seq_nr;
timestamp = res->sr_renewal_time;
clp = res->sr_session->clp;
do_renew_lease(clp, timestamp);
/* Check sequence flags */
if (res->sr_status_flags != 0)
nfs4_schedule_lease_recovery(clp);
break;
case -NFS4ERR_DELAY:
/* The server detected a resend of the RPC call and
* returned NFS4ERR_DELAY as per Section 2.10.6.2
* of RFC5661.
*/
dprintk("%s: slot=%td seq=%d: Operation in progress\n",
__func__,
res->sr_slot - res->sr_session->fc_slot_table.slots,
res->sr_slot->seq_nr);
goto out_retry;
default:
/* Just update the slot sequence no. */
++res->sr_slot->seq_nr;
}
out:
/* The session may be reset by one of the error handlers. */
dprintk("%s: Error %d free the slot \n", __func__, res->sr_status);
nfs41_sequence_free_slot(res);
return 1;
out_retry:
if (!rpc_restart_call(task))
goto out;
rpc_delay(task, NFS4_POLL_RETRY_MAX);
return 0;
}
static int nfs4_sequence_done(struct rpc_task *task,
struct nfs4_sequence_res *res)
{
if (res->sr_session == NULL)
return 1;
return nfs41_sequence_done(task, res);
}
/*
* nfs4_find_slot - efficiently look for a free slot
*
* nfs4_find_slot looks for an unset bit in the used_slots bitmap.
* If found, we mark the slot as used, update the highest_used_slotid,
* and respectively set up the sequence operation args.
* The slot number is returned if found, or NFS4_MAX_SLOT_TABLE otherwise.
*
* Note: must be called with under the slot_tbl_lock.
*/
static u8
nfs4_find_slot(struct nfs4_slot_table *tbl)
{
int slotid;
u8 ret_id = NFS4_MAX_SLOT_TABLE;
BUILD_BUG_ON((u8)NFS4_MAX_SLOT_TABLE != (int)NFS4_MAX_SLOT_TABLE);
dprintk("--> %s used_slots=%04lx highest_used=%d max_slots=%d\n",
__func__, tbl->used_slots[0], tbl->highest_used_slotid,
tbl->max_slots);
slotid = find_first_zero_bit(tbl->used_slots, tbl->max_slots);
if (slotid >= tbl->max_slots)
goto out;
__set_bit(slotid, tbl->used_slots);
if (slotid > tbl->highest_used_slotid)
tbl->highest_used_slotid = slotid;
ret_id = slotid;
out:
dprintk("<-- %s used_slots=%04lx highest_used=%d slotid=%d \n",
__func__, tbl->used_slots[0], tbl->highest_used_slotid, ret_id);
return ret_id;
}
int nfs41_setup_sequence(struct nfs4_session *session,
struct nfs4_sequence_args *args,
struct nfs4_sequence_res *res,
int cache_reply,
struct rpc_task *task)
{
struct nfs4_slot *slot;
struct nfs4_slot_table *tbl;
u8 slotid;
dprintk("--> %s\n", __func__);
/* slot already allocated? */
if (res->sr_slot != NULL)
return 0;
tbl = &session->fc_slot_table;
spin_lock(&tbl->slot_tbl_lock);
if (test_bit(NFS4_SESSION_DRAINING, &session->session_state) &&
!rpc_task_has_priority(task, RPC_PRIORITY_PRIVILEGED)) {
/* The state manager will wait until the slot table is empty */
rpc_sleep_on(&tbl->slot_tbl_waitq, task, NULL);
spin_unlock(&tbl->slot_tbl_lock);
dprintk("%s session is draining\n", __func__);
return -EAGAIN;
}
if (!rpc_queue_empty(&tbl->slot_tbl_waitq) &&
!rpc_task_has_priority(task, RPC_PRIORITY_PRIVILEGED)) {
rpc_sleep_on(&tbl->slot_tbl_waitq, task, NULL);
spin_unlock(&tbl->slot_tbl_lock);
dprintk("%s enforce FIFO order\n", __func__);
return -EAGAIN;
}
slotid = nfs4_find_slot(tbl);
if (slotid == NFS4_MAX_SLOT_TABLE) {
rpc_sleep_on(&tbl->slot_tbl_waitq, task, NULL);
spin_unlock(&tbl->slot_tbl_lock);
dprintk("<-- %s: no free slots\n", __func__);
return -EAGAIN;
}
spin_unlock(&tbl->slot_tbl_lock);
rpc_task_set_priority(task, RPC_PRIORITY_NORMAL);
slot = tbl->slots + slotid;
args->sa_session = session;
args->sa_slotid = slotid;
args->sa_cache_this = cache_reply;
dprintk("<-- %s slotid=%d seqid=%d\n", __func__, slotid, slot->seq_nr);
res->sr_session = session;
res->sr_slot = slot;
res->sr_renewal_time = jiffies;
res->sr_status_flags = 0;
/*
* sr_status is only set in decode_sequence, and so will remain
* set to 1 if an rpc level failure occurs.
*/
res->sr_status = 1;
return 0;
}
EXPORT_SYMBOL_GPL(nfs41_setup_sequence);
int nfs4_setup_sequence(const struct nfs_server *server,
struct nfs4_sequence_args *args,
struct nfs4_sequence_res *res,
int cache_reply,
struct rpc_task *task)
{
struct nfs4_session *session = nfs4_get_session(server);
int ret = 0;
if (session == NULL) {
args->sa_session = NULL;
res->sr_session = NULL;
goto out;
}
dprintk("--> %s clp %p session %p sr_slot %td\n",
__func__, session->clp, session, res->sr_slot ?
res->sr_slot - session->fc_slot_table.slots : -1);
ret = nfs41_setup_sequence(session, args, res, cache_reply,
task);
out:
dprintk("<-- %s status=%d\n", __func__, ret);
return ret;
}
struct nfs41_call_sync_data {
const struct nfs_server *seq_server;
struct nfs4_sequence_args *seq_args;
struct nfs4_sequence_res *seq_res;
int cache_reply;
};
static void nfs41_call_sync_prepare(struct rpc_task *task, void *calldata)
{
struct nfs41_call_sync_data *data = calldata;
dprintk("--> %s data->seq_server %p\n", __func__, data->seq_server);
if (nfs4_setup_sequence(data->seq_server, data->seq_args,
data->seq_res, data->cache_reply, task))
return;
rpc_call_start(task);
}
static void nfs41_call_priv_sync_prepare(struct rpc_task *task, void *calldata)
{
rpc_task_set_priority(task, RPC_PRIORITY_PRIVILEGED);
nfs41_call_sync_prepare(task, calldata);
}
static void nfs41_call_sync_done(struct rpc_task *task, void *calldata)
{
struct nfs41_call_sync_data *data = calldata;
nfs41_sequence_done(task, data->seq_res);
}
struct rpc_call_ops nfs41_call_sync_ops = {
.rpc_call_prepare = nfs41_call_sync_prepare,
.rpc_call_done = nfs41_call_sync_done,
};
struct rpc_call_ops nfs41_call_priv_sync_ops = {
.rpc_call_prepare = nfs41_call_priv_sync_prepare,
.rpc_call_done = nfs41_call_sync_done,
};
static int nfs4_call_sync_sequence(struct rpc_clnt *clnt,
struct nfs_server *server,
struct rpc_message *msg,
struct nfs4_sequence_args *args,
struct nfs4_sequence_res *res,
int cache_reply,
int privileged)
{
int ret;
struct rpc_task *task;
struct nfs41_call_sync_data data = {
.seq_server = server,
.seq_args = args,
.seq_res = res,
.cache_reply = cache_reply,
};
struct rpc_task_setup task_setup = {
.rpc_client = clnt,
.rpc_message = msg,
.callback_ops = &nfs41_call_sync_ops,
.callback_data = &data
};
res->sr_slot = NULL;
if (privileged)
task_setup.callback_ops = &nfs41_call_priv_sync_ops;
task = rpc_run_task(&task_setup);
if (IS_ERR(task))
ret = PTR_ERR(task);
else {
ret = task->tk_status;
rpc_put_task(task);
}
return ret;
}
int _nfs4_call_sync_session(struct rpc_clnt *clnt,
struct nfs_server *server,
struct rpc_message *msg,
struct nfs4_sequence_args *args,
struct nfs4_sequence_res *res,
int cache_reply)
{
return nfs4_call_sync_sequence(clnt, server, msg, args, res, cache_reply, 0);
}
#else
static int nfs4_sequence_done(struct rpc_task *task,
struct nfs4_sequence_res *res)
{
return 1;
}
#endif /* CONFIG_NFS_V4_1 */
int _nfs4_call_sync(struct rpc_clnt *clnt,
struct nfs_server *server,
struct rpc_message *msg,
struct nfs4_sequence_args *args,
struct nfs4_sequence_res *res,
int cache_reply)
{
args->sa_session = res->sr_session = NULL;
return rpc_call_sync(clnt, msg, 0);
}
static inline
int nfs4_call_sync(struct rpc_clnt *clnt,
struct nfs_server *server,
struct rpc_message *msg,
struct nfs4_sequence_args *args,
struct nfs4_sequence_res *res,
int cache_reply)
{
return server->nfs_client->cl_mvops->call_sync(clnt, server, msg,
args, res, cache_reply);
}
static void update_changeattr(struct inode *dir, struct nfs4_change_info *cinfo)
{
struct nfs_inode *nfsi = NFS_I(dir);
spin_lock(&dir->i_lock);
nfsi->cache_validity |= NFS_INO_INVALID_ATTR|NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA;
if (!cinfo->atomic || cinfo->before != dir->i_version)
nfs_force_lookup_revalidate(dir);
dir->i_version = cinfo->after;
spin_unlock(&dir->i_lock);
}
struct nfs4_opendata {
struct kref kref;
struct nfs_openargs o_arg;
struct nfs_openres o_res;
struct nfs_open_confirmargs c_arg;
struct nfs_open_confirmres c_res;
struct nfs4_string owner_name;
struct nfs4_string group_name;
struct nfs_fattr f_attr;
struct nfs_fattr dir_attr;
struct dentry *dir;
struct dentry *dentry;
struct nfs4_state_owner *owner;
struct nfs4_state *state;
struct iattr attrs;
unsigned long timestamp;
unsigned int rpc_done : 1;
int rpc_status;
int cancelled;
};
static void nfs4_init_opendata_res(struct nfs4_opendata *p)
{
p->o_res.f_attr = &p->f_attr;
p->o_res.dir_attr = &p->dir_attr;
p->o_res.seqid = p->o_arg.seqid;
p->c_res.seqid = p->c_arg.seqid;
p->o_res.server = p->o_arg.server;
nfs_fattr_init(&p->f_attr);
nfs_fattr_init(&p->dir_attr);
nfs_fattr_init_names(&p->f_attr, &p->owner_name, &p->group_name);
}
static struct nfs4_opendata *nfs4_opendata_alloc(struct dentry *dentry,
struct nfs4_state_owner *sp, fmode_t fmode, int flags,
const struct iattr *attrs,
gfp_t gfp_mask)
{
struct dentry *parent = dget_parent(dentry);
struct inode *dir = parent->d_inode;
struct nfs_server *server = NFS_SERVER(dir);
struct nfs4_opendata *p;
p = kzalloc(sizeof(*p), gfp_mask);
if (p == NULL)
goto err;
p->o_arg.seqid = nfs_alloc_seqid(&sp->so_seqid, gfp_mask);
if (p->o_arg.seqid == NULL)
goto err_free;
nfs_sb_active(dentry->d_sb);
p->dentry = dget(dentry);
p->dir = parent;
p->owner = sp;
atomic_inc(&sp->so_count);
p->o_arg.fh = NFS_FH(dir);
p->o_arg.open_flags = flags;
p->o_arg.fmode = fmode & (FMODE_READ|FMODE_WRITE);
p->o_arg.clientid = server->nfs_client->cl_clientid;
p->o_arg.id = sp->so_owner_id.id;
p->o_arg.name = &dentry->d_name;
p->o_arg.server = server;
p->o_arg.bitmask = server->attr_bitmask;
p->o_arg.dir_bitmask = server->cache_consistency_bitmask;
p->o_arg.claim = NFS4_OPEN_CLAIM_NULL;
if (flags & O_CREAT) {
u32 *s;
p->o_arg.u.attrs = &p->attrs;
memcpy(&p->attrs, attrs, sizeof(p->attrs));
s = (u32 *) p->o_arg.u.verifier.data;
s[0] = jiffies;
s[1] = current->pid;
}
p->c_arg.fh = &p->o_res.fh;
p->c_arg.stateid = &p->o_res.stateid;
p->c_arg.seqid = p->o_arg.seqid;
nfs4_init_opendata_res(p);
kref_init(&p->kref);
return p;
err_free:
kfree(p);
err:
dput(parent);
return NULL;
}
static void nfs4_opendata_free(struct kref *kref)
{
struct nfs4_opendata *p = container_of(kref,
struct nfs4_opendata, kref);
struct super_block *sb = p->dentry->d_sb;
nfs_free_seqid(p->o_arg.seqid);
if (p->state != NULL)
nfs4_put_open_state(p->state);
nfs4_put_state_owner(p->owner);
dput(p->dir);
dput(p->dentry);
nfs_sb_deactive(sb);
nfs_fattr_free_names(&p->f_attr);
kfree(p);
}
static void nfs4_opendata_put(struct nfs4_opendata *p)
{
if (p != NULL)
kref_put(&p->kref, nfs4_opendata_free);
}
static int nfs4_wait_for_completion_rpc_task(struct rpc_task *task)
{
int ret;
ret = rpc_wait_for_completion_task(task);
return ret;
}
static int can_open_cached(struct nfs4_state *state, fmode_t mode, int open_mode)
{
int ret = 0;
if (open_mode & O_EXCL)
goto out;
switch (mode & (FMODE_READ|FMODE_WRITE)) {
case FMODE_READ:
ret |= test_bit(NFS_O_RDONLY_STATE, &state->flags) != 0
&& state->n_rdonly != 0;
break;
case FMODE_WRITE:
ret |= test_bit(NFS_O_WRONLY_STATE, &state->flags) != 0
&& state->n_wronly != 0;
break;
case FMODE_READ|FMODE_WRITE:
ret |= test_bit(NFS_O_RDWR_STATE, &state->flags) != 0
&& state->n_rdwr != 0;
}
out:
return ret;
}
static int can_open_delegated(struct nfs_delegation *delegation, fmode_t fmode)
{
if (delegation == NULL)
return 0;
if ((delegation->type & fmode) != fmode)
return 0;
if (test_bit(NFS_DELEGATION_NEED_RECLAIM, &delegation->flags))
return 0;
nfs_mark_delegation_referenced(delegation);
return 1;
}
static void update_open_stateflags(struct nfs4_state *state, fmode_t fmode)
{
switch (fmode) {
case FMODE_WRITE:
state->n_wronly++;
break;
case FMODE_READ:
state->n_rdonly++;
break;
case FMODE_READ|FMODE_WRITE:
state->n_rdwr++;
}
nfs4_state_set_mode_locked(state, state->state | fmode);
}
static void nfs_set_open_stateid_locked(struct nfs4_state *state, nfs4_stateid *stateid, fmode_t fmode)
{
if (test_bit(NFS_DELEGATED_STATE, &state->flags) == 0)
memcpy(state->stateid.data, stateid->data, sizeof(state->stateid.data));
memcpy(state->open_stateid.data, stateid->data, sizeof(state->open_stateid.data));
switch (fmode) {
case FMODE_READ:
set_bit(NFS_O_RDONLY_STATE, &state->flags);
break;
case FMODE_WRITE:
set_bit(NFS_O_WRONLY_STATE, &state->flags);
break;
case FMODE_READ|FMODE_WRITE:
set_bit(NFS_O_RDWR_STATE, &state->flags);
}
}
static void nfs_set_open_stateid(struct nfs4_state *state, nfs4_stateid *stateid, fmode_t fmode)
{
write_seqlock(&state->seqlock);
nfs_set_open_stateid_locked(state, stateid, fmode);
write_sequnlock(&state->seqlock);
}
static void __update_open_stateid(struct nfs4_state *state, nfs4_stateid *open_stateid, const nfs4_stateid *deleg_stateid, fmode_t fmode)
{
/*
* Protect the call to nfs4_state_set_mode_locked and
* serialise the stateid update
*/
write_seqlock(&state->seqlock);
if (deleg_stateid != NULL) {
memcpy(state->stateid.data, deleg_stateid->data, sizeof(state->stateid.data));
set_bit(NFS_DELEGATED_STATE, &state->flags);
}
if (open_stateid != NULL)
nfs_set_open_stateid_locked(state, open_stateid, fmode);
write_sequnlock(&state->seqlock);
spin_lock(&state->owner->so_lock);
update_open_stateflags(state, fmode);
spin_unlock(&state->owner->so_lock);
}
static int update_open_stateid(struct nfs4_state *state, nfs4_stateid *open_stateid, nfs4_stateid *delegation, fmode_t fmode)
{
struct nfs_inode *nfsi = NFS_I(state->inode);
struct nfs_delegation *deleg_cur;
int ret = 0;
fmode &= (FMODE_READ|FMODE_WRITE);
rcu_read_lock();
deleg_cur = rcu_dereference(nfsi->delegation);
if (deleg_cur == NULL)
goto no_delegation;
spin_lock(&deleg_cur->lock);
if (nfsi->delegation != deleg_cur ||
(deleg_cur->type & fmode) != fmode)
goto no_delegation_unlock;
if (delegation == NULL)
delegation = &deleg_cur->stateid;
else if (memcmp(deleg_cur->stateid.data, delegation->data, NFS4_STATEID_SIZE) != 0)
goto no_delegation_unlock;
nfs_mark_delegation_referenced(deleg_cur);
__update_open_stateid(state, open_stateid, &deleg_cur->stateid, fmode);
ret = 1;
no_delegation_unlock:
spin_unlock(&deleg_cur->lock);
no_delegation:
rcu_read_unlock();
if (!ret && open_stateid != NULL) {
__update_open_stateid(state, open_stateid, NULL, fmode);
ret = 1;
}
return ret;
}
static void nfs4_return_incompatible_delegation(struct inode *inode, fmode_t fmode)
{
struct nfs_delegation *delegation;
rcu_read_lock();
delegation = rcu_dereference(NFS_I(inode)->delegation);
if (delegation == NULL || (delegation->type & fmode) == fmode) {
rcu_read_unlock();
return;
}
rcu_read_unlock();
nfs_inode_return_delegation(inode);
}
static struct nfs4_state *nfs4_try_open_cached(struct nfs4_opendata *opendata)
{
struct nfs4_state *state = opendata->state;
struct nfs_inode *nfsi = NFS_I(state->inode);
struct nfs_delegation *delegation;
int open_mode = opendata->o_arg.open_flags & O_EXCL;
fmode_t fmode = opendata->o_arg.fmode;
nfs4_stateid stateid;
int ret = -EAGAIN;
for (;;) {
if (can_open_cached(state, fmode, open_mode)) {
spin_lock(&state->owner->so_lock);
if (can_open_cached(state, fmode, open_mode)) {
update_open_stateflags(state, fmode);
spin_unlock(&state->owner->so_lock);
goto out_return_state;
}
spin_unlock(&state->owner->so_lock);
}
rcu_read_lock();
delegation = rcu_dereference(nfsi->delegation);
if (!can_open_delegated(delegation, fmode)) {
rcu_read_unlock();
break;
}
/* Save the delegation */
memcpy(stateid.data, delegation->stateid.data, sizeof(stateid.data));
rcu_read_unlock();
ret = nfs_may_open(state->inode, state->owner->so_cred, open_mode);
if (ret != 0)
goto out;
ret = -EAGAIN;
/* Try to update the stateid using the delegation */
if (update_open_stateid(state, NULL, &stateid, fmode))
goto out_return_state;
}
out:
return ERR_PTR(ret);
out_return_state:
atomic_inc(&state->count);
return state;
}
static struct nfs4_state *nfs4_opendata_to_nfs4_state(struct nfs4_opendata *data)
{
struct inode *inode;
struct nfs4_state *state = NULL;
struct nfs_delegation *delegation;
int ret;
if (!data->rpc_done) {
state = nfs4_try_open_cached(data);
goto out;
}
ret = -EAGAIN;
if (!(data->f_attr.valid & NFS_ATTR_FATTR))
goto err;
inode = nfs_fhget(data->dir->d_sb, &data->o_res.fh, &data->f_attr);
ret = PTR_ERR(inode);
if (IS_ERR(inode))
goto err;
ret = -ENOMEM;
state = nfs4_get_open_state(inode, data->owner);
if (state == NULL)
goto err_put_inode;
if (data->o_res.delegation_type != 0) {
int delegation_flags = 0;
rcu_read_lock();
delegation = rcu_dereference(NFS_I(inode)->delegation);
if (delegation)
delegation_flags = delegation->flags;
rcu_read_unlock();
if (data->o_arg.claim == NFS4_OPEN_CLAIM_DELEGATE_CUR) {
pr_err_ratelimited("NFS: Broken NFSv4 server %s is "
"returning a delegation for "
"OPEN(CLAIM_DELEGATE_CUR)\n",
NFS_CLIENT(inode)->cl_server);
} else if ((delegation_flags & 1UL<<NFS_DELEGATION_NEED_RECLAIM) == 0)
nfs_inode_set_delegation(state->inode,
data->owner->so_cred,
&data->o_res);
else
nfs_inode_reclaim_delegation(state->inode,
data->owner->so_cred,
&data->o_res);
}
update_open_stateid(state, &data->o_res.stateid, NULL,
data->o_arg.fmode);
iput(inode);
out:
return state;
err_put_inode:
iput(inode);
err:
return ERR_PTR(ret);
}
static struct nfs_open_context *nfs4_state_find_open_context(struct nfs4_state *state)
{
struct nfs_inode *nfsi = NFS_I(state->inode);
struct nfs_open_context *ctx;
spin_lock(&state->inode->i_lock);
list_for_each_entry(ctx, &nfsi->open_files, list) {
if (ctx->state != state)
continue;
get_nfs_open_context(ctx);
spin_unlock(&state->inode->i_lock);
return ctx;
}
spin_unlock(&state->inode->i_lock);
return ERR_PTR(-ENOENT);
}
static struct nfs4_opendata *nfs4_open_recoverdata_alloc(struct nfs_open_context *ctx, struct nfs4_state *state)
{
struct nfs4_opendata *opendata;
opendata = nfs4_opendata_alloc(ctx->dentry, state->owner, 0, 0, NULL, GFP_NOFS);
if (opendata == NULL)
return ERR_PTR(-ENOMEM);
opendata->state = state;
atomic_inc(&state->count);
return opendata;
}
static int nfs4_open_recover_helper(struct nfs4_opendata *opendata, fmode_t fmode, struct nfs4_state **res)
{
struct nfs4_state *newstate;
int ret;
opendata->o_arg.open_flags = 0;
opendata->o_arg.fmode = fmode;
memset(&opendata->o_res, 0, sizeof(opendata->o_res));
memset(&opendata->c_res, 0, sizeof(opendata->c_res));
nfs4_init_opendata_res(opendata);
ret = _nfs4_recover_proc_open(opendata);
if (ret != 0)
return ret;
newstate = nfs4_opendata_to_nfs4_state(opendata);
if (IS_ERR(newstate))
return PTR_ERR(newstate);
nfs4_close_state(newstate, fmode);
*res = newstate;
return 0;
}
static int nfs4_open_recover(struct nfs4_opendata *opendata, struct nfs4_state *state)
{
struct nfs4_state *newstate;
int ret;
/* memory barrier prior to reading state->n_* */
clear_bit(NFS_DELEGATED_STATE, &state->flags);
smp_rmb();
if (state->n_rdwr != 0) {
clear_bit(NFS_O_RDWR_STATE, &state->flags);
ret = nfs4_open_recover_helper(opendata, FMODE_READ|FMODE_WRITE, &newstate);
if (ret != 0)
return ret;
if (newstate != state)
return -ESTALE;
}
if (state->n_wronly != 0) {
clear_bit(NFS_O_WRONLY_STATE, &state->flags);
ret = nfs4_open_recover_helper(opendata, FMODE_WRITE, &newstate);
if (ret != 0)
return ret;
if (newstate != state)
return -ESTALE;
}
if (state->n_rdonly != 0) {
clear_bit(NFS_O_RDONLY_STATE, &state->flags);
ret = nfs4_open_recover_helper(opendata, FMODE_READ, &newstate);
if (ret != 0)
return ret;
if (newstate != state)
return -ESTALE;
}
/*
* We may have performed cached opens for all three recoveries.
* Check if we need to update the current stateid.
*/
if (test_bit(NFS_DELEGATED_STATE, &state->flags) == 0 &&
memcmp(state->stateid.data, state->open_stateid.data, sizeof(state->stateid.data)) != 0) {
write_seqlock(&state->seqlock);
if (test_bit(NFS_DELEGATED_STATE, &state->flags) == 0)
memcpy(state->stateid.data, state->open_stateid.data, sizeof(state->stateid.data));
write_sequnlock(&state->seqlock);
}
return 0;
}
/*
* OPEN_RECLAIM:
* reclaim state on the server after a reboot.
*/
static int _nfs4_do_open_reclaim(struct nfs_open_context *ctx, struct nfs4_state *state)
{
struct nfs_delegation *delegation;
struct nfs4_opendata *opendata;
fmode_t delegation_type = 0;
int status;
opendata = nfs4_open_recoverdata_alloc(ctx, state);
if (IS_ERR(opendata))
return PTR_ERR(opendata);
opendata->o_arg.claim = NFS4_OPEN_CLAIM_PREVIOUS;
opendata->o_arg.fh = NFS_FH(state->inode);
rcu_read_lock();
delegation = rcu_dereference(NFS_I(state->inode)->delegation);
if (delegation != NULL && test_bit(NFS_DELEGATION_NEED_RECLAIM, &delegation->flags) != 0)
delegation_type = delegation->type;
rcu_read_unlock();
opendata->o_arg.u.delegation_type = delegation_type;
status = nfs4_open_recover(opendata, state);
nfs4_opendata_put(opendata);
return status;
}
static int nfs4_do_open_reclaim(struct nfs_open_context *ctx, struct nfs4_state *state)
{
struct nfs_server *server = NFS_SERVER(state->inode);
struct nfs4_exception exception = { };
int err;
do {
err = _nfs4_do_open_reclaim(ctx, state);
if (err != -NFS4ERR_DELAY)
break;
nfs4_handle_exception(server, err, &exception);
} while (exception.retry);
return err;
}
static int nfs4_open_reclaim(struct nfs4_state_owner *sp, struct nfs4_state *state)
{
struct nfs_open_context *ctx;
int ret;
ctx = nfs4_state_find_open_context(state);
if (IS_ERR(ctx))
return PTR_ERR(ctx);
ret = nfs4_do_open_reclaim(ctx, state);
put_nfs_open_context(ctx);
return ret;
}
static int _nfs4_open_delegation_recall(struct nfs_open_context *ctx, struct nfs4_state *state, const nfs4_stateid *stateid)
{
struct nfs4_opendata *opendata;
int ret;
opendata = nfs4_open_recoverdata_alloc(ctx, state);
if (IS_ERR(opendata))
return PTR_ERR(opendata);
opendata->o_arg.claim = NFS4_OPEN_CLAIM_DELEGATE_CUR;
memcpy(opendata->o_arg.u.delegation.data, stateid->data,
sizeof(opendata->o_arg.u.delegation.data));
ret = nfs4_open_recover(opendata, state);
nfs4_opendata_put(opendata);
return ret;
}
int nfs4_open_delegation_recall(struct nfs_open_context *ctx, struct nfs4_state *state, const nfs4_stateid *stateid)
{
struct nfs4_exception exception = { };
struct nfs_server *server = NFS_SERVER(state->inode);
int err;
do {
err = _nfs4_open_delegation_recall(ctx, state, stateid);
switch (err) {
case 0:
case -ENOENT:
case -ESTALE:
goto out;
case -NFS4ERR_BADSESSION:
case -NFS4ERR_BADSLOT:
case -NFS4ERR_BAD_HIGH_SLOT:
case -NFS4ERR_CONN_NOT_BOUND_TO_SESSION:
case -NFS4ERR_DEADSESSION:
nfs4_schedule_session_recovery(server->nfs_client->cl_session);
goto out;
case -NFS4ERR_STALE_CLIENTID:
case -NFS4ERR_STALE_STATEID:
case -NFS4ERR_EXPIRED:
/* Don't recall a delegation if it was lost */
nfs4_schedule_lease_recovery(server->nfs_client);
goto out;
case -ERESTARTSYS:
/*
* The show must go on: exit, but mark the
* stateid as needing recovery.
*/
case -NFS4ERR_ADMIN_REVOKED:
case -NFS4ERR_BAD_STATEID:
nfs4_schedule_stateid_recovery(server, state);
case -EKEYEXPIRED:
/*
* User RPCSEC_GSS context has expired.
* We cannot recover this stateid now, so
* skip it and allow recovery thread to
* proceed.
*/
case -ENOMEM:
err = 0;
goto out;
}
err = nfs4_handle_exception(server, err, &exception);
} while (exception.retry);
out:
return err;
}
static void nfs4_open_confirm_done(struct rpc_task *task, void *calldata)
{
struct nfs4_opendata *data = calldata;
data->rpc_status = task->tk_status;
if (data->rpc_status == 0) {
memcpy(data->o_res.stateid.data, data->c_res.stateid.data,
sizeof(data->o_res.stateid.data));
nfs_confirm_seqid(&data->owner->so_seqid, 0);
renew_lease(data->o_res.server, data->timestamp);
data->rpc_done = 1;
}
}
static void nfs4_open_confirm_release(void *calldata)
{
struct nfs4_opendata *data = calldata;
struct nfs4_state *state = NULL;
/* If this request hasn't been cancelled, do nothing */
if (data->cancelled == 0)
goto out_free;
/* In case of error, no cleanup! */
if (!data->rpc_done)
goto out_free;
state = nfs4_opendata_to_nfs4_state(data);
if (!IS_ERR(state))
nfs4_close_state(state, data->o_arg.fmode);
out_free:
nfs4_opendata_put(data);
}
static const struct rpc_call_ops nfs4_open_confirm_ops = {
.rpc_call_done = nfs4_open_confirm_done,
.rpc_release = nfs4_open_confirm_release,
};
/*
* Note: On error, nfs4_proc_open_confirm will free the struct nfs4_opendata
*/
static int _nfs4_proc_open_confirm(struct nfs4_opendata *data)
{
struct nfs_server *server = NFS_SERVER(data->dir->d_inode);
struct rpc_task *task;
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_CONFIRM],
.rpc_argp = &data->c_arg,
.rpc_resp = &data->c_res,
.rpc_cred = data->owner->so_cred,
};
struct rpc_task_setup task_setup_data = {
.rpc_client = server->client,
.rpc_message = &msg,
.callback_ops = &nfs4_open_confirm_ops,
.callback_data = data,
.workqueue = nfsiod_workqueue,
.flags = RPC_TASK_ASYNC,
};
int status;
kref_get(&data->kref);
data->rpc_done = 0;
data->rpc_status = 0;
data->timestamp = jiffies;
task = rpc_run_task(&task_setup_data);
if (IS_ERR(task))
return PTR_ERR(task);
status = nfs4_wait_for_completion_rpc_task(task);
if (status != 0) {
data->cancelled = 1;
smp_wmb();
} else
status = data->rpc_status;
rpc_put_task(task);
return status;
}
static void nfs4_open_prepare(struct rpc_task *task, void *calldata)
{
struct nfs4_opendata *data = calldata;
struct nfs4_state_owner *sp = data->owner;
if (nfs_wait_on_sequence(data->o_arg.seqid, task) != 0)
return;
/*
* Check if we still need to send an OPEN call, or if we can use
* a delegation instead.
*/
if (data->state != NULL) {
struct nfs_delegation *delegation;
if (can_open_cached(data->state, data->o_arg.fmode, data->o_arg.open_flags))
goto out_no_action;
rcu_read_lock();
delegation = rcu_dereference(NFS_I(data->state->inode)->delegation);
if (data->o_arg.claim != NFS4_OPEN_CLAIM_DELEGATE_CUR &&
can_open_delegated(delegation, data->o_arg.fmode))
goto unlock_no_action;
rcu_read_unlock();
}
/* Update sequence id. */
data->o_arg.id = sp->so_owner_id.id;
data->o_arg.clientid = sp->so_server->nfs_client->cl_clientid;
if (data->o_arg.claim == NFS4_OPEN_CLAIM_PREVIOUS) {
task->tk_msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_NOATTR];
nfs_copy_fh(&data->o_res.fh, data->o_arg.fh);
}
data->timestamp = jiffies;
if (nfs4_setup_sequence(data->o_arg.server,
&data->o_arg.seq_args,
&data->o_res.seq_res, 1, task))
return;
rpc_call_start(task);
return;
unlock_no_action:
rcu_read_unlock();
out_no_action:
task->tk_action = NULL;
}
static void nfs4_recover_open_prepare(struct rpc_task *task, void *calldata)
{
rpc_task_set_priority(task, RPC_PRIORITY_PRIVILEGED);
nfs4_open_prepare(task, calldata);
}
static void nfs4_open_done(struct rpc_task *task, void *calldata)
{
struct nfs4_opendata *data = calldata;
data->rpc_status = task->tk_status;
if (!nfs4_sequence_done(task, &data->o_res.seq_res))
return;
if (task->tk_status == 0) {
switch (data->o_res.f_attr->mode & S_IFMT) {
case S_IFREG:
break;
case S_IFLNK:
data->rpc_status = -ELOOP;
break;
case S_IFDIR:
data->rpc_status = -EISDIR;
break;
default:
data->rpc_status = -ENOTDIR;
}
renew_lease(data->o_res.server, data->timestamp);
if (!(data->o_res.rflags & NFS4_OPEN_RESULT_CONFIRM))
nfs_confirm_seqid(&data->owner->so_seqid, 0);
}
data->rpc_done = 1;
}
static void nfs4_open_release(void *calldata)
{
struct nfs4_opendata *data = calldata;
struct nfs4_state *state = NULL;
/* If this request hasn't been cancelled, do nothing */
if (data->cancelled == 0)
goto out_free;
/* In case of error, no cleanup! */
if (data->rpc_status != 0 || !data->rpc_done)
goto out_free;
/* In case we need an open_confirm, no cleanup! */
if (data->o_res.rflags & NFS4_OPEN_RESULT_CONFIRM)
goto out_free;
state = nfs4_opendata_to_nfs4_state(data);
if (!IS_ERR(state))
nfs4_close_state(state, data->o_arg.fmode);
out_free:
nfs4_opendata_put(data);
}
static const struct rpc_call_ops nfs4_open_ops = {
.rpc_call_prepare = nfs4_open_prepare,
.rpc_call_done = nfs4_open_done,
.rpc_release = nfs4_open_release,
};
static const struct rpc_call_ops nfs4_recover_open_ops = {
.rpc_call_prepare = nfs4_recover_open_prepare,
.rpc_call_done = nfs4_open_done,
.rpc_release = nfs4_open_release,
};
static int nfs4_run_open_task(struct nfs4_opendata *data, int isrecover)
{
struct inode *dir = data->dir->d_inode;
struct nfs_server *server = NFS_SERVER(dir);
struct nfs_openargs *o_arg = &data->o_arg;
struct nfs_openres *o_res = &data->o_res;
struct rpc_task *task;
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN],
.rpc_argp = o_arg,
.rpc_resp = o_res,
.rpc_cred = data->owner->so_cred,
};
struct rpc_task_setup task_setup_data = {
.rpc_client = server->client,
.rpc_message = &msg,
.callback_ops = &nfs4_open_ops,
.callback_data = data,
.workqueue = nfsiod_workqueue,
.flags = RPC_TASK_ASYNC,
};
int status;
kref_get(&data->kref);
data->rpc_done = 0;
data->rpc_status = 0;
data->cancelled = 0;
if (isrecover)
task_setup_data.callback_ops = &nfs4_recover_open_ops;
task = rpc_run_task(&task_setup_data);
if (IS_ERR(task))
return PTR_ERR(task);
status = nfs4_wait_for_completion_rpc_task(task);
if (status != 0) {
data->cancelled = 1;
smp_wmb();
} else
status = data->rpc_status;
rpc_put_task(task);
return status;
}
static int _nfs4_recover_proc_open(struct nfs4_opendata *data)
{
struct inode *dir = data->dir->d_inode;
struct nfs_openres *o_res = &data->o_res;
int status;
status = nfs4_run_open_task(data, 1);
if (status != 0 || !data->rpc_done)
return status;
nfs_fattr_map_and_free_names(NFS_SERVER(dir), &data->f_attr);
nfs_refresh_inode(dir, o_res->dir_attr);
if (o_res->rflags & NFS4_OPEN_RESULT_CONFIRM) {
status = _nfs4_proc_open_confirm(data);
if (status != 0)
return status;
}
return status;
}
/*
* Note: On error, nfs4_proc_open will free the struct nfs4_opendata
*/
static int _nfs4_proc_open(struct nfs4_opendata *data)
{
struct inode *dir = data->dir->d_inode;
struct nfs_server *server = NFS_SERVER(dir);
struct nfs_openargs *o_arg = &data->o_arg;
struct nfs_openres *o_res = &data->o_res;
int status;
status = nfs4_run_open_task(data, 0);
if (!data->rpc_done)
return status;
if (status != 0) {
if (status == -NFS4ERR_BADNAME &&
!(o_arg->open_flags & O_CREAT))
return -ENOENT;
return status;
}
nfs_fattr_map_and_free_names(server, &data->f_attr);
if (o_arg->open_flags & O_CREAT) {
update_changeattr(dir, &o_res->cinfo);
nfs_post_op_update_inode(dir, o_res->dir_attr);
} else
nfs_refresh_inode(dir, o_res->dir_attr);
if ((o_res->rflags & NFS4_OPEN_RESULT_LOCKTYPE_POSIX) == 0)
server->caps &= ~NFS_CAP_POSIX_LOCK;
if(o_res->rflags & NFS4_OPEN_RESULT_CONFIRM) {
status = _nfs4_proc_open_confirm(data);
if (status != 0)
return status;
}
if (!(o_res->f_attr->valid & NFS_ATTR_FATTR))
_nfs4_proc_getattr(server, &o_res->fh, o_res->f_attr);
return 0;
}
static int nfs4_client_recover_expired_lease(struct nfs_client *clp)
{
unsigned int loop;
int ret;
for (loop = NFS4_MAX_LOOP_ON_RECOVER; loop != 0; loop--) {
ret = nfs4_wait_clnt_recover(clp);
if (ret != 0)
break;
if (!test_bit(NFS4CLNT_LEASE_EXPIRED, &clp->cl_state) &&
!test_bit(NFS4CLNT_CHECK_LEASE,&clp->cl_state))
break;
nfs4_schedule_state_manager(clp);
ret = -EIO;
}
return ret;
}
static int nfs4_recover_expired_lease(struct nfs_server *server)
{
return nfs4_client_recover_expired_lease(server->nfs_client);
}
/*
* OPEN_EXPIRED:
* reclaim state on the server after a network partition.
* Assumes caller holds the appropriate lock
*/
static int _nfs4_open_expired(struct nfs_open_context *ctx, struct nfs4_state *state)
{
struct nfs4_opendata *opendata;
int ret;
opendata = nfs4_open_recoverdata_alloc(ctx, state);
if (IS_ERR(opendata))
return PTR_ERR(opendata);
ret = nfs4_open_recover(opendata, state);
if (ret == -ESTALE)
d_drop(ctx->dentry);
nfs4_opendata_put(opendata);
return ret;
}
static int nfs4_do_open_expired(struct nfs_open_context *ctx, struct nfs4_state *state)
{
struct nfs_server *server = NFS_SERVER(state->inode);
struct nfs4_exception exception = { };
int err;
do {
err = _nfs4_open_expired(ctx, state);
switch (err) {
default:
goto out;
case -NFS4ERR_GRACE:
case -NFS4ERR_DELAY:
nfs4_handle_exception(server, err, &exception);
err = 0;
}
} while (exception.retry);
out:
return err;
}
static int nfs4_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state)
{
struct nfs_open_context *ctx;
int ret;
ctx = nfs4_state_find_open_context(state);
if (IS_ERR(ctx))
return PTR_ERR(ctx);
ret = nfs4_do_open_expired(ctx, state);
put_nfs_open_context(ctx);
return ret;
}
#if defined(CONFIG_NFS_V4_1)
static int nfs41_open_expired(struct nfs4_state_owner *sp, struct nfs4_state *state)
{
int status;
struct nfs_server *server = NFS_SERVER(state->inode);
status = nfs41_test_stateid(server, state);
if (status == NFS_OK)
return 0;
nfs41_free_stateid(server, state);
return nfs4_open_expired(sp, state);
}
#endif
/*
* on an EXCLUSIVE create, the server should send back a bitmask with FATTR4-*
* fields corresponding to attributes that were used to store the verifier.
* Make sure we clobber those fields in the later setattr call
*/
static inline void nfs4_exclusive_attrset(struct nfs4_opendata *opendata, struct iattr *sattr)
{
if ((opendata->o_res.attrset[1] & FATTR4_WORD1_TIME_ACCESS) &&
!(sattr->ia_valid & ATTR_ATIME_SET))
sattr->ia_valid |= ATTR_ATIME;
if ((opendata->o_res.attrset[1] & FATTR4_WORD1_TIME_MODIFY) &&
!(sattr->ia_valid & ATTR_MTIME_SET))
sattr->ia_valid |= ATTR_MTIME;
}
/*
* Returns a referenced nfs4_state
*/
static int _nfs4_do_open(struct inode *dir, struct dentry *dentry, fmode_t fmode, int flags, struct iattr *sattr, struct rpc_cred *cred, struct nfs4_state **res)
{
struct nfs4_state_owner *sp;
struct nfs4_state *state = NULL;
struct nfs_server *server = NFS_SERVER(dir);
struct nfs4_opendata *opendata;
int status;
/* Protect against reboot recovery conflicts */
status = -ENOMEM;
if (!(sp = nfs4_get_state_owner(server, cred))) {
dprintk("nfs4_do_open: nfs4_get_state_owner failed!\n");
goto out_err;
}
status = nfs4_recover_expired_lease(server);
if (status != 0)
goto err_put_state_owner;
if (dentry->d_inode != NULL)
nfs4_return_incompatible_delegation(dentry->d_inode, fmode);
status = -ENOMEM;
opendata = nfs4_opendata_alloc(dentry, sp, fmode, flags, sattr, GFP_KERNEL);
if (opendata == NULL)
goto err_put_state_owner;
if (dentry->d_inode != NULL)
opendata->state = nfs4_get_open_state(dentry->d_inode, sp);
status = _nfs4_proc_open(opendata);
if (status != 0)
goto err_opendata_put;
state = nfs4_opendata_to_nfs4_state(opendata);
status = PTR_ERR(state);
if (IS_ERR(state))
goto err_opendata_put;
if (server->caps & NFS_CAP_POSIX_LOCK)
set_bit(NFS_STATE_POSIX_LOCKS, &state->flags);
if (opendata->o_arg.open_flags & O_EXCL) {
nfs4_exclusive_attrset(opendata, sattr);
nfs_fattr_init(opendata->o_res.f_attr);
status = nfs4_do_setattr(state->inode, cred,
opendata->o_res.f_attr, sattr,
state);
if (status == 0)
nfs_setattr_update_inode(state->inode, sattr);
nfs_post_op_update_inode(state->inode, opendata->o_res.f_attr);
}
nfs4_opendata_put(opendata);
nfs4_put_state_owner(sp);
*res = state;
return 0;
err_opendata_put:
nfs4_opendata_put(opendata);
err_put_state_owner:
nfs4_put_state_owner(sp);
out_err:
*res = NULL;
return status;
}
static struct nfs4_state *nfs4_do_open(struct inode *dir, struct dentry *dentry, fmode_t fmode, int flags, struct iattr *sattr, struct rpc_cred *cred)
{
struct nfs4_exception exception = { };
struct nfs4_state *res;
int status;
do {
status = _nfs4_do_open(dir, dentry, fmode, flags, sattr, cred, &res);
if (status == 0)
break;
/* NOTE: BAD_SEQID means the server and client disagree about the
* book-keeping w.r.t. state-changing operations
* (OPEN/CLOSE/LOCK/LOCKU...)
* It is actually a sign of a bug on the client or on the server.
*
* If we receive a BAD_SEQID error in the particular case of
* doing an OPEN, we assume that nfs_increment_open_seqid() will
* have unhashed the old state_owner for us, and that we can
* therefore safely retry using a new one. We should still warn
* the user though...
*/
if (status == -NFS4ERR_BAD_SEQID) {
printk(KERN_WARNING "NFS: v4 server %s "
" returned a bad sequence-id error!\n",
NFS_SERVER(dir)->nfs_client->cl_hostname);
exception.retry = 1;
continue;
}
/*
* BAD_STATEID on OPEN means that the server cancelled our
* state before it received the OPEN_CONFIRM.
* Recover by retrying the request as per the discussion
* on Page 181 of RFC3530.
*/
if (status == -NFS4ERR_BAD_STATEID) {
exception.retry = 1;
continue;
}
if (status == -EAGAIN) {
/* We must have found a delegation */
exception.retry = 1;
continue;
}
res = ERR_PTR(nfs4_handle_exception(NFS_SERVER(dir),
status, &exception));
} while (exception.retry);
return res;
}
static int _nfs4_do_setattr(struct inode *inode, struct rpc_cred *cred,
struct nfs_fattr *fattr, struct iattr *sattr,
struct nfs4_state *state)
{
struct nfs_server *server = NFS_SERVER(inode);
struct nfs_setattrargs arg = {
.fh = NFS_FH(inode),
.iap = sattr,
.server = server,
.bitmask = server->attr_bitmask,
};
struct nfs_setattrres res = {
.fattr = fattr,
.server = server,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETATTR],
.rpc_argp = &arg,
.rpc_resp = &res,
.rpc_cred = cred,
};
unsigned long timestamp = jiffies;
int status;
nfs_fattr_init(fattr);
if (nfs4_copy_delegation_stateid(&arg.stateid, inode)) {
/* Use that stateid */
} else if (state != NULL) {
nfs4_copy_stateid(&arg.stateid, state, current->files, current->tgid);
} else
memcpy(&arg.stateid, &zero_stateid, sizeof(arg.stateid));
status = nfs4_call_sync(server->client, server, &msg, &arg.seq_args, &res.seq_res, 1);
if (status == 0 && state != NULL)
renew_lease(server, timestamp);
return status;
}
static int nfs4_do_setattr(struct inode *inode, struct rpc_cred *cred,
struct nfs_fattr *fattr, struct iattr *sattr,
struct nfs4_state *state)
{
struct nfs_server *server = NFS_SERVER(inode);
struct nfs4_exception exception = { };
int err;
do {
err = nfs4_handle_exception(server,
_nfs4_do_setattr(inode, cred, fattr, sattr, state),
&exception);
} while (exception.retry);
return err;
}
struct nfs4_closedata {
struct inode *inode;
struct nfs4_state *state;
struct nfs_closeargs arg;
struct nfs_closeres res;
struct nfs_fattr fattr;
unsigned long timestamp;
bool roc;
u32 roc_barrier;
};
static void nfs4_free_closedata(void *data)
{
struct nfs4_closedata *calldata = data;
struct nfs4_state_owner *sp = calldata->state->owner;
struct super_block *sb = calldata->state->inode->i_sb;
if (calldata->roc)
pnfs_roc_release(calldata->state->inode);
nfs4_put_open_state(calldata->state);
nfs_free_seqid(calldata->arg.seqid);
nfs4_put_state_owner(sp);
nfs_sb_deactive(sb);
kfree(calldata);
}
static void nfs4_close_clear_stateid_flags(struct nfs4_state *state,
fmode_t fmode)
{
spin_lock(&state->owner->so_lock);
if (!(fmode & FMODE_READ))
clear_bit(NFS_O_RDONLY_STATE, &state->flags);
if (!(fmode & FMODE_WRITE))
clear_bit(NFS_O_WRONLY_STATE, &state->flags);
clear_bit(NFS_O_RDWR_STATE, &state->flags);
spin_unlock(&state->owner->so_lock);
}
static void nfs4_close_done(struct rpc_task *task, void *data)
{
struct nfs4_closedata *calldata = data;
struct nfs4_state *state = calldata->state;
struct nfs_server *server = NFS_SERVER(calldata->inode);
if (!nfs4_sequence_done(task, &calldata->res.seq_res))
return;
/* hmm. we are done with the inode, and in the process of freeing
* the state_owner. we keep this around to process errors
*/
switch (task->tk_status) {
case 0:
if (calldata->roc)
pnfs_roc_set_barrier(state->inode,
calldata->roc_barrier);
nfs_set_open_stateid(state, &calldata->res.stateid, 0);
renew_lease(server, calldata->timestamp);
nfs4_close_clear_stateid_flags(state,
calldata->arg.fmode);
break;
case -NFS4ERR_STALE_STATEID:
case -NFS4ERR_OLD_STATEID:
case -NFS4ERR_BAD_STATEID:
case -NFS4ERR_EXPIRED:
if (calldata->arg.fmode == 0)
break;
default:
if (nfs4_async_handle_error(task, server, state) == -EAGAIN)
rpc_restart_call_prepare(task);
}
nfs_release_seqid(calldata->arg.seqid);
nfs_refresh_inode(calldata->inode, calldata->res.fattr);
}
static void nfs4_close_prepare(struct rpc_task *task, void *data)
{
struct nfs4_closedata *calldata = data;
struct nfs4_state *state = calldata->state;
int call_close = 0;
if (nfs_wait_on_sequence(calldata->arg.seqid, task) != 0)
return;
task->tk_msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_OPEN_DOWNGRADE];
calldata->arg.fmode = FMODE_READ|FMODE_WRITE;
spin_lock(&state->owner->so_lock);
/* Calculate the change in open mode */
if (state->n_rdwr == 0) {
if (state->n_rdonly == 0) {
call_close |= test_bit(NFS_O_RDONLY_STATE, &state->flags);
call_close |= test_bit(NFS_O_RDWR_STATE, &state->flags);
calldata->arg.fmode &= ~FMODE_READ;
}
if (state->n_wronly == 0) {
call_close |= test_bit(NFS_O_WRONLY_STATE, &state->flags);
call_close |= test_bit(NFS_O_RDWR_STATE, &state->flags);
calldata->arg.fmode &= ~FMODE_WRITE;
}
}
spin_unlock(&state->owner->so_lock);
if (!call_close) {
/* Note: exit _without_ calling nfs4_close_done */
task->tk_action = NULL;
return;
}
if (calldata->arg.fmode == 0) {
task->tk_msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CLOSE];
if (calldata->roc &&
pnfs_roc_drain(calldata->inode, &calldata->roc_barrier)) {
rpc_sleep_on(&NFS_SERVER(calldata->inode)->roc_rpcwaitq,
task, NULL);
return;
}
}
nfs_fattr_init(calldata->res.fattr);
calldata->timestamp = jiffies;
if (nfs4_setup_sequence(NFS_SERVER(calldata->inode),
&calldata->arg.seq_args, &calldata->res.seq_res,
1, task))
return;
rpc_call_start(task);
}
static const struct rpc_call_ops nfs4_close_ops = {
.rpc_call_prepare = nfs4_close_prepare,
.rpc_call_done = nfs4_close_done,
.rpc_release = nfs4_free_closedata,
};
/*
* It is possible for data to be read/written from a mem-mapped file
* after the sys_close call (which hits the vfs layer as a flush).
* This means that we can't safely call nfsv4 close on a file until
* the inode is cleared. This in turn means that we are not good
* NFSv4 citizens - we do not indicate to the server to update the file's
* share state even when we are done with one of the three share
* stateid's in the inode.
*
* NOTE: Caller must be holding the sp->so_owner semaphore!
*/
int nfs4_do_close(struct nfs4_state *state, gfp_t gfp_mask, int wait, bool roc)
{
struct nfs_server *server = NFS_SERVER(state->inode);
struct nfs4_closedata *calldata;
struct nfs4_state_owner *sp = state->owner;
struct rpc_task *task;
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CLOSE],
.rpc_cred = state->owner->so_cred,
};
struct rpc_task_setup task_setup_data = {
.rpc_client = server->client,
.rpc_message = &msg,
.callback_ops = &nfs4_close_ops,
.workqueue = nfsiod_workqueue,
.flags = RPC_TASK_ASYNC,
};
int status = -ENOMEM;
calldata = kzalloc(sizeof(*calldata), gfp_mask);
if (calldata == NULL)
goto out;
calldata->inode = state->inode;
calldata->state = state;
calldata->arg.fh = NFS_FH(state->inode);
calldata->arg.stateid = &state->open_stateid;
/* Serialization for the sequence id */
calldata->arg.seqid = nfs_alloc_seqid(&state->owner->so_seqid, gfp_mask);
if (calldata->arg.seqid == NULL)
goto out_free_calldata;
calldata->arg.fmode = 0;
calldata->arg.bitmask = server->cache_consistency_bitmask;
calldata->res.fattr = &calldata->fattr;
calldata->res.seqid = calldata->arg.seqid;
calldata->res.server = server;
calldata->roc = roc;
nfs_sb_active(calldata->inode->i_sb);
msg.rpc_argp = &calldata->arg;
msg.rpc_resp = &calldata->res;
task_setup_data.callback_data = calldata;
task = rpc_run_task(&task_setup_data);
if (IS_ERR(task))
return PTR_ERR(task);
status = 0;
if (wait)
status = rpc_wait_for_completion_task(task);
rpc_put_task(task);
return status;
out_free_calldata:
kfree(calldata);
out:
if (roc)
pnfs_roc_release(state->inode);
nfs4_put_open_state(state);
nfs4_put_state_owner(sp);
return status;
}
static struct inode *
nfs4_atomic_open(struct inode *dir, struct nfs_open_context *ctx, int open_flags, struct iattr *attr)
{
struct nfs4_state *state;
/* Protect against concurrent sillydeletes */
state = nfs4_do_open(dir, ctx->dentry, ctx->mode, open_flags, attr, ctx->cred);
if (IS_ERR(state))
return ERR_CAST(state);
ctx->state = state;
return igrab(state->inode);
}
static void nfs4_close_context(struct nfs_open_context *ctx, int is_sync)
{
if (ctx->state == NULL)
return;
if (is_sync)
nfs4_close_sync(ctx->state, ctx->mode);
else
nfs4_close_state(ctx->state, ctx->mode);
}
static int _nfs4_server_capabilities(struct nfs_server *server, struct nfs_fh *fhandle)
{
struct nfs4_server_caps_arg args = {
.fhandle = fhandle,
};
struct nfs4_server_caps_res res = {};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SERVER_CAPS],
.rpc_argp = &args,
.rpc_resp = &res,
};
int status;
status = nfs4_call_sync(server->client, server, &msg, &args.seq_args, &res.seq_res, 0);
if (status == 0) {
memcpy(server->attr_bitmask, res.attr_bitmask, sizeof(server->attr_bitmask));
server->caps &= ~(NFS_CAP_ACLS|NFS_CAP_HARDLINKS|
NFS_CAP_SYMLINKS|NFS_CAP_FILEID|
NFS_CAP_MODE|NFS_CAP_NLINK|NFS_CAP_OWNER|
NFS_CAP_OWNER_GROUP|NFS_CAP_ATIME|
NFS_CAP_CTIME|NFS_CAP_MTIME);
if (res.attr_bitmask[0] & FATTR4_WORD0_ACL)
server->caps |= NFS_CAP_ACLS;
if (res.has_links != 0)
server->caps |= NFS_CAP_HARDLINKS;
if (res.has_symlinks != 0)
server->caps |= NFS_CAP_SYMLINKS;
if (res.attr_bitmask[0] & FATTR4_WORD0_FILEID)
server->caps |= NFS_CAP_FILEID;
if (res.attr_bitmask[1] & FATTR4_WORD1_MODE)
server->caps |= NFS_CAP_MODE;
if (res.attr_bitmask[1] & FATTR4_WORD1_NUMLINKS)
server->caps |= NFS_CAP_NLINK;
if (res.attr_bitmask[1] & FATTR4_WORD1_OWNER)
server->caps |= NFS_CAP_OWNER;
if (res.attr_bitmask[1] & FATTR4_WORD1_OWNER_GROUP)
server->caps |= NFS_CAP_OWNER_GROUP;
if (res.attr_bitmask[1] & FATTR4_WORD1_TIME_ACCESS)
server->caps |= NFS_CAP_ATIME;
if (res.attr_bitmask[1] & FATTR4_WORD1_TIME_METADATA)
server->caps |= NFS_CAP_CTIME;
if (res.attr_bitmask[1] & FATTR4_WORD1_TIME_MODIFY)
server->caps |= NFS_CAP_MTIME;
memcpy(server->cache_consistency_bitmask, res.attr_bitmask, sizeof(server->cache_consistency_bitmask));
server->cache_consistency_bitmask[0] &= FATTR4_WORD0_CHANGE|FATTR4_WORD0_SIZE;
server->cache_consistency_bitmask[1] &= FATTR4_WORD1_TIME_METADATA|FATTR4_WORD1_TIME_MODIFY;
server->acl_bitmask = res.acl_bitmask;
}
return status;
}
int nfs4_server_capabilities(struct nfs_server *server, struct nfs_fh *fhandle)
{
struct nfs4_exception exception = { };
int err;
do {
err = nfs4_handle_exception(server,
_nfs4_server_capabilities(server, fhandle),
&exception);
} while (exception.retry);
return err;
}
static int _nfs4_lookup_root(struct nfs_server *server, struct nfs_fh *fhandle,
struct nfs_fsinfo *info)
{
struct nfs4_lookup_root_arg args = {
.bitmask = nfs4_fattr_bitmap,
};
struct nfs4_lookup_res res = {
.server = server,
.fattr = info->fattr,
.fh = fhandle,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP_ROOT],
.rpc_argp = &args,
.rpc_resp = &res,
};
nfs_fattr_init(info->fattr);
return nfs4_call_sync(server->client, server, &msg, &args.seq_args, &res.seq_res, 0);
}
static int nfs4_lookup_root(struct nfs_server *server, struct nfs_fh *fhandle,
struct nfs_fsinfo *info)
{
struct nfs4_exception exception = { };
int err;
do {
err = _nfs4_lookup_root(server, fhandle, info);
switch (err) {
case 0:
case -NFS4ERR_WRONGSEC:
break;
default:
err = nfs4_handle_exception(server, err, &exception);
}
} while (exception.retry);
return err;
}
static int nfs4_lookup_root_sec(struct nfs_server *server, struct nfs_fh *fhandle,
struct nfs_fsinfo *info, rpc_authflavor_t flavor)
{
struct rpc_auth *auth;
int ret;
auth = rpcauth_create(flavor, server->client);
if (!auth) {
ret = -EIO;
goto out;
}
ret = nfs4_lookup_root(server, fhandle, info);
out:
return ret;
}
static int nfs4_find_root_sec(struct nfs_server *server, struct nfs_fh *fhandle,
struct nfs_fsinfo *info)
{
int i, len, status = 0;
rpc_authflavor_t flav_array[NFS_MAX_SECFLAVORS];
len = gss_mech_list_pseudoflavors(&flav_array[0]);
flav_array[len] = RPC_AUTH_NULL;
len += 1;
for (i = 0; i < len; i++) {
status = nfs4_lookup_root_sec(server, fhandle, info, flav_array[i]);
if (status == -NFS4ERR_WRONGSEC || status == -EACCES)
continue;
break;
}
/*
* -EACCESS could mean that the user doesn't have correct permissions
* to access the mount. It could also mean that we tried to mount
* with a gss auth flavor, but rpc.gssd isn't running. Either way,
* existing mount programs don't handle -EACCES very well so it should
* be mapped to -EPERM instead.
*/
if (status == -EACCES)
status = -EPERM;
return status;
}
/*
* get the file handle for the "/" directory on the server
*/
static int nfs4_proc_get_root(struct nfs_server *server, struct nfs_fh *fhandle,
struct nfs_fsinfo *info)
{
int minor_version = server->nfs_client->cl_minorversion;
int status = nfs4_lookup_root(server, fhandle, info);
if ((status == -NFS4ERR_WRONGSEC) && !(server->flags & NFS_MOUNT_SECFLAVOUR))
/*
* A status of -NFS4ERR_WRONGSEC will be mapped to -EPERM
* by nfs4_map_errors() as this function exits.
*/
status = nfs_v4_minor_ops[minor_version]->find_root_sec(server, fhandle, info);
if (status == 0)
status = nfs4_server_capabilities(server, fhandle);
if (status == 0)
status = nfs4_do_fsinfo(server, fhandle, info);
return nfs4_map_errors(status);
}
static void nfs_fixup_referral_attributes(struct nfs_fattr *fattr);
/*
* Get locations and (maybe) other attributes of a referral.
* Note that we'll actually follow the referral later when
* we detect fsid mismatch in inode revalidation
*/
static int nfs4_get_referral(struct inode *dir, const struct qstr *name,
struct nfs_fattr *fattr, struct nfs_fh *fhandle)
{
int status = -ENOMEM;
struct page *page = NULL;
struct nfs4_fs_locations *locations = NULL;
page = alloc_page(GFP_KERNEL);
if (page == NULL)
goto out;
locations = kmalloc(sizeof(struct nfs4_fs_locations), GFP_KERNEL);
if (locations == NULL)
goto out;
status = nfs4_proc_fs_locations(dir, name, locations, page);
if (status != 0)
goto out;
/* Make sure server returned a different fsid for the referral */
if (nfs_fsid_equal(&NFS_SERVER(dir)->fsid, &locations->fattr.fsid)) {
dprintk("%s: server did not return a different fsid for"
" a referral at %s\n", __func__, name->name);
status = -EIO;
goto out;
}
/* Fixup attributes for the nfs_lookup() call to nfs_fhget() */
nfs_fixup_referral_attributes(&locations->fattr);
/* replace the lookup nfs_fattr with the locations nfs_fattr */
memcpy(fattr, &locations->fattr, sizeof(struct nfs_fattr));
memset(fhandle, 0, sizeof(struct nfs_fh));
out:
if (page)
__free_page(page);
kfree(locations);
return status;
}
static int _nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fattr *fattr)
{
struct nfs4_getattr_arg args = {
.fh = fhandle,
.bitmask = server->attr_bitmask,
};
struct nfs4_getattr_res res = {
.fattr = fattr,
.server = server,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETATTR],
.rpc_argp = &args,
.rpc_resp = &res,
};
nfs_fattr_init(fattr);
return nfs4_call_sync(server->client, server, &msg, &args.seq_args, &res.seq_res, 0);
}
static int nfs4_proc_getattr(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fattr *fattr)
{
struct nfs4_exception exception = { };
int err;
do {
err = nfs4_handle_exception(server,
_nfs4_proc_getattr(server, fhandle, fattr),
&exception);
} while (exception.retry);
return err;
}
/*
* The file is not closed if it is opened due to the a request to change
* the size of the file. The open call will not be needed once the
* VFS layer lookup-intents are implemented.
*
* Close is called when the inode is destroyed.
* If we haven't opened the file for O_WRONLY, we
* need to in the size_change case to obtain a stateid.
*
* Got race?
* Because OPEN is always done by name in nfsv4, it is
* possible that we opened a different file by the same
* name. We can recognize this race condition, but we
* can't do anything about it besides returning an error.
*
* This will be fixed with VFS changes (lookup-intent).
*/
static int
nfs4_proc_setattr(struct dentry *dentry, struct nfs_fattr *fattr,
struct iattr *sattr)
{
struct inode *inode = dentry->d_inode;
struct rpc_cred *cred = NULL;
struct nfs4_state *state = NULL;
int status;
if (pnfs_ld_layoutret_on_setattr(inode))
pnfs_return_layout(inode);
nfs_fattr_init(fattr);
/* Search for an existing open(O_WRITE) file */
if (sattr->ia_valid & ATTR_FILE) {
struct nfs_open_context *ctx;
ctx = nfs_file_open_context(sattr->ia_file);
if (ctx) {
cred = ctx->cred;
state = ctx->state;
}
}
status = nfs4_do_setattr(inode, cred, fattr, sattr, state);
if (status == 0)
nfs_setattr_update_inode(inode, sattr);
return status;
}
static int _nfs4_proc_lookup(struct rpc_clnt *clnt, struct inode *dir,
const struct qstr *name, struct nfs_fh *fhandle,
struct nfs_fattr *fattr)
{
struct nfs_server *server = NFS_SERVER(dir);
int status;
struct nfs4_lookup_arg args = {
.bitmask = server->attr_bitmask,
.dir_fh = NFS_FH(dir),
.name = name,
};
struct nfs4_lookup_res res = {
.server = server,
.fattr = fattr,
.fh = fhandle,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOOKUP],
.rpc_argp = &args,
.rpc_resp = &res,
};
nfs_fattr_init(fattr);
dprintk("NFS call lookup %s\n", name->name);
status = nfs4_call_sync(clnt, server, &msg, &args.seq_args, &res.seq_res, 0);
dprintk("NFS reply lookup: %d\n", status);
return status;
}
void nfs_fixup_secinfo_attributes(struct nfs_fattr *fattr, struct nfs_fh *fh)
{
memset(fh, 0, sizeof(struct nfs_fh));
fattr->fsid.major = 1;
fattr->valid |= NFS_ATTR_FATTR_TYPE | NFS_ATTR_FATTR_MODE |
NFS_ATTR_FATTR_NLINK | NFS_ATTR_FATTR_FSID | NFS_ATTR_FATTR_MOUNTPOINT;
fattr->mode = S_IFDIR | S_IRUGO | S_IXUGO;
fattr->nlink = 2;
}
static int nfs4_proc_lookup(struct rpc_clnt *clnt, struct inode *dir, struct qstr *name,
struct nfs_fh *fhandle, struct nfs_fattr *fattr)
{
struct nfs4_exception exception = { };
int err;
do {
int status;
status = _nfs4_proc_lookup(clnt, dir, name, fhandle, fattr);
switch (status) {
case -NFS4ERR_BADNAME:
return -ENOENT;
case -NFS4ERR_MOVED:
return nfs4_get_referral(dir, name, fattr, fhandle);
case -NFS4ERR_WRONGSEC:
nfs_fixup_secinfo_attributes(fattr, fhandle);
}
err = nfs4_handle_exception(NFS_SERVER(dir),
status, &exception);
} while (exception.retry);
return err;
}
static int _nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry)
{
struct nfs_server *server = NFS_SERVER(inode);
struct nfs4_accessargs args = {
.fh = NFS_FH(inode),
.bitmask = server->attr_bitmask,
};
struct nfs4_accessres res = {
.server = server,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_ACCESS],
.rpc_argp = &args,
.rpc_resp = &res,
.rpc_cred = entry->cred,
};
int mode = entry->mask;
int status;
/*
* Determine which access bits we want to ask for...
*/
if (mode & MAY_READ)
args.access |= NFS4_ACCESS_READ;
if (S_ISDIR(inode->i_mode)) {
if (mode & MAY_WRITE)
args.access |= NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE;
if (mode & MAY_EXEC)
args.access |= NFS4_ACCESS_LOOKUP;
} else {
if (mode & MAY_WRITE)
args.access |= NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND;
if (mode & MAY_EXEC)
args.access |= NFS4_ACCESS_EXECUTE;
}
res.fattr = nfs_alloc_fattr();
if (res.fattr == NULL)
return -ENOMEM;
status = nfs4_call_sync(server->client, server, &msg, &args.seq_args, &res.seq_res, 0);
if (!status) {
entry->mask = 0;
if (res.access & NFS4_ACCESS_READ)
entry->mask |= MAY_READ;
if (res.access & (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE))
entry->mask |= MAY_WRITE;
if (res.access & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE))
entry->mask |= MAY_EXEC;
nfs_refresh_inode(inode, res.fattr);
}
nfs_free_fattr(res.fattr);
return status;
}
static int nfs4_proc_access(struct inode *inode, struct nfs_access_entry *entry)
{
struct nfs4_exception exception = { };
int err;
do {
err = nfs4_handle_exception(NFS_SERVER(inode),
_nfs4_proc_access(inode, entry),
&exception);
} while (exception.retry);
return err;
}
/*
* TODO: For the time being, we don't try to get any attributes
* along with any of the zero-copy operations READ, READDIR,
* READLINK, WRITE.
*
* In the case of the first three, we want to put the GETATTR
* after the read-type operation -- this is because it is hard
* to predict the length of a GETATTR response in v4, and thus
* align the READ data correctly. This means that the GETATTR
* may end up partially falling into the page cache, and we should
* shift it into the 'tail' of the xdr_buf before processing.
* To do this efficiently, we need to know the total length
* of data received, which doesn't seem to be available outside
* of the RPC layer.
*
* In the case of WRITE, we also want to put the GETATTR after
* the operation -- in this case because we want to make sure
* we get the post-operation mtime and size. This means that
* we can't use xdr_encode_pages() as written: we need a variant
* of it which would leave room in the 'tail' iovec.
*
* Both of these changes to the XDR layer would in fact be quite
* minor, but I decided to leave them for a subsequent patch.
*/
static int _nfs4_proc_readlink(struct inode *inode, struct page *page,
unsigned int pgbase, unsigned int pglen)
{
struct nfs4_readlink args = {
.fh = NFS_FH(inode),
.pgbase = pgbase,
.pglen = pglen,
.pages = &page,
};
struct nfs4_readlink_res res;
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READLINK],
.rpc_argp = &args,
.rpc_resp = &res,
};
return nfs4_call_sync(NFS_SERVER(inode)->client, NFS_SERVER(inode), &msg, &args.seq_args, &res.seq_res, 0);
}
static int nfs4_proc_readlink(struct inode *inode, struct page *page,
unsigned int pgbase, unsigned int pglen)
{
struct nfs4_exception exception = { };
int err;
do {
err = nfs4_handle_exception(NFS_SERVER(inode),
_nfs4_proc_readlink(inode, page, pgbase, pglen),
&exception);
} while (exception.retry);
return err;
}
/*
* Got race?
* We will need to arrange for the VFS layer to provide an atomic open.
* Until then, this create/open method is prone to inefficiency and race
* conditions due to the lookup, create, and open VFS calls from sys_open()
* placed on the wire.
*
* Given the above sorry state of affairs, I'm simply sending an OPEN.
* The file will be opened again in the subsequent VFS open call
* (nfs4_proc_file_open).
*
* The open for read will just hang around to be used by any process that
* opens the file O_RDONLY. This will all be resolved with the VFS changes.
*/
static int
nfs4_proc_create(struct inode *dir, struct dentry *dentry, struct iattr *sattr,
int flags, struct nfs_open_context *ctx)
{
struct dentry *de = dentry;
struct nfs4_state *state;
struct rpc_cred *cred = NULL;
fmode_t fmode = 0;
int status = 0;
if (ctx != NULL) {
cred = ctx->cred;
de = ctx->dentry;
fmode = ctx->mode;
}
sattr->ia_mode &= ~current_umask();
state = nfs4_do_open(dir, de, fmode, flags, sattr, cred);
d_drop(dentry);
if (IS_ERR(state)) {
status = PTR_ERR(state);
goto out;
}
d_add(dentry, igrab(state->inode));
nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
if (ctx != NULL)
ctx->state = state;
else
nfs4_close_sync(state, fmode);
out:
return status;
}
static int _nfs4_proc_remove(struct inode *dir, struct qstr *name)
{
struct nfs_server *server = NFS_SERVER(dir);
struct nfs_removeargs args = {
.fh = NFS_FH(dir),
.name.len = name->len,
.name.name = name->name,
.bitmask = server->attr_bitmask,
};
struct nfs_removeres res = {
.server = server,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_REMOVE],
.rpc_argp = &args,
.rpc_resp = &res,
};
int status = -ENOMEM;
res.dir_attr = nfs_alloc_fattr();
if (res.dir_attr == NULL)
goto out;
status = nfs4_call_sync(server->client, server, &msg, &args.seq_args, &res.seq_res, 1);
if (status == 0) {
update_changeattr(dir, &res.cinfo);
nfs_post_op_update_inode(dir, res.dir_attr);
}
nfs_free_fattr(res.dir_attr);
out:
return status;
}
static int nfs4_proc_remove(struct inode *dir, struct qstr *name)
{
struct nfs4_exception exception = { };
int err;
do {
err = nfs4_handle_exception(NFS_SERVER(dir),
_nfs4_proc_remove(dir, name),
&exception);
} while (exception.retry);
return err;
}
static void nfs4_proc_unlink_setup(struct rpc_message *msg, struct inode *dir)
{
struct nfs_server *server = NFS_SERVER(dir);
struct nfs_removeargs *args = msg->rpc_argp;
struct nfs_removeres *res = msg->rpc_resp;
args->bitmask = server->cache_consistency_bitmask;
res->server = server;
res->seq_res.sr_slot = NULL;
msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_REMOVE];
}
static int nfs4_proc_unlink_done(struct rpc_task *task, struct inode *dir)
{
struct nfs_removeres *res = task->tk_msg.rpc_resp;
if (!nfs4_sequence_done(task, &res->seq_res))
return 0;
if (nfs4_async_handle_error(task, res->server, NULL) == -EAGAIN)
return 0;
update_changeattr(dir, &res->cinfo);
nfs_post_op_update_inode(dir, res->dir_attr);
return 1;
}
static void nfs4_proc_rename_setup(struct rpc_message *msg, struct inode *dir)
{
struct nfs_server *server = NFS_SERVER(dir);
struct nfs_renameargs *arg = msg->rpc_argp;
struct nfs_renameres *res = msg->rpc_resp;
msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RENAME];
arg->bitmask = server->attr_bitmask;
res->server = server;
}
static int nfs4_proc_rename_done(struct rpc_task *task, struct inode *old_dir,
struct inode *new_dir)
{
struct nfs_renameres *res = task->tk_msg.rpc_resp;
if (!nfs4_sequence_done(task, &res->seq_res))
return 0;
if (nfs4_async_handle_error(task, res->server, NULL) == -EAGAIN)
return 0;
update_changeattr(old_dir, &res->old_cinfo);
nfs_post_op_update_inode(old_dir, res->old_fattr);
update_changeattr(new_dir, &res->new_cinfo);
nfs_post_op_update_inode(new_dir, res->new_fattr);
return 1;
}
static int _nfs4_proc_rename(struct inode *old_dir, struct qstr *old_name,
struct inode *new_dir, struct qstr *new_name)
{
struct nfs_server *server = NFS_SERVER(old_dir);
struct nfs_renameargs arg = {
.old_dir = NFS_FH(old_dir),
.new_dir = NFS_FH(new_dir),
.old_name = old_name,
.new_name = new_name,
.bitmask = server->attr_bitmask,
};
struct nfs_renameres res = {
.server = server,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RENAME],
.rpc_argp = &arg,
.rpc_resp = &res,
};
int status = -ENOMEM;
res.old_fattr = nfs_alloc_fattr();
res.new_fattr = nfs_alloc_fattr();
if (res.old_fattr == NULL || res.new_fattr == NULL)
goto out;
status = nfs4_call_sync(server->client, server, &msg, &arg.seq_args, &res.seq_res, 1);
if (!status) {
update_changeattr(old_dir, &res.old_cinfo);
nfs_post_op_update_inode(old_dir, res.old_fattr);
update_changeattr(new_dir, &res.new_cinfo);
nfs_post_op_update_inode(new_dir, res.new_fattr);
}
out:
nfs_free_fattr(res.new_fattr);
nfs_free_fattr(res.old_fattr);
return status;
}
static int nfs4_proc_rename(struct inode *old_dir, struct qstr *old_name,
struct inode *new_dir, struct qstr *new_name)
{
struct nfs4_exception exception = { };
int err;
do {
err = nfs4_handle_exception(NFS_SERVER(old_dir),
_nfs4_proc_rename(old_dir, old_name,
new_dir, new_name),
&exception);
} while (exception.retry);
return err;
}
static int _nfs4_proc_link(struct inode *inode, struct inode *dir, struct qstr *name)
{
struct nfs_server *server = NFS_SERVER(inode);
struct nfs4_link_arg arg = {
.fh = NFS_FH(inode),
.dir_fh = NFS_FH(dir),
.name = name,
.bitmask = server->attr_bitmask,
};
struct nfs4_link_res res = {
.server = server,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LINK],
.rpc_argp = &arg,
.rpc_resp = &res,
};
int status = -ENOMEM;
res.fattr = nfs_alloc_fattr();
res.dir_attr = nfs_alloc_fattr();
if (res.fattr == NULL || res.dir_attr == NULL)
goto out;
status = nfs4_call_sync(server->client, server, &msg, &arg.seq_args, &res.seq_res, 1);
if (!status) {
update_changeattr(dir, &res.cinfo);
nfs_post_op_update_inode(dir, res.dir_attr);
nfs_post_op_update_inode(inode, res.fattr);
}
out:
nfs_free_fattr(res.dir_attr);
nfs_free_fattr(res.fattr);
return status;
}
static int nfs4_proc_link(struct inode *inode, struct inode *dir, struct qstr *name)
{
struct nfs4_exception exception = { };
int err;
do {
err = nfs4_handle_exception(NFS_SERVER(inode),
_nfs4_proc_link(inode, dir, name),
&exception);
} while (exception.retry);
return err;
}
struct nfs4_createdata {
struct rpc_message msg;
struct nfs4_create_arg arg;
struct nfs4_create_res res;
struct nfs_fh fh;
struct nfs_fattr fattr;
struct nfs_fattr dir_fattr;
};
static struct nfs4_createdata *nfs4_alloc_createdata(struct inode *dir,
struct qstr *name, struct iattr *sattr, u32 ftype)
{
struct nfs4_createdata *data;
data = kzalloc(sizeof(*data), GFP_KERNEL);
if (data != NULL) {
struct nfs_server *server = NFS_SERVER(dir);
data->msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CREATE];
data->msg.rpc_argp = &data->arg;
data->msg.rpc_resp = &data->res;
data->arg.dir_fh = NFS_FH(dir);
data->arg.server = server;
data->arg.name = name;
data->arg.attrs = sattr;
data->arg.ftype = ftype;
data->arg.bitmask = server->attr_bitmask;
data->res.server = server;
data->res.fh = &data->fh;
data->res.fattr = &data->fattr;
data->res.dir_fattr = &data->dir_fattr;
nfs_fattr_init(data->res.fattr);
nfs_fattr_init(data->res.dir_fattr);
}
return data;
}
static int nfs4_do_create(struct inode *dir, struct dentry *dentry, struct nfs4_createdata *data)
{
int status = nfs4_call_sync(NFS_SERVER(dir)->client, NFS_SERVER(dir), &data->msg,
&data->arg.seq_args, &data->res.seq_res, 1);
if (status == 0) {
update_changeattr(dir, &data->res.dir_cinfo);
nfs_post_op_update_inode(dir, data->res.dir_fattr);
status = nfs_instantiate(dentry, data->res.fh, data->res.fattr);
}
return status;
}
static void nfs4_free_createdata(struct nfs4_createdata *data)
{
kfree(data);
}
static int _nfs4_proc_symlink(struct inode *dir, struct dentry *dentry,
struct page *page, unsigned int len, struct iattr *sattr)
{
struct nfs4_createdata *data;
int status = -ENAMETOOLONG;
if (len > NFS4_MAXPATHLEN)
goto out;
status = -ENOMEM;
data = nfs4_alloc_createdata(dir, &dentry->d_name, sattr, NF4LNK);
if (data == NULL)
goto out;
data->msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SYMLINK];
data->arg.u.symlink.pages = &page;
data->arg.u.symlink.len = len;
status = nfs4_do_create(dir, dentry, data);
nfs4_free_createdata(data);
out:
return status;
}
static int nfs4_proc_symlink(struct inode *dir, struct dentry *dentry,
struct page *page, unsigned int len, struct iattr *sattr)
{
struct nfs4_exception exception = { };
int err;
do {
err = nfs4_handle_exception(NFS_SERVER(dir),
_nfs4_proc_symlink(dir, dentry, page,
len, sattr),
&exception);
} while (exception.retry);
return err;
}
static int _nfs4_proc_mkdir(struct inode *dir, struct dentry *dentry,
struct iattr *sattr)
{
struct nfs4_createdata *data;
int status = -ENOMEM;
data = nfs4_alloc_createdata(dir, &dentry->d_name, sattr, NF4DIR);
if (data == NULL)
goto out;
status = nfs4_do_create(dir, dentry, data);
nfs4_free_createdata(data);
out:
return status;
}
static int nfs4_proc_mkdir(struct inode *dir, struct dentry *dentry,
struct iattr *sattr)
{
struct nfs4_exception exception = { };
int err;
sattr->ia_mode &= ~current_umask();
do {
err = nfs4_handle_exception(NFS_SERVER(dir),
_nfs4_proc_mkdir(dir, dentry, sattr),
&exception);
} while (exception.retry);
return err;
}
static int _nfs4_proc_readdir(struct dentry *dentry, struct rpc_cred *cred,
u64 cookie, struct page **pages, unsigned int count, int plus)
{
struct inode *dir = dentry->d_inode;
struct nfs4_readdir_arg args = {
.fh = NFS_FH(dir),
.pages = pages,
.pgbase = 0,
.count = count,
.bitmask = NFS_SERVER(dentry->d_inode)->attr_bitmask,
.plus = plus,
};
struct nfs4_readdir_res res;
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READDIR],
.rpc_argp = &args,
.rpc_resp = &res,
.rpc_cred = cred,
};
int status;
dprintk("%s: dentry = %s/%s, cookie = %Lu\n", __func__,
dentry->d_parent->d_name.name,
dentry->d_name.name,
(unsigned long long)cookie);
nfs4_setup_readdir(cookie, NFS_COOKIEVERF(dir), dentry, &args);
res.pgbase = args.pgbase;
status = nfs4_call_sync(NFS_SERVER(dir)->client, NFS_SERVER(dir), &msg, &args.seq_args, &res.seq_res, 0);
if (status >= 0) {
memcpy(NFS_COOKIEVERF(dir), res.verifier.data, NFS4_VERIFIER_SIZE);
status += args.pgbase;
}
nfs_invalidate_atime(dir);
dprintk("%s: returns %d\n", __func__, status);
return status;
}
static int nfs4_proc_readdir(struct dentry *dentry, struct rpc_cred *cred,
u64 cookie, struct page **pages, unsigned int count, int plus)
{
struct nfs4_exception exception = { };
int err;
do {
err = nfs4_handle_exception(NFS_SERVER(dentry->d_inode),
_nfs4_proc_readdir(dentry, cred, cookie,
pages, count, plus),
&exception);
} while (exception.retry);
return err;
}
static int _nfs4_proc_mknod(struct inode *dir, struct dentry *dentry,
struct iattr *sattr, dev_t rdev)
{
struct nfs4_createdata *data;
int mode = sattr->ia_mode;
int status = -ENOMEM;
BUG_ON(!(sattr->ia_valid & ATTR_MODE));
BUG_ON(!S_ISFIFO(mode) && !S_ISBLK(mode) && !S_ISCHR(mode) && !S_ISSOCK(mode));
data = nfs4_alloc_createdata(dir, &dentry->d_name, sattr, NF4SOCK);
if (data == NULL)
goto out;
if (S_ISFIFO(mode))
data->arg.ftype = NF4FIFO;
else if (S_ISBLK(mode)) {
data->arg.ftype = NF4BLK;
data->arg.u.device.specdata1 = MAJOR(rdev);
data->arg.u.device.specdata2 = MINOR(rdev);
}
else if (S_ISCHR(mode)) {
data->arg.ftype = NF4CHR;
data->arg.u.device.specdata1 = MAJOR(rdev);
data->arg.u.device.specdata2 = MINOR(rdev);
}
status = nfs4_do_create(dir, dentry, data);
nfs4_free_createdata(data);
out:
return status;
}
static int nfs4_proc_mknod(struct inode *dir, struct dentry *dentry,
struct iattr *sattr, dev_t rdev)
{
struct nfs4_exception exception = { };
int err;
sattr->ia_mode &= ~current_umask();
do {
err = nfs4_handle_exception(NFS_SERVER(dir),
_nfs4_proc_mknod(dir, dentry, sattr, rdev),
&exception);
} while (exception.retry);
return err;
}
static int _nfs4_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle,
struct nfs_fsstat *fsstat)
{
struct nfs4_statfs_arg args = {
.fh = fhandle,
.bitmask = server->attr_bitmask,
};
struct nfs4_statfs_res res = {
.fsstat = fsstat,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_STATFS],
.rpc_argp = &args,
.rpc_resp = &res,
};
nfs_fattr_init(fsstat->fattr);
return nfs4_call_sync(server->client, server, &msg, &args.seq_args, &res.seq_res, 0);
}
static int nfs4_proc_statfs(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsstat *fsstat)
{
struct nfs4_exception exception = { };
int err;
do {
err = nfs4_handle_exception(server,
_nfs4_proc_statfs(server, fhandle, fsstat),
&exception);
} while (exception.retry);
return err;
}
static int _nfs4_do_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle,
struct nfs_fsinfo *fsinfo)
{
struct nfs4_fsinfo_arg args = {
.fh = fhandle,
.bitmask = server->attr_bitmask,
};
struct nfs4_fsinfo_res res = {
.fsinfo = fsinfo,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_FSINFO],
.rpc_argp = &args,
.rpc_resp = &res,
};
return nfs4_call_sync(server->client, server, &msg, &args.seq_args, &res.seq_res, 0);
}
static int nfs4_do_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *fsinfo)
{
struct nfs4_exception exception = { };
int err;
do {
err = nfs4_handle_exception(server,
_nfs4_do_fsinfo(server, fhandle, fsinfo),
&exception);
} while (exception.retry);
return err;
}
static int nfs4_proc_fsinfo(struct nfs_server *server, struct nfs_fh *fhandle, struct nfs_fsinfo *fsinfo)
{
nfs_fattr_init(fsinfo->fattr);
return nfs4_do_fsinfo(server, fhandle, fsinfo);
}
static int _nfs4_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle,
struct nfs_pathconf *pathconf)
{
struct nfs4_pathconf_arg args = {
.fh = fhandle,
.bitmask = server->attr_bitmask,
};
struct nfs4_pathconf_res res = {
.pathconf = pathconf,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_PATHCONF],
.rpc_argp = &args,
.rpc_resp = &res,
};
/* None of the pathconf attributes are mandatory to implement */
if ((args.bitmask[0] & nfs4_pathconf_bitmap[0]) == 0) {
memset(pathconf, 0, sizeof(*pathconf));
return 0;
}
nfs_fattr_init(pathconf->fattr);
return nfs4_call_sync(server->client, server, &msg, &args.seq_args, &res.seq_res, 0);
}
static int nfs4_proc_pathconf(struct nfs_server *server, struct nfs_fh *fhandle,
struct nfs_pathconf *pathconf)
{
struct nfs4_exception exception = { };
int err;
do {
err = nfs4_handle_exception(server,
_nfs4_proc_pathconf(server, fhandle, pathconf),
&exception);
} while (exception.retry);
return err;
}
void __nfs4_read_done_cb(struct nfs_read_data *data)
{
nfs_invalidate_atime(data->inode);
}
static int nfs4_read_done_cb(struct rpc_task *task, struct nfs_read_data *data)
{
struct nfs_server *server = NFS_SERVER(data->inode);
if (nfs4_async_handle_error(task, server, data->args.context->state) == -EAGAIN) {
rpc_restart_call_prepare(task);
return -EAGAIN;
}
__nfs4_read_done_cb(data);
if (task->tk_status > 0)
renew_lease(server, data->timestamp);
return 0;
}
static int nfs4_read_done(struct rpc_task *task, struct nfs_read_data *data)
{
dprintk("--> %s\n", __func__);
if (!nfs4_sequence_done(task, &data->res.seq_res))
return -EAGAIN;
return data->read_done_cb ? data->read_done_cb(task, data) :
nfs4_read_done_cb(task, data);
}
static void nfs4_proc_read_setup(struct nfs_read_data *data, struct rpc_message *msg)
{
data->timestamp = jiffies;
data->read_done_cb = nfs4_read_done_cb;
msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_READ];
}
/* Reset the the nfs_read_data to send the read to the MDS. */
void nfs4_reset_read(struct rpc_task *task, struct nfs_read_data *data)
{
dprintk("%s Reset task for i/o through\n", __func__);
put_lseg(data->lseg);
data->lseg = NULL;
/* offsets will differ in the dense stripe case */
data->args.offset = data->mds_offset;
data->ds_clp = NULL;
data->args.fh = NFS_FH(data->inode);
data->read_done_cb = nfs4_read_done_cb;
task->tk_ops = data->mds_ops;
rpc_task_reset_client(task, NFS_CLIENT(data->inode));
}
EXPORT_SYMBOL_GPL(nfs4_reset_read);
static int nfs4_write_done_cb(struct rpc_task *task, struct nfs_write_data *data)
{
struct inode *inode = data->inode;
if (nfs4_async_handle_error(task, NFS_SERVER(inode), data->args.context->state) == -EAGAIN) {
rpc_restart_call_prepare(task);
return -EAGAIN;
}
if (task->tk_status >= 0) {
renew_lease(NFS_SERVER(inode), data->timestamp);
nfs_post_op_update_inode_force_wcc(inode, data->res.fattr);
}
return 0;
}
static int nfs4_write_done(struct rpc_task *task, struct nfs_write_data *data)
{
if (!nfs4_sequence_done(task, &data->res.seq_res))
return -EAGAIN;
return data->write_done_cb ? data->write_done_cb(task, data) :
nfs4_write_done_cb(task, data);
}
/* Reset the the nfs_write_data to send the write to the MDS. */
void nfs4_reset_write(struct rpc_task *task, struct nfs_write_data *data)
{
dprintk("%s Reset task for i/o through\n", __func__);
put_lseg(data->lseg);
data->lseg = NULL;
data->ds_clp = NULL;
data->write_done_cb = nfs4_write_done_cb;
data->args.fh = NFS_FH(data->inode);
data->args.bitmask = data->res.server->cache_consistency_bitmask;
data->args.offset = data->mds_offset;
data->res.fattr = &data->fattr;
task->tk_ops = data->mds_ops;
rpc_task_reset_client(task, NFS_CLIENT(data->inode));
}
EXPORT_SYMBOL_GPL(nfs4_reset_write);
static void nfs4_proc_write_setup(struct nfs_write_data *data, struct rpc_message *msg)
{
struct nfs_server *server = NFS_SERVER(data->inode);
if (data->lseg) {
data->args.bitmask = NULL;
data->res.fattr = NULL;
} else
data->args.bitmask = server->cache_consistency_bitmask;
if (!data->write_done_cb)
data->write_done_cb = nfs4_write_done_cb;
data->res.server = server;
data->timestamp = jiffies;
msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_WRITE];
}
static int nfs4_commit_done_cb(struct rpc_task *task, struct nfs_write_data *data)
{
struct inode *inode = data->inode;
if (nfs4_async_handle_error(task, NFS_SERVER(inode), NULL) == -EAGAIN) {
rpc_restart_call_prepare(task);
return -EAGAIN;
}
nfs_refresh_inode(inode, data->res.fattr);
return 0;
}
static int nfs4_commit_done(struct rpc_task *task, struct nfs_write_data *data)
{
if (!nfs4_sequence_done(task, &data->res.seq_res))
return -EAGAIN;
return data->write_done_cb(task, data);
}
static void nfs4_proc_commit_setup(struct nfs_write_data *data, struct rpc_message *msg)
{
struct nfs_server *server = NFS_SERVER(data->inode);
if (data->lseg) {
data->args.bitmask = NULL;
data->res.fattr = NULL;
} else
data->args.bitmask = server->cache_consistency_bitmask;
if (!data->write_done_cb)
data->write_done_cb = nfs4_commit_done_cb;
data->res.server = server;
msg->rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_COMMIT];
}
struct nfs4_renewdata {
struct nfs_client *client;
unsigned long timestamp;
};
/*
* nfs4_proc_async_renew(): This is not one of the nfs_rpc_ops; it is a special
* standalone procedure for queueing an asynchronous RENEW.
*/
static void nfs4_renew_release(void *calldata)
{
struct nfs4_renewdata *data = calldata;
struct nfs_client *clp = data->client;
if (atomic_read(&clp->cl_count) > 1)
nfs4_schedule_state_renewal(clp);
nfs_put_client(clp);
kfree(data);
}
static void nfs4_renew_done(struct rpc_task *task, void *calldata)
{
struct nfs4_renewdata *data = calldata;
struct nfs_client *clp = data->client;
unsigned long timestamp = data->timestamp;
if (task->tk_status < 0) {
/* Unless we're shutting down, schedule state recovery! */
if (test_bit(NFS_CS_RENEWD, &clp->cl_res_state) == 0)
return;
if (task->tk_status != NFS4ERR_CB_PATH_DOWN) {
nfs4_schedule_lease_recovery(clp);
return;
}
nfs4_schedule_path_down_recovery(clp);
}
do_renew_lease(clp, timestamp);
}
static const struct rpc_call_ops nfs4_renew_ops = {
.rpc_call_done = nfs4_renew_done,
.rpc_release = nfs4_renew_release,
};
static int nfs4_proc_async_renew(struct nfs_client *clp, struct rpc_cred *cred, unsigned renew_flags)
{
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RENEW],
.rpc_argp = clp,
.rpc_cred = cred,
};
struct nfs4_renewdata *data;
if (renew_flags == 0)
return 0;
if (!atomic_inc_not_zero(&clp->cl_count))
return -EIO;
data = kmalloc(sizeof(*data), GFP_NOFS);
if (data == NULL)
return -ENOMEM;
data->client = clp;
data->timestamp = jiffies;
return rpc_call_async(clp->cl_rpcclient, &msg, RPC_TASK_SOFT,
&nfs4_renew_ops, data);
}
static int nfs4_proc_renew(struct nfs_client *clp, struct rpc_cred *cred)
{
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RENEW],
.rpc_argp = clp,
.rpc_cred = cred,
};
unsigned long now = jiffies;
int status;
status = rpc_call_sync(clp->cl_rpcclient, &msg, 0);
if (status < 0)
return status;
do_renew_lease(clp, now);
return 0;
}
static inline int nfs4_server_supports_acls(struct nfs_server *server)
{
return (server->caps & NFS_CAP_ACLS)
&& (server->acl_bitmask & ACL4_SUPPORT_ALLOW_ACL)
&& (server->acl_bitmask & ACL4_SUPPORT_DENY_ACL);
}
/* Assuming that XATTR_SIZE_MAX is a multiple of PAGE_CACHE_SIZE, and that
* it's OK to put sizeof(void) * (XATTR_SIZE_MAX/PAGE_CACHE_SIZE) bytes on
* the stack.
*/
#define NFS4ACL_MAXPAGES (XATTR_SIZE_MAX >> PAGE_CACHE_SHIFT)
static int buf_to_pages_noslab(const void *buf, size_t buflen,
struct page **pages, unsigned int *pgbase)
{
struct page *newpage, **spages;
int rc = 0;
size_t len;
spages = pages;
do {
len = min_t(size_t, PAGE_CACHE_SIZE, buflen);
newpage = alloc_page(GFP_KERNEL);
if (newpage == NULL)
goto unwind;
memcpy(page_address(newpage), buf, len);
buf += len;
buflen -= len;
*pages++ = newpage;
rc++;
} while (buflen != 0);
return rc;
unwind:
for(; rc > 0; rc--)
__free_page(spages[rc-1]);
return -ENOMEM;
}
struct nfs4_cached_acl {
int cached;
size_t len;
char data[0];
};
static void nfs4_set_cached_acl(struct inode *inode, struct nfs4_cached_acl *acl)
{
struct nfs_inode *nfsi = NFS_I(inode);
spin_lock(&inode->i_lock);
kfree(nfsi->nfs4_acl);
nfsi->nfs4_acl = acl;
spin_unlock(&inode->i_lock);
}
static void nfs4_zap_acl_attr(struct inode *inode)
{
nfs4_set_cached_acl(inode, NULL);
}
static inline ssize_t nfs4_read_cached_acl(struct inode *inode, char *buf, size_t buflen)
{
struct nfs_inode *nfsi = NFS_I(inode);
struct nfs4_cached_acl *acl;
int ret = -ENOENT;
spin_lock(&inode->i_lock);
acl = nfsi->nfs4_acl;
if (acl == NULL)
goto out;
if (buf == NULL) /* user is just asking for length */
goto out_len;
if (acl->cached == 0)
goto out;
ret = -ERANGE; /* see getxattr(2) man page */
if (acl->len > buflen)
goto out;
memcpy(buf, acl->data, acl->len);
out_len:
ret = acl->len;
out:
spin_unlock(&inode->i_lock);
return ret;
}
static void nfs4_write_cached_acl(struct inode *inode, const char *buf, size_t acl_len)
{
struct nfs4_cached_acl *acl;
if (buf && acl_len <= PAGE_SIZE) {
acl = kmalloc(sizeof(*acl) + acl_len, GFP_KERNEL);
if (acl == NULL)
goto out;
acl->cached = 1;
memcpy(acl->data, buf, acl_len);
} else {
acl = kmalloc(sizeof(*acl), GFP_KERNEL);
if (acl == NULL)
goto out;
acl->cached = 0;
}
acl->len = acl_len;
out:
nfs4_set_cached_acl(inode, acl);
}
/*
* The getxattr API returns the required buffer length when called with a
* NULL buf. The NFSv4 acl tool then calls getxattr again after allocating
* the required buf. On a NULL buf, we send a page of data to the server
* guessing that the ACL request can be serviced by a page. If so, we cache
* up to the page of ACL data, and the 2nd call to getxattr is serviced by
* the cache. If not so, we throw away the page, and cache the required
* length. The next getxattr call will then produce another round trip to
* the server, this time with the input buf of the required size.
*/
static ssize_t __nfs4_get_acl_uncached(struct inode *inode, void *buf, size_t buflen)
{
struct page *pages[NFS4ACL_MAXPAGES] = {NULL, };
struct nfs_getaclargs args = {
.fh = NFS_FH(inode),
.acl_pages = pages,
.acl_len = buflen,
};
struct nfs_getaclres res = {
.acl_len = buflen,
};
void *resp_buf;
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETACL],
.rpc_argp = &args,
.rpc_resp = &res,
};
int ret = -ENOMEM, npages, i, acl_len = 0;
npages = (buflen + PAGE_SIZE - 1) >> PAGE_SHIFT;
/* As long as we're doing a round trip to the server anyway,
* let's be prepared for a page of acl data. */
if (npages == 0)
npages = 1;
for (i = 0; i < npages; i++) {
pages[i] = alloc_page(GFP_KERNEL);
if (!pages[i])
goto out_free;
}
if (npages > 1) {
/* for decoding across pages */
res.acl_scratch = alloc_page(GFP_KERNEL);
if (!res.acl_scratch)
goto out_free;
}
args.acl_len = npages * PAGE_SIZE;
args.acl_pgbase = 0;
/* Let decode_getfacl know not to fail if the ACL data is larger than
* the page we send as a guess */
if (buf == NULL)
res.acl_flags |= NFS4_ACL_LEN_REQUEST;
resp_buf = page_address(pages[0]);
dprintk("%s buf %p buflen %zu npages %d args.acl_len %zu\n",
__func__, buf, buflen, npages, args.acl_len);
ret = nfs4_call_sync(NFS_SERVER(inode)->client, NFS_SERVER(inode),
&msg, &args.seq_args, &res.seq_res, 0);
if (ret)
goto out_free;
acl_len = res.acl_len - res.acl_data_offset;
if (acl_len > args.acl_len)
nfs4_write_cached_acl(inode, NULL, acl_len);
else
nfs4_write_cached_acl(inode, resp_buf + res.acl_data_offset,
acl_len);
if (buf) {
ret = -ERANGE;
if (acl_len > buflen)
goto out_free;
_copy_from_pages(buf, pages, res.acl_data_offset,
res.acl_len);
}
ret = acl_len;
out_free:
for (i = 0; i < npages; i++)
if (pages[i])
__free_page(pages[i]);
if (res.acl_scratch)
__free_page(res.acl_scratch);
return ret;
}
static ssize_t nfs4_get_acl_uncached(struct inode *inode, void *buf, size_t buflen)
{
struct nfs4_exception exception = { };
ssize_t ret;
do {
ret = __nfs4_get_acl_uncached(inode, buf, buflen);
if (ret >= 0)
break;
ret = nfs4_handle_exception(NFS_SERVER(inode), ret, &exception);
} while (exception.retry);
return ret;
}
static ssize_t nfs4_proc_get_acl(struct inode *inode, void *buf, size_t buflen)
{
struct nfs_server *server = NFS_SERVER(inode);
int ret;
if (!nfs4_server_supports_acls(server))
return -EOPNOTSUPP;
ret = nfs_revalidate_inode(server, inode);
if (ret < 0)
return ret;
if (NFS_I(inode)->cache_validity & NFS_INO_INVALID_ACL)
nfs_zap_acl_cache(inode);
ret = nfs4_read_cached_acl(inode, buf, buflen);
if (ret != -ENOENT)
/* -ENOENT is returned if there is no ACL or if there is an ACL
* but no cached acl data, just the acl length */
return ret;
return nfs4_get_acl_uncached(inode, buf, buflen);
}
static int __nfs4_proc_set_acl(struct inode *inode, const void *buf, size_t buflen)
{
struct nfs_server *server = NFS_SERVER(inode);
struct page *pages[NFS4ACL_MAXPAGES];
struct nfs_setaclargs arg = {
.fh = NFS_FH(inode),
.acl_pages = pages,
.acl_len = buflen,
};
struct nfs_setaclres res;
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETACL],
.rpc_argp = &arg,
.rpc_resp = &res,
};
int ret, i;
if (!nfs4_server_supports_acls(server))
return -EOPNOTSUPP;
i = buf_to_pages_noslab(buf, buflen, arg.acl_pages, &arg.acl_pgbase);
if (i < 0)
return i;
nfs_inode_return_delegation(inode);
ret = nfs4_call_sync(server->client, server, &msg, &arg.seq_args, &res.seq_res, 1);
/*
* Free each page after tx, so the only ref left is
* held by the network stack
*/
for (; i > 0; i--)
put_page(pages[i-1]);
/*
* Acl update can result in inode attribute update.
* so mark the attribute cache invalid.
*/
spin_lock(&inode->i_lock);
NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATTR;
spin_unlock(&inode->i_lock);
nfs_access_zap_cache(inode);
nfs_zap_acl_cache(inode);
return ret;
}
static int nfs4_proc_set_acl(struct inode *inode, const void *buf, size_t buflen)
{
struct nfs4_exception exception = { };
int err;
do {
err = nfs4_handle_exception(NFS_SERVER(inode),
__nfs4_proc_set_acl(inode, buf, buflen),
&exception);
} while (exception.retry);
return err;
}
static int
nfs4_async_handle_error(struct rpc_task *task, const struct nfs_server *server, struct nfs4_state *state)
{
struct nfs_client *clp = server->nfs_client;
if (task->tk_status >= 0)
return 0;
switch(task->tk_status) {
case -NFS4ERR_ADMIN_REVOKED:
case -NFS4ERR_BAD_STATEID:
case -NFS4ERR_OPENMODE:
if (state == NULL)
break;
nfs4_schedule_stateid_recovery(server, state);
goto wait_on_recovery;
case -NFS4ERR_EXPIRED:
if (state != NULL)
nfs4_schedule_stateid_recovery(server, state);
case -NFS4ERR_STALE_STATEID:
case -NFS4ERR_STALE_CLIENTID:
nfs4_schedule_lease_recovery(clp);
goto wait_on_recovery;
#if defined(CONFIG_NFS_V4_1)
case -NFS4ERR_BADSESSION:
case -NFS4ERR_BADSLOT:
case -NFS4ERR_BAD_HIGH_SLOT:
case -NFS4ERR_DEADSESSION:
case -NFS4ERR_CONN_NOT_BOUND_TO_SESSION:
case -NFS4ERR_SEQ_FALSE_RETRY:
case -NFS4ERR_SEQ_MISORDERED:
dprintk("%s ERROR %d, Reset session\n", __func__,
task->tk_status);
nfs4_schedule_session_recovery(clp->cl_session);
task->tk_status = 0;
return -EAGAIN;
#endif /* CONFIG_NFS_V4_1 */
case -NFS4ERR_DELAY:
nfs_inc_server_stats(server, NFSIOS_DELAY);
case -NFS4ERR_GRACE:
case -EKEYEXPIRED:
rpc_delay(task, NFS4_POLL_RETRY_MAX);
task->tk_status = 0;
return -EAGAIN;
case -NFS4ERR_RETRY_UNCACHED_REP:
case -NFS4ERR_OLD_STATEID:
task->tk_status = 0;
return -EAGAIN;
}
task->tk_status = nfs4_map_errors(task->tk_status);
return 0;
wait_on_recovery:
rpc_sleep_on(&clp->cl_rpcwaitq, task, NULL);
if (test_bit(NFS4CLNT_MANAGER_RUNNING, &clp->cl_state) == 0)
rpc_wake_up_queued_task(&clp->cl_rpcwaitq, task);
task->tk_status = 0;
return -EAGAIN;
}
int nfs4_proc_setclientid(struct nfs_client *clp, u32 program,
unsigned short port, struct rpc_cred *cred,
struct nfs4_setclientid_res *res)
{
nfs4_verifier sc_verifier;
struct nfs4_setclientid setclientid = {
.sc_verifier = &sc_verifier,
.sc_prog = program,
.sc_cb_ident = clp->cl_cb_ident,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETCLIENTID],
.rpc_argp = &setclientid,
.rpc_resp = res,
.rpc_cred = cred,
};
__be32 *p;
int loop = 0;
int status;
p = (__be32*)sc_verifier.data;
*p++ = htonl((u32)clp->cl_boot_time.tv_sec);
*p = htonl((u32)clp->cl_boot_time.tv_nsec);
for(;;) {
setclientid.sc_name_len = scnprintf(setclientid.sc_name,
sizeof(setclientid.sc_name), "%s/%s %s %s %u",
clp->cl_ipaddr,
rpc_peeraddr2str(clp->cl_rpcclient,
RPC_DISPLAY_ADDR),
rpc_peeraddr2str(clp->cl_rpcclient,
RPC_DISPLAY_PROTO),
clp->cl_rpcclient->cl_auth->au_ops->au_name,
clp->cl_id_uniquifier);
setclientid.sc_netid_len = scnprintf(setclientid.sc_netid,
sizeof(setclientid.sc_netid),
rpc_peeraddr2str(clp->cl_rpcclient,
RPC_DISPLAY_NETID));
setclientid.sc_uaddr_len = scnprintf(setclientid.sc_uaddr,
sizeof(setclientid.sc_uaddr), "%s.%u.%u",
clp->cl_ipaddr, port >> 8, port & 255);
status = rpc_call_sync(clp->cl_rpcclient, &msg, RPC_TASK_TIMEOUT);
if (status != -NFS4ERR_CLID_INUSE)
break;
if (loop != 0) {
++clp->cl_id_uniquifier;
break;
}
++loop;
ssleep(clp->cl_lease_time / HZ + 1);
}
return status;
}
int nfs4_proc_setclientid_confirm(struct nfs_client *clp,
struct nfs4_setclientid_res *arg,
struct rpc_cred *cred)
{
struct nfs_fsinfo fsinfo;
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SETCLIENTID_CONFIRM],
.rpc_argp = arg,
.rpc_resp = &fsinfo,
.rpc_cred = cred,
};
unsigned long now;
int status;
now = jiffies;
status = rpc_call_sync(clp->cl_rpcclient, &msg, RPC_TASK_TIMEOUT);
if (status == 0) {
spin_lock(&clp->cl_lock);
clp->cl_lease_time = fsinfo.lease_time * HZ;
clp->cl_last_renewal = now;
spin_unlock(&clp->cl_lock);
}
return status;
}
struct nfs4_delegreturndata {
struct nfs4_delegreturnargs args;
struct nfs4_delegreturnres res;
struct nfs_fh fh;
nfs4_stateid stateid;
unsigned long timestamp;
struct nfs_fattr fattr;
int rpc_status;
};
static void nfs4_delegreturn_done(struct rpc_task *task, void *calldata)
{
struct nfs4_delegreturndata *data = calldata;
if (!nfs4_sequence_done(task, &data->res.seq_res))
return;
switch (task->tk_status) {
case -NFS4ERR_STALE_STATEID:
case -NFS4ERR_EXPIRED:
case 0:
renew_lease(data->res.server, data->timestamp);
break;
default:
if (nfs4_async_handle_error(task, data->res.server, NULL) ==
-EAGAIN) {
rpc_restart_call_prepare(task);
return;
}
}
data->rpc_status = task->tk_status;
}
static void nfs4_delegreturn_release(void *calldata)
{
kfree(calldata);
}
#if defined(CONFIG_NFS_V4_1)
static void nfs4_delegreturn_prepare(struct rpc_task *task, void *data)
{
struct nfs4_delegreturndata *d_data;
d_data = (struct nfs4_delegreturndata *)data;
if (nfs4_setup_sequence(d_data->res.server,
&d_data->args.seq_args,
&d_data->res.seq_res, 1, task))
return;
rpc_call_start(task);
}
#endif /* CONFIG_NFS_V4_1 */
static const struct rpc_call_ops nfs4_delegreturn_ops = {
#if defined(CONFIG_NFS_V4_1)
.rpc_call_prepare = nfs4_delegreturn_prepare,
#endif /* CONFIG_NFS_V4_1 */
.rpc_call_done = nfs4_delegreturn_done,
.rpc_release = nfs4_delegreturn_release,
};
static int _nfs4_proc_delegreturn(struct inode *inode, struct rpc_cred *cred, const nfs4_stateid *stateid, int issync)
{
struct nfs4_delegreturndata *data;
struct nfs_server *server = NFS_SERVER(inode);
struct rpc_task *task;
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_DELEGRETURN],
.rpc_cred = cred,
};
struct rpc_task_setup task_setup_data = {
.rpc_client = server->client,
.rpc_message = &msg,
.callback_ops = &nfs4_delegreturn_ops,
.flags = RPC_TASK_ASYNC,
};
int status = 0;
data = kzalloc(sizeof(*data), GFP_NOFS);
if (data == NULL)
return -ENOMEM;
data->args.fhandle = &data->fh;
data->args.stateid = &data->stateid;
data->args.bitmask = server->attr_bitmask;
nfs_copy_fh(&data->fh, NFS_FH(inode));
memcpy(&data->stateid, stateid, sizeof(data->stateid));
data->res.fattr = &data->fattr;
data->res.server = server;
nfs_fattr_init(data->res.fattr);
data->timestamp = jiffies;
data->rpc_status = 0;
task_setup_data.callback_data = data;
msg.rpc_argp = &data->args;
msg.rpc_resp = &data->res;
task = rpc_run_task(&task_setup_data);
if (IS_ERR(task))
return PTR_ERR(task);
if (!issync)
goto out;
status = nfs4_wait_for_completion_rpc_task(task);
if (status != 0)
goto out;
status = data->rpc_status;
if (status != 0)
goto out;
nfs_refresh_inode(inode, &data->fattr);
out:
rpc_put_task(task);
return status;
}
int nfs4_proc_delegreturn(struct inode *inode, struct rpc_cred *cred, const nfs4_stateid *stateid, int issync)
{
struct nfs_server *server = NFS_SERVER(inode);
struct nfs4_exception exception = { };
int err;
do {
err = _nfs4_proc_delegreturn(inode, cred, stateid, issync);
switch (err) {
case -NFS4ERR_STALE_STATEID:
case -NFS4ERR_EXPIRED:
case 0:
return 0;
}
err = nfs4_handle_exception(server, err, &exception);
} while (exception.retry);
return err;
}
#define NFS4_LOCK_MINTIMEOUT (1 * HZ)
#define NFS4_LOCK_MAXTIMEOUT (30 * HZ)
/*
* sleep, with exponential backoff, and retry the LOCK operation.
*/
static unsigned long
nfs4_set_lock_task_retry(unsigned long timeout)
{
freezable_schedule_timeout_killable(timeout);
timeout <<= 1;
if (timeout > NFS4_LOCK_MAXTIMEOUT)
return NFS4_LOCK_MAXTIMEOUT;
return timeout;
}
static int _nfs4_proc_getlk(struct nfs4_state *state, int cmd, struct file_lock *request)
{
struct inode *inode = state->inode;
struct nfs_server *server = NFS_SERVER(inode);
struct nfs_client *clp = server->nfs_client;
struct nfs_lockt_args arg = {
.fh = NFS_FH(inode),
.fl = request,
};
struct nfs_lockt_res res = {
.denied = request,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOCKT],
.rpc_argp = &arg,
.rpc_resp = &res,
.rpc_cred = state->owner->so_cred,
};
struct nfs4_lock_state *lsp;
int status;
arg.lock_owner.clientid = clp->cl_clientid;
status = nfs4_set_lock_state(state, request);
if (status != 0)
goto out;
lsp = request->fl_u.nfs4_fl.owner;
arg.lock_owner.id = lsp->ls_id.id;
arg.lock_owner.s_dev = server->s_dev;
status = nfs4_call_sync(server->client, server, &msg, &arg.seq_args, &res.seq_res, 1);
switch (status) {
case 0:
request->fl_type = F_UNLCK;
break;
case -NFS4ERR_DENIED:
status = 0;
}
request->fl_ops->fl_release_private(request);
out:
return status;
}
static int nfs4_proc_getlk(struct nfs4_state *state, int cmd, struct file_lock *request)
{
struct nfs4_exception exception = { };
int err;
do {
err = nfs4_handle_exception(NFS_SERVER(state->inode),
_nfs4_proc_getlk(state, cmd, request),
&exception);
} while (exception.retry);
return err;
}
static int do_vfs_lock(struct file *file, struct file_lock *fl)
{
int res = 0;
switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) {
case FL_POSIX:
res = posix_lock_file_wait(file, fl);
break;
case FL_FLOCK:
res = flock_lock_file_wait(file, fl);
break;
default:
BUG();
}
return res;
}
struct nfs4_unlockdata {
struct nfs_locku_args arg;
struct nfs_locku_res res;
struct nfs4_lock_state *lsp;
struct nfs_open_context *ctx;
struct file_lock fl;
const struct nfs_server *server;
unsigned long timestamp;
};
static struct nfs4_unlockdata *nfs4_alloc_unlockdata(struct file_lock *fl,
struct nfs_open_context *ctx,
struct nfs4_lock_state *lsp,
struct nfs_seqid *seqid)
{
struct nfs4_unlockdata *p;
struct inode *inode = lsp->ls_state->inode;
p = kzalloc(sizeof(*p), GFP_NOFS);
if (p == NULL)
return NULL;
p->arg.fh = NFS_FH(inode);
p->arg.fl = &p->fl;
p->arg.seqid = seqid;
p->res.seqid = seqid;
p->arg.stateid = &lsp->ls_stateid;
p->lsp = lsp;
atomic_inc(&lsp->ls_count);
/* Ensure we don't close file until we're done freeing locks! */
p->ctx = get_nfs_open_context(ctx);
memcpy(&p->fl, fl, sizeof(p->fl));
p->server = NFS_SERVER(inode);
return p;
}
static void nfs4_locku_release_calldata(void *data)
{
struct nfs4_unlockdata *calldata = data;
nfs_free_seqid(calldata->arg.seqid);
nfs4_put_lock_state(calldata->lsp);
put_nfs_open_context(calldata->ctx);
kfree(calldata);
}
static void nfs4_locku_done(struct rpc_task *task, void *data)
{
struct nfs4_unlockdata *calldata = data;
if (!nfs4_sequence_done(task, &calldata->res.seq_res))
return;
switch (task->tk_status) {
case 0:
memcpy(calldata->lsp->ls_stateid.data,
calldata->res.stateid.data,
sizeof(calldata->lsp->ls_stateid.data));
renew_lease(calldata->server, calldata->timestamp);
break;
case -NFS4ERR_BAD_STATEID:
case -NFS4ERR_OLD_STATEID:
case -NFS4ERR_STALE_STATEID:
case -NFS4ERR_EXPIRED:
break;
default:
if (nfs4_async_handle_error(task, calldata->server, NULL) == -EAGAIN)
rpc_restart_call_prepare(task);
}
}
static void nfs4_locku_prepare(struct rpc_task *task, void *data)
{
struct nfs4_unlockdata *calldata = data;
if (nfs_wait_on_sequence(calldata->arg.seqid, task) != 0)
return;
if ((calldata->lsp->ls_flags & NFS_LOCK_INITIALIZED) == 0) {
/* Note: exit _without_ running nfs4_locku_done */
task->tk_action = NULL;
return;
}
calldata->timestamp = jiffies;
if (nfs4_setup_sequence(calldata->server,
&calldata->arg.seq_args,
&calldata->res.seq_res, 1, task))
return;
rpc_call_start(task);
}
static const struct rpc_call_ops nfs4_locku_ops = {
.rpc_call_prepare = nfs4_locku_prepare,
.rpc_call_done = nfs4_locku_done,
.rpc_release = nfs4_locku_release_calldata,
};
static struct rpc_task *nfs4_do_unlck(struct file_lock *fl,
struct nfs_open_context *ctx,
struct nfs4_lock_state *lsp,
struct nfs_seqid *seqid)
{
struct nfs4_unlockdata *data;
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOCKU],
.rpc_cred = ctx->cred,
};
struct rpc_task_setup task_setup_data = {
.rpc_client = NFS_CLIENT(lsp->ls_state->inode),
.rpc_message = &msg,
.callback_ops = &nfs4_locku_ops,
.workqueue = nfsiod_workqueue,
.flags = RPC_TASK_ASYNC,
};
/* Ensure this is an unlock - when canceling a lock, the
* canceled lock is passed in, and it won't be an unlock.
*/
fl->fl_type = F_UNLCK;
data = nfs4_alloc_unlockdata(fl, ctx, lsp, seqid);
if (data == NULL) {
nfs_free_seqid(seqid);
return ERR_PTR(-ENOMEM);
}
msg.rpc_argp = &data->arg;
msg.rpc_resp = &data->res;
task_setup_data.callback_data = data;
return rpc_run_task(&task_setup_data);
}
static int nfs4_proc_unlck(struct nfs4_state *state, int cmd, struct file_lock *request)
{
struct nfs_inode *nfsi = NFS_I(state->inode);
struct nfs_seqid *seqid;
struct nfs4_lock_state *lsp;
struct rpc_task *task;
int status = 0;
unsigned char fl_flags = request->fl_flags;
status = nfs4_set_lock_state(state, request);
/* Unlock _before_ we do the RPC call */
request->fl_flags |= FL_EXISTS;
down_read(&nfsi->rwsem);
if (do_vfs_lock(request->fl_file, request) == -ENOENT) {
up_read(&nfsi->rwsem);
goto out;
}
up_read(&nfsi->rwsem);
if (status != 0)
goto out;
/* Is this a delegated lock? */
if (test_bit(NFS_DELEGATED_STATE, &state->flags))
goto out;
lsp = request->fl_u.nfs4_fl.owner;
seqid = nfs_alloc_seqid(&lsp->ls_seqid, GFP_KERNEL);
status = -ENOMEM;
if (seqid == NULL)
goto out;
task = nfs4_do_unlck(request, nfs_file_open_context(request->fl_file), lsp, seqid);
status = PTR_ERR(task);
if (IS_ERR(task))
goto out;
status = nfs4_wait_for_completion_rpc_task(task);
rpc_put_task(task);
out:
request->fl_flags = fl_flags;
return status;
}
struct nfs4_lockdata {
struct nfs_lock_args arg;
struct nfs_lock_res res;
struct nfs4_lock_state *lsp;
struct nfs_open_context *ctx;
struct file_lock fl;
unsigned long timestamp;
int rpc_status;
int cancelled;
struct nfs_server *server;
};
static struct nfs4_lockdata *nfs4_alloc_lockdata(struct file_lock *fl,
struct nfs_open_context *ctx, struct nfs4_lock_state *lsp,
gfp_t gfp_mask)
{
struct nfs4_lockdata *p;
struct inode *inode = lsp->ls_state->inode;
struct nfs_server *server = NFS_SERVER(inode);
p = kzalloc(sizeof(*p), gfp_mask);
if (p == NULL)
return NULL;
p->arg.fh = NFS_FH(inode);
p->arg.fl = &p->fl;
p->arg.open_seqid = nfs_alloc_seqid(&lsp->ls_state->owner->so_seqid, gfp_mask);
if (p->arg.open_seqid == NULL)
goto out_free;
p->arg.lock_seqid = nfs_alloc_seqid(&lsp->ls_seqid, gfp_mask);
if (p->arg.lock_seqid == NULL)
goto out_free_seqid;
p->arg.lock_stateid = &lsp->ls_stateid;
p->arg.lock_owner.clientid = server->nfs_client->cl_clientid;
p->arg.lock_owner.id = lsp->ls_id.id;
p->arg.lock_owner.s_dev = server->s_dev;
p->res.lock_seqid = p->arg.lock_seqid;
p->lsp = lsp;
p->server = server;
atomic_inc(&lsp->ls_count);
p->ctx = get_nfs_open_context(ctx);
memcpy(&p->fl, fl, sizeof(p->fl));
return p;
out_free_seqid:
nfs_free_seqid(p->arg.open_seqid);
out_free:
kfree(p);
return NULL;
}
static void nfs4_lock_prepare(struct rpc_task *task, void *calldata)
{
struct nfs4_lockdata *data = calldata;
struct nfs4_state *state = data->lsp->ls_state;
dprintk("%s: begin!\n", __func__);
if (nfs_wait_on_sequence(data->arg.lock_seqid, task) != 0)
return;
/* Do we need to do an open_to_lock_owner? */
if (!(data->arg.lock_seqid->sequence->flags & NFS_SEQID_CONFIRMED)) {
if (nfs_wait_on_sequence(data->arg.open_seqid, task) != 0)
return;
data->arg.open_stateid = &state->stateid;
data->arg.new_lock_owner = 1;
data->res.open_seqid = data->arg.open_seqid;
} else
data->arg.new_lock_owner = 0;
data->timestamp = jiffies;
if (nfs4_setup_sequence(data->server,
&data->arg.seq_args,
&data->res.seq_res, 1, task))
return;
rpc_call_start(task);
dprintk("%s: done!, ret = %d\n", __func__, data->rpc_status);
}
static void nfs4_recover_lock_prepare(struct rpc_task *task, void *calldata)
{
rpc_task_set_priority(task, RPC_PRIORITY_PRIVILEGED);
nfs4_lock_prepare(task, calldata);
}
static void nfs4_lock_done(struct rpc_task *task, void *calldata)
{
struct nfs4_lockdata *data = calldata;
dprintk("%s: begin!\n", __func__);
if (!nfs4_sequence_done(task, &data->res.seq_res))
return;
data->rpc_status = task->tk_status;
if (data->arg.new_lock_owner != 0) {
if (data->rpc_status == 0)
nfs_confirm_seqid(&data->lsp->ls_seqid, 0);
else
goto out;
}
if (data->rpc_status == 0) {
memcpy(data->lsp->ls_stateid.data, data->res.stateid.data,
sizeof(data->lsp->ls_stateid.data));
data->lsp->ls_flags |= NFS_LOCK_INITIALIZED;
renew_lease(NFS_SERVER(data->ctx->dentry->d_inode), data->timestamp);
}
out:
dprintk("%s: done, ret = %d!\n", __func__, data->rpc_status);
}
static void nfs4_lock_release(void *calldata)
{
struct nfs4_lockdata *data = calldata;
dprintk("%s: begin!\n", __func__);
nfs_free_seqid(data->arg.open_seqid);
if (data->cancelled != 0) {
struct rpc_task *task;
task = nfs4_do_unlck(&data->fl, data->ctx, data->lsp,
data->arg.lock_seqid);
if (!IS_ERR(task))
rpc_put_task_async(task);
dprintk("%s: cancelling lock!\n", __func__);
} else
nfs_free_seqid(data->arg.lock_seqid);
nfs4_put_lock_state(data->lsp);
put_nfs_open_context(data->ctx);
kfree(data);
dprintk("%s: done!\n", __func__);
}
static const struct rpc_call_ops nfs4_lock_ops = {
.rpc_call_prepare = nfs4_lock_prepare,
.rpc_call_done = nfs4_lock_done,
.rpc_release = nfs4_lock_release,
};
static const struct rpc_call_ops nfs4_recover_lock_ops = {
.rpc_call_prepare = nfs4_recover_lock_prepare,
.rpc_call_done = nfs4_lock_done,
.rpc_release = nfs4_lock_release,
};
static void nfs4_handle_setlk_error(struct nfs_server *server, struct nfs4_lock_state *lsp, int new_lock_owner, int error)
{
switch (error) {
case -NFS4ERR_ADMIN_REVOKED:
case -NFS4ERR_BAD_STATEID:
lsp->ls_seqid.flags &= ~NFS_SEQID_CONFIRMED;
if (new_lock_owner != 0 ||
(lsp->ls_flags & NFS_LOCK_INITIALIZED) != 0)
nfs4_schedule_stateid_recovery(server, lsp->ls_state);
break;
case -NFS4ERR_STALE_STATEID:
lsp->ls_seqid.flags &= ~NFS_SEQID_CONFIRMED;
case -NFS4ERR_EXPIRED:
nfs4_schedule_lease_recovery(server->nfs_client);
};
}
static int _nfs4_do_setlk(struct nfs4_state *state, int cmd, struct file_lock *fl, int recovery_type)
{
struct nfs4_lockdata *data;
struct rpc_task *task;
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LOCK],
.rpc_cred = state->owner->so_cred,
};
struct rpc_task_setup task_setup_data = {
.rpc_client = NFS_CLIENT(state->inode),
.rpc_message = &msg,
.callback_ops = &nfs4_lock_ops,
.workqueue = nfsiod_workqueue,
.flags = RPC_TASK_ASYNC,
};
int ret;
dprintk("%s: begin!\n", __func__);
data = nfs4_alloc_lockdata(fl, nfs_file_open_context(fl->fl_file),
fl->fl_u.nfs4_fl.owner,
recovery_type == NFS_LOCK_NEW ? GFP_KERNEL : GFP_NOFS);
if (data == NULL)
return -ENOMEM;
if (IS_SETLKW(cmd))
data->arg.block = 1;
if (recovery_type > NFS_LOCK_NEW) {
if (recovery_type == NFS_LOCK_RECLAIM)
data->arg.reclaim = NFS_LOCK_RECLAIM;
task_setup_data.callback_ops = &nfs4_recover_lock_ops;
}
msg.rpc_argp = &data->arg;
msg.rpc_resp = &data->res;
task_setup_data.callback_data = data;
task = rpc_run_task(&task_setup_data);
if (IS_ERR(task))
return PTR_ERR(task);
ret = nfs4_wait_for_completion_rpc_task(task);
if (ret == 0) {
ret = data->rpc_status;
if (ret)
nfs4_handle_setlk_error(data->server, data->lsp,
data->arg.new_lock_owner, ret);
} else
data->cancelled = 1;
rpc_put_task(task);
dprintk("%s: done, ret = %d!\n", __func__, ret);
return ret;
}
static int nfs4_lock_reclaim(struct nfs4_state *state, struct file_lock *request)
{
struct nfs_server *server = NFS_SERVER(state->inode);
struct nfs4_exception exception = { };
int err;
do {
/* Cache the lock if possible... */
if (test_bit(NFS_DELEGATED_STATE, &state->flags) != 0)
return 0;
err = _nfs4_do_setlk(state, F_SETLK, request, NFS_LOCK_RECLAIM);
if (err != -NFS4ERR_DELAY)
break;
nfs4_handle_exception(server, err, &exception);
} while (exception.retry);
return err;
}
static int nfs4_lock_expired(struct nfs4_state *state, struct file_lock *request)
{
struct nfs_server *server = NFS_SERVER(state->inode);
struct nfs4_exception exception = { };
int err;
err = nfs4_set_lock_state(state, request);
if (err != 0)
return err;
do {
if (test_bit(NFS_DELEGATED_STATE, &state->flags) != 0)
return 0;
err = _nfs4_do_setlk(state, F_SETLK, request, NFS_LOCK_EXPIRED);
switch (err) {
default:
goto out;
case -NFS4ERR_GRACE:
case -NFS4ERR_DELAY:
nfs4_handle_exception(server, err, &exception);
err = 0;
}
} while (exception.retry);
out:
return err;
}
#if defined(CONFIG_NFS_V4_1)
static int nfs41_lock_expired(struct nfs4_state *state, struct file_lock *request)
{
int status;
struct nfs_server *server = NFS_SERVER(state->inode);
status = nfs41_test_stateid(server, state);
if (status == NFS_OK)
return 0;
nfs41_free_stateid(server, state);
return nfs4_lock_expired(state, request);
}
#endif
static int _nfs4_proc_setlk(struct nfs4_state *state, int cmd, struct file_lock *request)
{
struct nfs_inode *nfsi = NFS_I(state->inode);
unsigned char fl_flags = request->fl_flags;
int status = -ENOLCK;
if ((fl_flags & FL_POSIX) &&
!test_bit(NFS_STATE_POSIX_LOCKS, &state->flags))
goto out;
/* Is this a delegated open? */
status = nfs4_set_lock_state(state, request);
if (status != 0)
goto out;
request->fl_flags |= FL_ACCESS;
status = do_vfs_lock(request->fl_file, request);
if (status < 0)
goto out;
down_read(&nfsi->rwsem);
if (test_bit(NFS_DELEGATED_STATE, &state->flags)) {
/* Yes: cache locks! */
/* ...but avoid races with delegation recall... */
request->fl_flags = fl_flags & ~FL_SLEEP;
status = do_vfs_lock(request->fl_file, request);
goto out_unlock;
}
status = _nfs4_do_setlk(state, cmd, request, NFS_LOCK_NEW);
if (status != 0)
goto out_unlock;
/* Note: we always want to sleep here! */
request->fl_flags = fl_flags | FL_SLEEP;
if (do_vfs_lock(request->fl_file, request) < 0)
printk(KERN_WARNING "%s: VFS is out of sync with lock manager!\n", __func__);
out_unlock:
up_read(&nfsi->rwsem);
out:
request->fl_flags = fl_flags;
return status;
}
static int nfs4_proc_setlk(struct nfs4_state *state, int cmd, struct file_lock *request)
{
struct nfs4_exception exception = { };
int err;
do {
err = _nfs4_proc_setlk(state, cmd, request);
if (err == -NFS4ERR_DENIED)
err = -EAGAIN;
err = nfs4_handle_exception(NFS_SERVER(state->inode),
err, &exception);
} while (exception.retry);
return err;
}
static int
nfs4_proc_lock(struct file *filp, int cmd, struct file_lock *request)
{
struct nfs_open_context *ctx;
struct nfs4_state *state;
unsigned long timeout = NFS4_LOCK_MINTIMEOUT;
int status;
/* verify open state */
ctx = nfs_file_open_context(filp);
state = ctx->state;
if (request->fl_start < 0 || request->fl_end < 0)
return -EINVAL;
if (IS_GETLK(cmd)) {
if (state != NULL)
return nfs4_proc_getlk(state, F_GETLK, request);
return 0;
}
if (!(IS_SETLK(cmd) || IS_SETLKW(cmd)))
return -EINVAL;
if (request->fl_type == F_UNLCK) {
if (state != NULL)
return nfs4_proc_unlck(state, cmd, request);
return 0;
}
if (state == NULL)
return -ENOLCK;
do {
status = nfs4_proc_setlk(state, cmd, request);
if ((status != -EAGAIN) || IS_SETLK(cmd))
break;
timeout = nfs4_set_lock_task_retry(timeout);
status = -ERESTARTSYS;
if (signalled())
break;
} while(status < 0);
return status;
}
int nfs4_lock_delegation_recall(struct nfs4_state *state, struct file_lock *fl)
{
struct nfs_server *server = NFS_SERVER(state->inode);
struct nfs4_exception exception = { };
int err;
err = nfs4_set_lock_state(state, fl);
if (err != 0)
goto out;
do {
err = _nfs4_do_setlk(state, F_SETLK, fl, NFS_LOCK_NEW);
switch (err) {
default:
printk(KERN_ERR "%s: unhandled error %d.\n",
__func__, err);
case 0:
case -ESTALE:
goto out;
case -NFS4ERR_EXPIRED:
nfs4_schedule_stateid_recovery(server, state);
case -NFS4ERR_STALE_CLIENTID:
case -NFS4ERR_STALE_STATEID:
nfs4_schedule_lease_recovery(server->nfs_client);
goto out;
case -NFS4ERR_BADSESSION:
case -NFS4ERR_BADSLOT:
case -NFS4ERR_BAD_HIGH_SLOT:
case -NFS4ERR_CONN_NOT_BOUND_TO_SESSION:
case -NFS4ERR_DEADSESSION:
nfs4_schedule_session_recovery(server->nfs_client->cl_session);
goto out;
case -ERESTARTSYS:
/*
* The show must go on: exit, but mark the
* stateid as needing recovery.
*/
case -NFS4ERR_ADMIN_REVOKED:
case -NFS4ERR_BAD_STATEID:
case -NFS4ERR_OPENMODE:
nfs4_schedule_stateid_recovery(server, state);
err = 0;
goto out;
case -EKEYEXPIRED:
/*
* User RPCSEC_GSS context has expired.
* We cannot recover this stateid now, so
* skip it and allow recovery thread to
* proceed.
*/
err = 0;
goto out;
case -ENOMEM:
case -NFS4ERR_DENIED:
/* kill_proc(fl->fl_pid, SIGLOST, 1); */
err = 0;
goto out;
case -NFS4ERR_DELAY:
break;
}
err = nfs4_handle_exception(server, err, &exception);
} while (exception.retry);
out:
return err;
}
static void nfs4_release_lockowner_release(void *calldata)
{
kfree(calldata);
}
const struct rpc_call_ops nfs4_release_lockowner_ops = {
.rpc_release = nfs4_release_lockowner_release,
};
void nfs4_release_lockowner(const struct nfs4_lock_state *lsp)
{
struct nfs_server *server = lsp->ls_state->owner->so_server;
struct nfs_release_lockowner_args *args;
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RELEASE_LOCKOWNER],
};
if (server->nfs_client->cl_mvops->minor_version != 0)
return;
args = kmalloc(sizeof(*args), GFP_NOFS);
if (!args)
return;
args->lock_owner.clientid = server->nfs_client->cl_clientid;
args->lock_owner.id = lsp->ls_id.id;
args->lock_owner.s_dev = server->s_dev;
msg.rpc_argp = args;
rpc_call_async(server->client, &msg, 0, &nfs4_release_lockowner_ops, args);
}
#define XATTR_NAME_NFSV4_ACL "system.nfs4_acl"
static int nfs4_xattr_set_nfs4_acl(struct dentry *dentry, const char *key,
const void *buf, size_t buflen,
int flags, int type)
{
if (strcmp(key, "") != 0)
return -EINVAL;
return nfs4_proc_set_acl(dentry->d_inode, buf, buflen);
}
static int nfs4_xattr_get_nfs4_acl(struct dentry *dentry, const char *key,
void *buf, size_t buflen, int type)
{
if (strcmp(key, "") != 0)
return -EINVAL;
return nfs4_proc_get_acl(dentry->d_inode, buf, buflen);
}
static size_t nfs4_xattr_list_nfs4_acl(struct dentry *dentry, char *list,
size_t list_len, const char *name,
size_t name_len, int type)
{
size_t len = sizeof(XATTR_NAME_NFSV4_ACL);
if (!nfs4_server_supports_acls(NFS_SERVER(dentry->d_inode)))
return 0;
if (list && len <= list_len)
memcpy(list, XATTR_NAME_NFSV4_ACL, len);
return len;
}
/*
* nfs_fhget will use either the mounted_on_fileid or the fileid
*/
static void nfs_fixup_referral_attributes(struct nfs_fattr *fattr)
{
if (!(((fattr->valid & NFS_ATTR_FATTR_MOUNTED_ON_FILEID) ||
(fattr->valid & NFS_ATTR_FATTR_FILEID)) &&
(fattr->valid & NFS_ATTR_FATTR_FSID) &&
(fattr->valid & NFS_ATTR_FATTR_V4_REFERRAL)))
return;
fattr->valid |= NFS_ATTR_FATTR_TYPE | NFS_ATTR_FATTR_MODE |
NFS_ATTR_FATTR_NLINK;
fattr->mode = S_IFDIR | S_IRUGO | S_IXUGO;
fattr->nlink = 2;
}
int nfs4_proc_fs_locations(struct inode *dir, const struct qstr *name,
struct nfs4_fs_locations *fs_locations, struct page *page)
{
struct nfs_server *server = NFS_SERVER(dir);
u32 bitmask[2] = {
[0] = FATTR4_WORD0_FSID | FATTR4_WORD0_FS_LOCATIONS,
};
struct nfs4_fs_locations_arg args = {
.dir_fh = NFS_FH(dir),
.name = name,
.page = page,
.bitmask = bitmask,
};
struct nfs4_fs_locations_res res = {
.fs_locations = fs_locations,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_FS_LOCATIONS],
.rpc_argp = &args,
.rpc_resp = &res,
};
int status;
dprintk("%s: start\n", __func__);
/* Ask for the fileid of the absent filesystem if mounted_on_fileid
* is not supported */
if (NFS_SERVER(dir)->attr_bitmask[1] & FATTR4_WORD1_MOUNTED_ON_FILEID)
bitmask[1] |= FATTR4_WORD1_MOUNTED_ON_FILEID;
else
bitmask[0] |= FATTR4_WORD0_FILEID;
nfs_fattr_init(&fs_locations->fattr);
fs_locations->server = server;
fs_locations->nlocations = 0;
status = nfs4_call_sync(server->client, server, &msg, &args.seq_args, &res.seq_res, 0);
dprintk("%s: returned status = %d\n", __func__, status);
return status;
}
static int _nfs4_proc_secinfo(struct inode *dir, const struct qstr *name, struct nfs4_secinfo_flavors *flavors)
{
int status;
struct nfs4_secinfo_arg args = {
.dir_fh = NFS_FH(dir),
.name = name,
};
struct nfs4_secinfo_res res = {
.flavors = flavors,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SECINFO],
.rpc_argp = &args,
.rpc_resp = &res,
};
dprintk("NFS call secinfo %s\n", name->name);
status = nfs4_call_sync(NFS_SERVER(dir)->client, NFS_SERVER(dir), &msg, &args.seq_args, &res.seq_res, 0);
dprintk("NFS reply secinfo: %d\n", status);
return status;
}
int nfs4_proc_secinfo(struct inode *dir, const struct qstr *name, struct nfs4_secinfo_flavors *flavors)
{
struct nfs4_exception exception = { };
int err;
do {
err = nfs4_handle_exception(NFS_SERVER(dir),
_nfs4_proc_secinfo(dir, name, flavors),
&exception);
} while (exception.retry);
return err;
}
#ifdef CONFIG_NFS_V4_1
/*
* Check the exchange flags returned by the server for invalid flags, having
* both PNFS and NON_PNFS flags set, and not having one of NON_PNFS, PNFS, or
* DS flags set.
*/
static int nfs4_check_cl_exchange_flags(u32 flags)
{
if (flags & ~EXCHGID4_FLAG_MASK_R)
goto out_inval;
if ((flags & EXCHGID4_FLAG_USE_PNFS_MDS) &&
(flags & EXCHGID4_FLAG_USE_NON_PNFS))
goto out_inval;
if (!(flags & (EXCHGID4_FLAG_MASK_PNFS)))
goto out_inval;
return NFS_OK;
out_inval:
return -NFS4ERR_INVAL;
}
static bool
nfs41_same_server_scope(struct server_scope *a, struct server_scope *b)
{
if (a->server_scope_sz == b->server_scope_sz &&
memcmp(a->server_scope, b->server_scope, a->server_scope_sz) == 0)
return true;
return false;
}
/*
* nfs4_proc_exchange_id()
*
* Since the clientid has expired, all compounds using sessions
* associated with the stale clientid will be returning
* NFS4ERR_BADSESSION in the sequence operation, and will therefore
* be in some phase of session reset.
*/
int nfs4_proc_exchange_id(struct nfs_client *clp, struct rpc_cred *cred)
{
nfs4_verifier verifier;
struct nfs41_exchange_id_args args = {
.client = clp,
.flags = EXCHGID4_FLAG_SUPP_MOVED_REFER,
};
struct nfs41_exchange_id_res res = {
.client = clp,
};
int status;
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_EXCHANGE_ID],
.rpc_argp = &args,
.rpc_resp = &res,
.rpc_cred = cred,
};
__be32 *p;
dprintk("--> %s\n", __func__);
BUG_ON(clp == NULL);
p = (u32 *)verifier.data;
*p++ = htonl((u32)clp->cl_boot_time.tv_sec);
*p = htonl((u32)clp->cl_boot_time.tv_nsec);
args.verifier = &verifier;
args.id_len = scnprintf(args.id, sizeof(args.id),
"%s/%s.%s/%u",
clp->cl_ipaddr,
init_utsname()->nodename,
init_utsname()->domainname,
clp->cl_rpcclient->cl_auth->au_flavor);
res.server_scope = kzalloc(sizeof(struct server_scope), GFP_KERNEL);
if (unlikely(!res.server_scope)) {
status = -ENOMEM;
goto out;
}
status = rpc_call_sync(clp->cl_rpcclient, &msg, RPC_TASK_TIMEOUT);
if (!status)
status = nfs4_check_cl_exchange_flags(clp->cl_exchange_flags);
if (!status) {
if (clp->server_scope &&
!nfs41_same_server_scope(clp->server_scope,
res.server_scope)) {
dprintk("%s: server_scope mismatch detected\n",
__func__);
set_bit(NFS4CLNT_SERVER_SCOPE_MISMATCH, &clp->cl_state);
kfree(clp->server_scope);
clp->server_scope = NULL;
}
if (!clp->server_scope) {
clp->server_scope = res.server_scope;
goto out;
}
}
kfree(res.server_scope);
out:
dprintk("<-- %s status= %d\n", __func__, status);
return status;
}
struct nfs4_get_lease_time_data {
struct nfs4_get_lease_time_args *args;
struct nfs4_get_lease_time_res *res;
struct nfs_client *clp;
};
static void nfs4_get_lease_time_prepare(struct rpc_task *task,
void *calldata)
{
int ret;
struct nfs4_get_lease_time_data *data =
(struct nfs4_get_lease_time_data *)calldata;
dprintk("--> %s\n", __func__);
rpc_task_set_priority(task, RPC_PRIORITY_PRIVILEGED);
/* just setup sequence, do not trigger session recovery
since we're invoked within one */
ret = nfs41_setup_sequence(data->clp->cl_session,
&data->args->la_seq_args,
&data->res->lr_seq_res, 0, task);
BUG_ON(ret == -EAGAIN);
rpc_call_start(task);
dprintk("<-- %s\n", __func__);
}
/*
* Called from nfs4_state_manager thread for session setup, so don't recover
* from sequence operation or clientid errors.
*/
static void nfs4_get_lease_time_done(struct rpc_task *task, void *calldata)
{
struct nfs4_get_lease_time_data *data =
(struct nfs4_get_lease_time_data *)calldata;
dprintk("--> %s\n", __func__);
if (!nfs41_sequence_done(task, &data->res->lr_seq_res))
return;
switch (task->tk_status) {
case -NFS4ERR_DELAY:
case -NFS4ERR_GRACE:
dprintk("%s Retry: tk_status %d\n", __func__, task->tk_status);
rpc_delay(task, NFS4_POLL_RETRY_MIN);
task->tk_status = 0;
/* fall through */
case -NFS4ERR_RETRY_UNCACHED_REP:
rpc_restart_call_prepare(task);
return;
}
dprintk("<-- %s\n", __func__);
}
struct rpc_call_ops nfs4_get_lease_time_ops = {
.rpc_call_prepare = nfs4_get_lease_time_prepare,
.rpc_call_done = nfs4_get_lease_time_done,
};
int nfs4_proc_get_lease_time(struct nfs_client *clp, struct nfs_fsinfo *fsinfo)
{
struct rpc_task *task;
struct nfs4_get_lease_time_args args;
struct nfs4_get_lease_time_res res = {
.lr_fsinfo = fsinfo,
};
struct nfs4_get_lease_time_data data = {
.args = &args,
.res = &res,
.clp = clp,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GET_LEASE_TIME],
.rpc_argp = &args,
.rpc_resp = &res,
};
struct rpc_task_setup task_setup = {
.rpc_client = clp->cl_rpcclient,
.rpc_message = &msg,
.callback_ops = &nfs4_get_lease_time_ops,
.callback_data = &data,
.flags = RPC_TASK_TIMEOUT,
};
int status;
dprintk("--> %s\n", __func__);
task = rpc_run_task(&task_setup);
if (IS_ERR(task))
status = PTR_ERR(task);
else {
status = task->tk_status;
rpc_put_task(task);
}
dprintk("<-- %s return %d\n", __func__, status);
return status;
}
static struct nfs4_slot *nfs4_alloc_slots(u32 max_slots, gfp_t gfp_flags)
{
return kcalloc(max_slots, sizeof(struct nfs4_slot), gfp_flags);
}
static void nfs4_add_and_init_slots(struct nfs4_slot_table *tbl,
struct nfs4_slot *new,
u32 max_slots,
u32 ivalue)
{
struct nfs4_slot *old = NULL;
u32 i;
spin_lock(&tbl->slot_tbl_lock);
if (new) {
old = tbl->slots;
tbl->slots = new;
tbl->max_slots = max_slots;
}
tbl->highest_used_slotid = -1; /* no slot is currently used */
for (i = 0; i < tbl->max_slots; i++)
tbl->slots[i].seq_nr = ivalue;
spin_unlock(&tbl->slot_tbl_lock);
kfree(old);
}
/*
* (re)Initialise a slot table
*/
static int nfs4_realloc_slot_table(struct nfs4_slot_table *tbl, u32 max_reqs,
u32 ivalue)
{
struct nfs4_slot *new = NULL;
int ret = -ENOMEM;
dprintk("--> %s: max_reqs=%u, tbl->max_slots %d\n", __func__,
max_reqs, tbl->max_slots);
/* Does the newly negotiated max_reqs match the existing slot table? */
if (max_reqs != tbl->max_slots) {
new = nfs4_alloc_slots(max_reqs, GFP_NOFS);
if (!new)
goto out;
}
ret = 0;
nfs4_add_and_init_slots(tbl, new, max_reqs, ivalue);
dprintk("%s: tbl=%p slots=%p max_slots=%d\n", __func__,
tbl, tbl->slots, tbl->max_slots);
out:
dprintk("<-- %s: return %d\n", __func__, ret);
return ret;
}
/* Destroy the slot table */
static void nfs4_destroy_slot_tables(struct nfs4_session *session)
{
if (session->fc_slot_table.slots != NULL) {
kfree(session->fc_slot_table.slots);
session->fc_slot_table.slots = NULL;
}
if (session->bc_slot_table.slots != NULL) {
kfree(session->bc_slot_table.slots);
session->bc_slot_table.slots = NULL;
}
return;
}
/*
* Initialize or reset the forechannel and backchannel tables
*/
static int nfs4_setup_session_slot_tables(struct nfs4_session *ses)
{
struct nfs4_slot_table *tbl;
int status;
dprintk("--> %s\n", __func__);
/* Fore channel */
tbl = &ses->fc_slot_table;
status = nfs4_realloc_slot_table(tbl, ses->fc_attrs.max_reqs, 1);
if (status) /* -ENOMEM */
return status;
/* Back channel */
tbl = &ses->bc_slot_table;
status = nfs4_realloc_slot_table(tbl, ses->bc_attrs.max_reqs, 0);
if (status && tbl->slots == NULL)
/* Fore and back channel share a connection so get
* both slot tables or neither */
nfs4_destroy_slot_tables(ses);
return status;
}
struct nfs4_session *nfs4_alloc_session(struct nfs_client *clp)
{
struct nfs4_session *session;
struct nfs4_slot_table *tbl;
session = kzalloc(sizeof(struct nfs4_session), GFP_NOFS);
if (!session)
return NULL;
tbl = &session->fc_slot_table;
tbl->highest_used_slotid = -1;
spin_lock_init(&tbl->slot_tbl_lock);
rpc_init_priority_wait_queue(&tbl->slot_tbl_waitq, "ForeChannel Slot table");
init_completion(&tbl->complete);
tbl = &session->bc_slot_table;
tbl->highest_used_slotid = -1;
spin_lock_init(&tbl->slot_tbl_lock);
rpc_init_wait_queue(&tbl->slot_tbl_waitq, "BackChannel Slot table");
init_completion(&tbl->complete);
session->session_state = 1<<NFS4_SESSION_INITING;
session->clp = clp;
return session;
}
void nfs4_destroy_session(struct nfs4_session *session)
{
nfs4_proc_destroy_session(session);
dprintk("%s Destroy backchannel for xprt %p\n",
__func__, session->clp->cl_rpcclient->cl_xprt);
xprt_destroy_backchannel(session->clp->cl_rpcclient->cl_xprt,
NFS41_BC_MIN_CALLBACKS);
nfs4_destroy_slot_tables(session);
kfree(session);
}
/*
* Initialize the values to be used by the client in CREATE_SESSION
* If nfs4_init_session set the fore channel request and response sizes,
* use them.
*
* Set the back channel max_resp_sz_cached to zero to force the client to
* always set csa_cachethis to FALSE because the current implementation
* of the back channel DRC only supports caching the CB_SEQUENCE operation.
*/
static void nfs4_init_channel_attrs(struct nfs41_create_session_args *args)
{
struct nfs4_session *session = args->client->cl_session;
unsigned int mxrqst_sz = session->fc_attrs.max_rqst_sz,
mxresp_sz = session->fc_attrs.max_resp_sz;
if (mxrqst_sz == 0)
mxrqst_sz = NFS_MAX_FILE_IO_SIZE;
if (mxresp_sz == 0)
mxresp_sz = NFS_MAX_FILE_IO_SIZE;
/* Fore channel attributes */
args->fc_attrs.max_rqst_sz = mxrqst_sz;
args->fc_attrs.max_resp_sz = mxresp_sz;
args->fc_attrs.max_ops = NFS4_MAX_OPS;
args->fc_attrs.max_reqs = session->clp->cl_rpcclient->cl_xprt->max_reqs;
dprintk("%s: Fore Channel : max_rqst_sz=%u max_resp_sz=%u "
"max_ops=%u max_reqs=%u\n",
__func__,
args->fc_attrs.max_rqst_sz, args->fc_attrs.max_resp_sz,
args->fc_attrs.max_ops, args->fc_attrs.max_reqs);
/* Back channel attributes */
args->bc_attrs.max_rqst_sz = PAGE_SIZE;
args->bc_attrs.max_resp_sz = PAGE_SIZE;
args->bc_attrs.max_resp_sz_cached = 0;
args->bc_attrs.max_ops = NFS4_MAX_BACK_CHANNEL_OPS;
args->bc_attrs.max_reqs = 1;
dprintk("%s: Back Channel : max_rqst_sz=%u max_resp_sz=%u "
"max_resp_sz_cached=%u max_ops=%u max_reqs=%u\n",
__func__,
args->bc_attrs.max_rqst_sz, args->bc_attrs.max_resp_sz,
args->bc_attrs.max_resp_sz_cached, args->bc_attrs.max_ops,
args->bc_attrs.max_reqs);
}
static int nfs4_verify_fore_channel_attrs(struct nfs41_create_session_args *args, struct nfs4_session *session)
{
struct nfs4_channel_attrs *sent = &args->fc_attrs;
struct nfs4_channel_attrs *rcvd = &session->fc_attrs;
if (rcvd->max_resp_sz > sent->max_resp_sz)
return -EINVAL;
/*
* Our requested max_ops is the minimum we need; we're not
* prepared to break up compounds into smaller pieces than that.
* So, no point even trying to continue if the server won't
* cooperate:
*/
if (rcvd->max_ops < sent->max_ops)
return -EINVAL;
if (rcvd->max_reqs == 0)
return -EINVAL;
return 0;
}
static int nfs4_verify_back_channel_attrs(struct nfs41_create_session_args *args, struct nfs4_session *session)
{
struct nfs4_channel_attrs *sent = &args->bc_attrs;
struct nfs4_channel_attrs *rcvd = &session->bc_attrs;
if (rcvd->max_rqst_sz > sent->max_rqst_sz)
return -EINVAL;
if (rcvd->max_resp_sz < sent->max_resp_sz)
return -EINVAL;
if (rcvd->max_resp_sz_cached > sent->max_resp_sz_cached)
return -EINVAL;
/* These would render the backchannel useless: */
if (rcvd->max_ops == 0)
return -EINVAL;
if (rcvd->max_reqs == 0)
return -EINVAL;
return 0;
}
static int nfs4_verify_channel_attrs(struct nfs41_create_session_args *args,
struct nfs4_session *session)
{
int ret;
ret = nfs4_verify_fore_channel_attrs(args, session);
if (ret)
return ret;
return nfs4_verify_back_channel_attrs(args, session);
}
static int _nfs4_proc_create_session(struct nfs_client *clp)
{
struct nfs4_session *session = clp->cl_session;
struct nfs41_create_session_args args = {
.client = clp,
.cb_program = NFS4_CALLBACK,
};
struct nfs41_create_session_res res = {
.client = clp,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_CREATE_SESSION],
.rpc_argp = &args,
.rpc_resp = &res,
};
int status;
nfs4_init_channel_attrs(&args);
args.flags = (SESSION4_PERSIST | SESSION4_BACK_CHAN);
status = rpc_call_sync(session->clp->cl_rpcclient, &msg, RPC_TASK_TIMEOUT);
if (!status)
/* Verify the session's negotiated channel_attrs values */
status = nfs4_verify_channel_attrs(&args, session);
if (!status) {
/* Increment the clientid slot sequence id */
clp->cl_seqid++;
}
return status;
}
/*
* Issues a CREATE_SESSION operation to the server.
* It is the responsibility of the caller to verify the session is
* expired before calling this routine.
*/
int nfs4_proc_create_session(struct nfs_client *clp)
{
int status;
unsigned *ptr;
struct nfs4_session *session = clp->cl_session;
dprintk("--> %s clp=%p session=%p\n", __func__, clp, session);
status = _nfs4_proc_create_session(clp);
if (status)
goto out;
/* Init or reset the session slot tables */
status = nfs4_setup_session_slot_tables(session);
dprintk("slot table setup returned %d\n", status);
if (status)
goto out;
ptr = (unsigned *)&session->sess_id.data[0];
dprintk("%s client>seqid %d sessionid %u:%u:%u:%u\n", __func__,
clp->cl_seqid, ptr[0], ptr[1], ptr[2], ptr[3]);
out:
dprintk("<-- %s\n", __func__);
return status;
}
/*
* Issue the over-the-wire RPC DESTROY_SESSION.
* The caller must serialize access to this routine.
*/
int nfs4_proc_destroy_session(struct nfs4_session *session)
{
int status = 0;
struct rpc_message msg;
dprintk("--> nfs4_proc_destroy_session\n");
/* session is still being setup */
if (session->clp->cl_cons_state != NFS_CS_READY)
return status;
msg.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_DESTROY_SESSION];
msg.rpc_argp = session;
msg.rpc_resp = NULL;
msg.rpc_cred = NULL;
status = rpc_call_sync(session->clp->cl_rpcclient, &msg, RPC_TASK_TIMEOUT);
if (status)
printk(KERN_WARNING
"Got error %d from the server on DESTROY_SESSION. "
"Session has been destroyed regardless...\n", status);
dprintk("<-- nfs4_proc_destroy_session\n");
return status;
}
int nfs4_init_session(struct nfs_server *server)
{
struct nfs_client *clp = server->nfs_client;
struct nfs4_session *session;
unsigned int rsize, wsize;
int ret;
if (!nfs4_has_session(clp))
return 0;
session = clp->cl_session;
if (!test_and_clear_bit(NFS4_SESSION_INITING, &session->session_state))
return 0;
rsize = server->rsize;
if (rsize == 0)
rsize = NFS_MAX_FILE_IO_SIZE;
wsize = server->wsize;
if (wsize == 0)
wsize = NFS_MAX_FILE_IO_SIZE;
session->fc_attrs.max_rqst_sz = wsize + nfs41_maxwrite_overhead;
session->fc_attrs.max_resp_sz = rsize + nfs41_maxread_overhead;
ret = nfs4_recover_expired_lease(server);
if (!ret)
ret = nfs4_check_client_ready(clp);
return ret;
}
int nfs4_init_ds_session(struct nfs_client *clp)
{
struct nfs4_session *session = clp->cl_session;
int ret;
if (!test_and_clear_bit(NFS4_SESSION_INITING, &session->session_state))
return 0;
ret = nfs4_client_recover_expired_lease(clp);
if (!ret)
/* Test for the DS role */
if (!is_ds_client(clp))
ret = -ENODEV;
if (!ret)
ret = nfs4_check_client_ready(clp);
return ret;
}
EXPORT_SYMBOL_GPL(nfs4_init_ds_session);
/*
* Renew the cl_session lease.
*/
struct nfs4_sequence_data {
struct nfs_client *clp;
struct nfs4_sequence_args args;
struct nfs4_sequence_res res;
};
static void nfs41_sequence_release(void *data)
{
struct nfs4_sequence_data *calldata = data;
struct nfs_client *clp = calldata->clp;
if (atomic_read(&clp->cl_count) > 1)
nfs4_schedule_state_renewal(clp);
nfs_put_client(clp);
kfree(calldata);
}
static int nfs41_sequence_handle_errors(struct rpc_task *task, struct nfs_client *clp)
{
switch(task->tk_status) {
case -NFS4ERR_DELAY:
rpc_delay(task, NFS4_POLL_RETRY_MAX);
return -EAGAIN;
default:
nfs4_schedule_lease_recovery(clp);
}
return 0;
}
static void nfs41_sequence_call_done(struct rpc_task *task, void *data)
{
struct nfs4_sequence_data *calldata = data;
struct nfs_client *clp = calldata->clp;
if (!nfs41_sequence_done(task, task->tk_msg.rpc_resp))
return;
if (task->tk_status < 0) {
dprintk("%s ERROR %d\n", __func__, task->tk_status);
if (atomic_read(&clp->cl_count) == 1)
goto out;
if (nfs41_sequence_handle_errors(task, clp) == -EAGAIN) {
rpc_restart_call_prepare(task);
return;
}
}
dprintk("%s rpc_cred %p\n", __func__, task->tk_msg.rpc_cred);
out:
dprintk("<-- %s\n", __func__);
}
static void nfs41_sequence_prepare(struct rpc_task *task, void *data)
{
struct nfs4_sequence_data *calldata = data;
struct nfs_client *clp = calldata->clp;
struct nfs4_sequence_args *args;
struct nfs4_sequence_res *res;
args = task->tk_msg.rpc_argp;
res = task->tk_msg.rpc_resp;
if (nfs41_setup_sequence(clp->cl_session, args, res, 0, task))
return;
rpc_call_start(task);
}
static const struct rpc_call_ops nfs41_sequence_ops = {
.rpc_call_done = nfs41_sequence_call_done,
.rpc_call_prepare = nfs41_sequence_prepare,
.rpc_release = nfs41_sequence_release,
};
static struct rpc_task *_nfs41_proc_sequence(struct nfs_client *clp, struct rpc_cred *cred)
{
struct nfs4_sequence_data *calldata;
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SEQUENCE],
.rpc_cred = cred,
};
struct rpc_task_setup task_setup_data = {
.rpc_client = clp->cl_rpcclient,
.rpc_message = &msg,
.callback_ops = &nfs41_sequence_ops,
.flags = RPC_TASK_ASYNC | RPC_TASK_SOFT,
};
if (!atomic_inc_not_zero(&clp->cl_count))
return ERR_PTR(-EIO);
calldata = kzalloc(sizeof(*calldata), GFP_NOFS);
if (calldata == NULL) {
nfs_put_client(clp);
return ERR_PTR(-ENOMEM);
}
msg.rpc_argp = &calldata->args;
msg.rpc_resp = &calldata->res;
calldata->clp = clp;
task_setup_data.callback_data = calldata;
return rpc_run_task(&task_setup_data);
}
static int nfs41_proc_async_sequence(struct nfs_client *clp, struct rpc_cred *cred, unsigned renew_flags)
{
struct rpc_task *task;
int ret = 0;
if ((renew_flags & NFS4_RENEW_TIMEOUT) == 0)
return 0;
task = _nfs41_proc_sequence(clp, cred);
if (IS_ERR(task))
ret = PTR_ERR(task);
else
rpc_put_task_async(task);
dprintk("<-- %s status=%d\n", __func__, ret);
return ret;
}
static int nfs4_proc_sequence(struct nfs_client *clp, struct rpc_cred *cred)
{
struct rpc_task *task;
int ret;
task = _nfs41_proc_sequence(clp, cred);
if (IS_ERR(task)) {
ret = PTR_ERR(task);
goto out;
}
ret = rpc_wait_for_completion_task(task);
if (!ret) {
struct nfs4_sequence_res *res = task->tk_msg.rpc_resp;
if (task->tk_status == 0)
nfs41_handle_sequence_flag_errors(clp, res->sr_status_flags);
ret = task->tk_status;
}
rpc_put_task(task);
out:
dprintk("<-- %s status=%d\n", __func__, ret);
return ret;
}
struct nfs4_reclaim_complete_data {
struct nfs_client *clp;
struct nfs41_reclaim_complete_args arg;
struct nfs41_reclaim_complete_res res;
};
static void nfs4_reclaim_complete_prepare(struct rpc_task *task, void *data)
{
struct nfs4_reclaim_complete_data *calldata = data;
rpc_task_set_priority(task, RPC_PRIORITY_PRIVILEGED);
if (nfs41_setup_sequence(calldata->clp->cl_session,
&calldata->arg.seq_args,
&calldata->res.seq_res, 0, task))
return;
rpc_call_start(task);
}
static int nfs41_reclaim_complete_handle_errors(struct rpc_task *task, struct nfs_client *clp)
{
switch(task->tk_status) {
case 0:
case -NFS4ERR_COMPLETE_ALREADY:
case -NFS4ERR_WRONG_CRED: /* What to do here? */
break;
case -NFS4ERR_DELAY:
rpc_delay(task, NFS4_POLL_RETRY_MAX);
/* fall through */
case -NFS4ERR_RETRY_UNCACHED_REP:
return -EAGAIN;
default:
nfs4_schedule_lease_recovery(clp);
}
return 0;
}
static void nfs4_reclaim_complete_done(struct rpc_task *task, void *data)
{
struct nfs4_reclaim_complete_data *calldata = data;
struct nfs_client *clp = calldata->clp;
struct nfs4_sequence_res *res = &calldata->res.seq_res;
dprintk("--> %s\n", __func__);
if (!nfs41_sequence_done(task, res))
return;
if (nfs41_reclaim_complete_handle_errors(task, clp) == -EAGAIN) {
rpc_restart_call_prepare(task);
return;
}
dprintk("<-- %s\n", __func__);
}
static void nfs4_free_reclaim_complete_data(void *data)
{
struct nfs4_reclaim_complete_data *calldata = data;
kfree(calldata);
}
static const struct rpc_call_ops nfs4_reclaim_complete_call_ops = {
.rpc_call_prepare = nfs4_reclaim_complete_prepare,
.rpc_call_done = nfs4_reclaim_complete_done,
.rpc_release = nfs4_free_reclaim_complete_data,
};
/*
* Issue a global reclaim complete.
*/
static int nfs41_proc_reclaim_complete(struct nfs_client *clp)
{
struct nfs4_reclaim_complete_data *calldata;
struct rpc_task *task;
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_RECLAIM_COMPLETE],
};
struct rpc_task_setup task_setup_data = {
.rpc_client = clp->cl_rpcclient,
.rpc_message = &msg,
.callback_ops = &nfs4_reclaim_complete_call_ops,
.flags = RPC_TASK_ASYNC,
};
int status = -ENOMEM;
dprintk("--> %s\n", __func__);
calldata = kzalloc(sizeof(*calldata), GFP_NOFS);
if (calldata == NULL)
goto out;
calldata->clp = clp;
calldata->arg.one_fs = 0;
msg.rpc_argp = &calldata->arg;
msg.rpc_resp = &calldata->res;
task_setup_data.callback_data = calldata;
task = rpc_run_task(&task_setup_data);
if (IS_ERR(task)) {
status = PTR_ERR(task);
goto out;
}
status = nfs4_wait_for_completion_rpc_task(task);
if (status == 0)
status = task->tk_status;
rpc_put_task(task);
return 0;
out:
dprintk("<-- %s status=%d\n", __func__, status);
return status;
}
static void
nfs4_layoutget_prepare(struct rpc_task *task, void *calldata)
{
struct nfs4_layoutget *lgp = calldata;
struct nfs_server *server = NFS_SERVER(lgp->args.inode);
dprintk("--> %s\n", __func__);
/* Note the is a race here, where a CB_LAYOUTRECALL can come in
* right now covering the LAYOUTGET we are about to send.
* However, that is not so catastrophic, and there seems
* to be no way to prevent it completely.
*/
if (nfs4_setup_sequence(server, &lgp->args.seq_args,
&lgp->res.seq_res, 0, task))
return;
if (pnfs_choose_layoutget_stateid(&lgp->args.stateid,
NFS_I(lgp->args.inode)->layout,
lgp->args.ctx->state)) {
rpc_exit(task, NFS4_OK);
return;
}
rpc_call_start(task);
}
static void nfs4_layoutget_done(struct rpc_task *task, void *calldata)
{
struct nfs4_layoutget *lgp = calldata;
struct nfs_server *server = NFS_SERVER(lgp->args.inode);
dprintk("--> %s\n", __func__);
if (!nfs4_sequence_done(task, &lgp->res.seq_res))
return;
switch (task->tk_status) {
case 0:
break;
case -NFS4ERR_LAYOUTTRYLATER:
case -NFS4ERR_RECALLCONFLICT:
task->tk_status = -NFS4ERR_DELAY;
/* Fall through */
default:
if (nfs4_async_handle_error(task, server, NULL) == -EAGAIN) {
rpc_restart_call_prepare(task);
return;
}
}
dprintk("<-- %s\n", __func__);
}
static void nfs4_layoutget_release(void *calldata)
{
struct nfs4_layoutget *lgp = calldata;
dprintk("--> %s\n", __func__);
put_nfs_open_context(lgp->args.ctx);
kfree(calldata);
dprintk("<-- %s\n", __func__);
}
static const struct rpc_call_ops nfs4_layoutget_call_ops = {
.rpc_call_prepare = nfs4_layoutget_prepare,
.rpc_call_done = nfs4_layoutget_done,
.rpc_release = nfs4_layoutget_release,
};
int nfs4_proc_layoutget(struct nfs4_layoutget *lgp)
{
struct nfs_server *server = NFS_SERVER(lgp->args.inode);
struct rpc_task *task;
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LAYOUTGET],
.rpc_argp = &lgp->args,
.rpc_resp = &lgp->res,
};
struct rpc_task_setup task_setup_data = {
.rpc_client = server->client,
.rpc_message = &msg,
.callback_ops = &nfs4_layoutget_call_ops,
.callback_data = lgp,
.flags = RPC_TASK_ASYNC,
};
int status = 0;
dprintk("--> %s\n", __func__);
lgp->res.layoutp = &lgp->args.layout;
lgp->res.seq_res.sr_slot = NULL;
task = rpc_run_task(&task_setup_data);
if (IS_ERR(task))
return PTR_ERR(task);
status = nfs4_wait_for_completion_rpc_task(task);
if (status == 0)
status = task->tk_status;
if (status == 0)
status = pnfs_layout_process(lgp);
rpc_put_task(task);
dprintk("<-- %s status=%d\n", __func__, status);
return status;
}
static void
nfs4_layoutreturn_prepare(struct rpc_task *task, void *calldata)
{
struct nfs4_layoutreturn *lrp = calldata;
dprintk("--> %s\n", __func__);
if (nfs41_setup_sequence(lrp->clp->cl_session, &lrp->args.seq_args,
&lrp->res.seq_res, 0, task))
return;
rpc_call_start(task);
}
static void nfs4_layoutreturn_done(struct rpc_task *task, void *calldata)
{
struct nfs4_layoutreturn *lrp = calldata;
struct nfs_server *server;
struct pnfs_layout_hdr *lo = lrp->args.layout;
dprintk("--> %s\n", __func__);
if (!nfs4_sequence_done(task, &lrp->res.seq_res))
return;
server = NFS_SERVER(lrp->args.inode);
if (nfs4_async_handle_error(task, server, NULL) == -EAGAIN) {
rpc_restart_call_prepare(task);
return;
}
spin_lock(&lo->plh_inode->i_lock);
if (task->tk_status == 0) {
if (lrp->res.lrs_present) {
pnfs_set_layout_stateid(lo, &lrp->res.stateid, true);
} else
BUG_ON(!list_empty(&lo->plh_segs));
}
lo->plh_block_lgets--;
spin_unlock(&lo->plh_inode->i_lock);
dprintk("<-- %s\n", __func__);
}
static void nfs4_layoutreturn_release(void *calldata)
{
struct nfs4_layoutreturn *lrp = calldata;
dprintk("--> %s\n", __func__);
put_layout_hdr(lrp->args.layout);
kfree(calldata);
dprintk("<-- %s\n", __func__);
}
static const struct rpc_call_ops nfs4_layoutreturn_call_ops = {
.rpc_call_prepare = nfs4_layoutreturn_prepare,
.rpc_call_done = nfs4_layoutreturn_done,
.rpc_release = nfs4_layoutreturn_release,
};
int nfs4_proc_layoutreturn(struct nfs4_layoutreturn *lrp)
{
struct rpc_task *task;
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LAYOUTRETURN],
.rpc_argp = &lrp->args,
.rpc_resp = &lrp->res,
};
struct rpc_task_setup task_setup_data = {
.rpc_client = lrp->clp->cl_rpcclient,
.rpc_message = &msg,
.callback_ops = &nfs4_layoutreturn_call_ops,
.callback_data = lrp,
};
int status;
dprintk("--> %s\n", __func__);
task = rpc_run_task(&task_setup_data);
if (IS_ERR(task))
return PTR_ERR(task);
status = task->tk_status;
dprintk("<-- %s status=%d\n", __func__, status);
rpc_put_task(task);
return status;
}
/*
* Retrieve the list of Data Server devices from the MDS.
*/
static int _nfs4_getdevicelist(struct nfs_server *server,
const struct nfs_fh *fh,
struct pnfs_devicelist *devlist)
{
struct nfs4_getdevicelist_args args = {
.fh = fh,
.layoutclass = server->pnfs_curr_ld->id,
};
struct nfs4_getdevicelist_res res = {
.devlist = devlist,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETDEVICELIST],
.rpc_argp = &args,
.rpc_resp = &res,
};
int status;
dprintk("--> %s\n", __func__);
status = nfs4_call_sync(server->client, server, &msg, &args.seq_args,
&res.seq_res, 0);
dprintk("<-- %s status=%d\n", __func__, status);
return status;
}
int nfs4_proc_getdevicelist(struct nfs_server *server,
const struct nfs_fh *fh,
struct pnfs_devicelist *devlist)
{
struct nfs4_exception exception = { };
int err;
do {
err = nfs4_handle_exception(server,
_nfs4_getdevicelist(server, fh, devlist),
&exception);
} while (exception.retry);
dprintk("%s: err=%d, num_devs=%u\n", __func__,
err, devlist->num_devs);
return err;
}
EXPORT_SYMBOL_GPL(nfs4_proc_getdevicelist);
static int
_nfs4_proc_getdeviceinfo(struct nfs_server *server, struct pnfs_device *pdev)
{
struct nfs4_getdeviceinfo_args args = {
.pdev = pdev,
};
struct nfs4_getdeviceinfo_res res = {
.pdev = pdev,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_GETDEVICEINFO],
.rpc_argp = &args,
.rpc_resp = &res,
};
int status;
dprintk("--> %s\n", __func__);
status = nfs4_call_sync(server->client, server, &msg, &args.seq_args, &res.seq_res, 0);
dprintk("<-- %s status=%d\n", __func__, status);
return status;
}
int nfs4_proc_getdeviceinfo(struct nfs_server *server, struct pnfs_device *pdev)
{
struct nfs4_exception exception = { };
int err;
do {
err = nfs4_handle_exception(server,
_nfs4_proc_getdeviceinfo(server, pdev),
&exception);
} while (exception.retry);
return err;
}
EXPORT_SYMBOL_GPL(nfs4_proc_getdeviceinfo);
static void nfs4_layoutcommit_prepare(struct rpc_task *task, void *calldata)
{
struct nfs4_layoutcommit_data *data = calldata;
struct nfs_server *server = NFS_SERVER(data->args.inode);
if (nfs4_setup_sequence(server, &data->args.seq_args,
&data->res.seq_res, 1, task))
return;
rpc_call_start(task);
}
static void
nfs4_layoutcommit_done(struct rpc_task *task, void *calldata)
{
struct nfs4_layoutcommit_data *data = calldata;
struct nfs_server *server = NFS_SERVER(data->args.inode);
if (!nfs4_sequence_done(task, &data->res.seq_res))
return;
switch (task->tk_status) { /* Just ignore these failures */
case NFS4ERR_DELEG_REVOKED: /* layout was recalled */
case NFS4ERR_BADIOMODE: /* no IOMODE_RW layout for range */
case NFS4ERR_BADLAYOUT: /* no layout */
case NFS4ERR_GRACE: /* loca_recalim always false */
task->tk_status = 0;
}
if (nfs4_async_handle_error(task, server, NULL) == -EAGAIN) {
rpc_restart_call_prepare(task);
return;
}
if (task->tk_status == 0)
nfs_post_op_update_inode_force_wcc(data->args.inode,
data->res.fattr);
}
static void nfs4_layoutcommit_release(void *calldata)
{
struct nfs4_layoutcommit_data *data = calldata;
struct pnfs_layout_segment *lseg, *tmp;
unsigned long *bitlock = &NFS_I(data->args.inode)->flags;
pnfs_cleanup_layoutcommit(data);
/* Matched by references in pnfs_set_layoutcommit */
list_for_each_entry_safe(lseg, tmp, &data->lseg_list, pls_lc_list) {
list_del_init(&lseg->pls_lc_list);
if (test_and_clear_bit(NFS_LSEG_LAYOUTCOMMIT,
&lseg->pls_flags))
put_lseg(lseg);
}
clear_bit_unlock(NFS_INO_LAYOUTCOMMITTING, bitlock);
smp_mb__after_clear_bit();
wake_up_bit(bitlock, NFS_INO_LAYOUTCOMMITTING);
put_rpccred(data->cred);
kfree(data);
}
static const struct rpc_call_ops nfs4_layoutcommit_ops = {
.rpc_call_prepare = nfs4_layoutcommit_prepare,
.rpc_call_done = nfs4_layoutcommit_done,
.rpc_release = nfs4_layoutcommit_release,
};
int
nfs4_proc_layoutcommit(struct nfs4_layoutcommit_data *data, bool sync)
{
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_LAYOUTCOMMIT],
.rpc_argp = &data->args,
.rpc_resp = &data->res,
.rpc_cred = data->cred,
};
struct rpc_task_setup task_setup_data = {
.task = &data->task,
.rpc_client = NFS_CLIENT(data->args.inode),
.rpc_message = &msg,
.callback_ops = &nfs4_layoutcommit_ops,
.callback_data = data,
.flags = RPC_TASK_ASYNC,
};
struct rpc_task *task;
int status = 0;
dprintk("NFS: %4d initiating layoutcommit call. sync %d "
"lbw: %llu inode %lu\n",
data->task.tk_pid, sync,
data->args.lastbytewritten,
data->args.inode->i_ino);
task = rpc_run_task(&task_setup_data);
if (IS_ERR(task))
return PTR_ERR(task);
if (sync == false)
goto out;
status = nfs4_wait_for_completion_rpc_task(task);
if (status != 0)
goto out;
status = task->tk_status;
out:
dprintk("%s: status %d\n", __func__, status);
rpc_put_task(task);
return status;
}
static int
_nfs41_proc_secinfo_no_name(struct nfs_server *server, struct nfs_fh *fhandle,
struct nfs_fsinfo *info, struct nfs4_secinfo_flavors *flavors)
{
struct nfs41_secinfo_no_name_args args = {
.style = SECINFO_STYLE_CURRENT_FH,
};
struct nfs4_secinfo_res res = {
.flavors = flavors,
};
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_SECINFO_NO_NAME],
.rpc_argp = &args,
.rpc_resp = &res,
};
return nfs4_call_sync(server->client, server, &msg, &args.seq_args, &res.seq_res, 0);
}
static int
nfs41_proc_secinfo_no_name(struct nfs_server *server, struct nfs_fh *fhandle,
struct nfs_fsinfo *info, struct nfs4_secinfo_flavors *flavors)
{
struct nfs4_exception exception = { };
int err;
do {
err = _nfs41_proc_secinfo_no_name(server, fhandle, info, flavors);
switch (err) {
case 0:
case -NFS4ERR_WRONGSEC:
case -NFS4ERR_NOTSUPP:
break;
default:
err = nfs4_handle_exception(server, err, &exception);
}
} while (exception.retry);
return err;
}
static int
nfs41_find_root_sec(struct nfs_server *server, struct nfs_fh *fhandle,
struct nfs_fsinfo *info)
{
int err;
struct page *page;
rpc_authflavor_t flavor;
struct nfs4_secinfo_flavors *flavors;
page = alloc_page(GFP_KERNEL);
if (!page) {
err = -ENOMEM;
goto out;
}
flavors = page_address(page);
err = nfs41_proc_secinfo_no_name(server, fhandle, info, flavors);
/*
* Fall back on "guess and check" method if
* the server doesn't support SECINFO_NO_NAME
*/
if (err == -NFS4ERR_WRONGSEC || err == -NFS4ERR_NOTSUPP) {
err = nfs4_find_root_sec(server, fhandle, info);
goto out_freepage;
}
if (err)
goto out_freepage;
flavor = nfs_find_best_sec(flavors);
if (err == 0)
err = nfs4_lookup_root_sec(server, fhandle, info, flavor);
out_freepage:
put_page(page);
if (err == -EACCES)
return -EPERM;
out:
return err;
}
static int _nfs41_test_stateid(struct nfs_server *server, struct nfs4_state *state)
{
int status;
struct nfs41_test_stateid_args args = {
.stateid = &state->stateid,
};
struct nfs41_test_stateid_res res;
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_TEST_STATEID],
.rpc_argp = &args,
.rpc_resp = &res,
};
args.seq_args.sa_session = res.seq_res.sr_session = NULL;
status = nfs4_call_sync_sequence(server->client, server, &msg, &args.seq_args, &res.seq_res, 0, 1);
return status;
}
static int nfs41_test_stateid(struct nfs_server *server, struct nfs4_state *state)
{
struct nfs4_exception exception = { };
int err;
do {
err = nfs4_handle_exception(server,
_nfs41_test_stateid(server, state),
&exception);
} while (exception.retry);
return err;
}
static int _nfs4_free_stateid(struct nfs_server *server, struct nfs4_state *state)
{
int status;
struct nfs41_free_stateid_args args = {
.stateid = &state->stateid,
};
struct nfs41_free_stateid_res res;
struct rpc_message msg = {
.rpc_proc = &nfs4_procedures[NFSPROC4_CLNT_FREE_STATEID],
.rpc_argp = &args,
.rpc_resp = &res,
};
args.seq_args.sa_session = res.seq_res.sr_session = NULL;
status = nfs4_call_sync_sequence(server->client, server, &msg, &args.seq_args, &res.seq_res, 0, 1);
return status;
}
static int nfs41_free_stateid(struct nfs_server *server, struct nfs4_state *state)
{
struct nfs4_exception exception = { };
int err;
do {
err = nfs4_handle_exception(server,
_nfs4_free_stateid(server, state),
&exception);
} while (exception.retry);
return err;
}
#endif /* CONFIG_NFS_V4_1 */
struct nfs4_state_recovery_ops nfs40_reboot_recovery_ops = {
.owner_flag_bit = NFS_OWNER_RECLAIM_REBOOT,
.state_flag_bit = NFS_STATE_RECLAIM_REBOOT,
.recover_open = nfs4_open_reclaim,
.recover_lock = nfs4_lock_reclaim,
.establish_clid = nfs4_init_clientid,
.get_clid_cred = nfs4_get_setclientid_cred,
};
#if defined(CONFIG_NFS_V4_1)
struct nfs4_state_recovery_ops nfs41_reboot_recovery_ops = {
.owner_flag_bit = NFS_OWNER_RECLAIM_REBOOT,
.state_flag_bit = NFS_STATE_RECLAIM_REBOOT,
.recover_open = nfs4_open_reclaim,
.recover_lock = nfs4_lock_reclaim,
.establish_clid = nfs41_init_clientid,
.get_clid_cred = nfs4_get_exchange_id_cred,
.reclaim_complete = nfs41_proc_reclaim_complete,
};
#endif /* CONFIG_NFS_V4_1 */
struct nfs4_state_recovery_ops nfs40_nograce_recovery_ops = {
.owner_flag_bit = NFS_OWNER_RECLAIM_NOGRACE,
.state_flag_bit = NFS_STATE_RECLAIM_NOGRACE,
.recover_open = nfs4_open_expired,
.recover_lock = nfs4_lock_expired,
.establish_clid = nfs4_init_clientid,
.get_clid_cred = nfs4_get_setclientid_cred,
};
#if defined(CONFIG_NFS_V4_1)
struct nfs4_state_recovery_ops nfs41_nograce_recovery_ops = {
.owner_flag_bit = NFS_OWNER_RECLAIM_NOGRACE,
.state_flag_bit = NFS_STATE_RECLAIM_NOGRACE,
.recover_open = nfs41_open_expired,
.recover_lock = nfs41_lock_expired,
.establish_clid = nfs41_init_clientid,
.get_clid_cred = nfs4_get_exchange_id_cred,
};
#endif /* CONFIG_NFS_V4_1 */
struct nfs4_state_maintenance_ops nfs40_state_renewal_ops = {
.sched_state_renewal = nfs4_proc_async_renew,
.get_state_renewal_cred_locked = nfs4_get_renew_cred_locked,
.renew_lease = nfs4_proc_renew,
};
#if defined(CONFIG_NFS_V4_1)
struct nfs4_state_maintenance_ops nfs41_state_renewal_ops = {
.sched_state_renewal = nfs41_proc_async_sequence,
.get_state_renewal_cred_locked = nfs4_get_machine_cred_locked,
.renew_lease = nfs4_proc_sequence,
};
#endif
static const struct nfs4_minor_version_ops nfs_v4_0_minor_ops = {
.minor_version = 0,
.call_sync = _nfs4_call_sync,
.validate_stateid = nfs4_validate_delegation_stateid,
.find_root_sec = nfs4_find_root_sec,
.reboot_recovery_ops = &nfs40_reboot_recovery_ops,
.nograce_recovery_ops = &nfs40_nograce_recovery_ops,
.state_renewal_ops = &nfs40_state_renewal_ops,
};
#if defined(CONFIG_NFS_V4_1)
static const struct nfs4_minor_version_ops nfs_v4_1_minor_ops = {
.minor_version = 1,
.call_sync = _nfs4_call_sync_session,
.validate_stateid = nfs41_validate_delegation_stateid,
.find_root_sec = nfs41_find_root_sec,
.reboot_recovery_ops = &nfs41_reboot_recovery_ops,
.nograce_recovery_ops = &nfs41_nograce_recovery_ops,
.state_renewal_ops = &nfs41_state_renewal_ops,
};
#endif
const struct nfs4_minor_version_ops *nfs_v4_minor_ops[] = {
[0] = &nfs_v4_0_minor_ops,
#if defined(CONFIG_NFS_V4_1)
[1] = &nfs_v4_1_minor_ops,
#endif
};
static const struct inode_operations nfs4_file_inode_operations = {
.permission = nfs_permission,
.getattr = nfs_getattr,
.setattr = nfs_setattr,
.getxattr = generic_getxattr,
.setxattr = generic_setxattr,
.listxattr = generic_listxattr,
.removexattr = generic_removexattr,
};
const struct nfs_rpc_ops nfs_v4_clientops = {
.version = 4, /* protocol version */
.dentry_ops = &nfs4_dentry_operations,
.dir_inode_ops = &nfs4_dir_inode_operations,
.file_inode_ops = &nfs4_file_inode_operations,
.file_ops = &nfs4_file_operations,
.getroot = nfs4_proc_get_root,
.getattr = nfs4_proc_getattr,
.setattr = nfs4_proc_setattr,
.lookup = nfs4_proc_lookup,
.access = nfs4_proc_access,
.readlink = nfs4_proc_readlink,
.create = nfs4_proc_create,
.remove = nfs4_proc_remove,
.unlink_setup = nfs4_proc_unlink_setup,
.unlink_done = nfs4_proc_unlink_done,
.rename = nfs4_proc_rename,
.rename_setup = nfs4_proc_rename_setup,
.rename_done = nfs4_proc_rename_done,
.link = nfs4_proc_link,
.symlink = nfs4_proc_symlink,
.mkdir = nfs4_proc_mkdir,
.rmdir = nfs4_proc_remove,
.readdir = nfs4_proc_readdir,
.mknod = nfs4_proc_mknod,
.statfs = nfs4_proc_statfs,
.fsinfo = nfs4_proc_fsinfo,
.pathconf = nfs4_proc_pathconf,
.set_capabilities = nfs4_server_capabilities,
.decode_dirent = nfs4_decode_dirent,
.read_setup = nfs4_proc_read_setup,
.read_done = nfs4_read_done,
.write_setup = nfs4_proc_write_setup,
.write_done = nfs4_write_done,
.commit_setup = nfs4_proc_commit_setup,
.commit_done = nfs4_commit_done,
.lock = nfs4_proc_lock,
.clear_acl_cache = nfs4_zap_acl_attr,
.close_context = nfs4_close_context,
.open_context = nfs4_atomic_open,
.init_client = nfs4_init_client,
.secinfo = nfs4_proc_secinfo,
};
static const struct xattr_handler nfs4_xattr_nfs4_acl_handler = {
.prefix = XATTR_NAME_NFSV4_ACL,
.list = nfs4_xattr_list_nfs4_acl,
.get = nfs4_xattr_get_nfs4_acl,
.set = nfs4_xattr_set_nfs4_acl,
};
const struct xattr_handler *nfs4_xattr_handlers[] = {
&nfs4_xattr_nfs4_acl_handler,
NULL
};
/*
* Local variables:
* c-basic-offset: 8
* End:
*/