2bcc673101
Pull timer updates from Thomas Gleixner: "Yet another big pile of changes: - More year 2038 work from Arnd slowly reaching the point where we need to think about the syscalls themself. - A new timer function which allows to conditionally (re)arm a timer only when it's either not running or the new expiry time is sooner than the armed expiry time. This allows to use a single timer for multiple timeout requirements w/o caring about the first expiry time at the call site. - A new NMI safe accessor to clock real time for the printk timestamp work. Can be used by tracing, perf as well if required. - A large number of timer setup conversions from Kees which got collected here because either maintainers requested so or they simply got ignored. As Kees pointed out already there are a few trivial merge conflicts and some redundant commits which was unavoidable due to the size of this conversion effort. - Avoid a redundant iteration in the timer wheel softirq processing. - Provide a mechanism to treat RTC implementations depending on their hardware properties, i.e. don't inflict the write at the 0.5 seconds boundary which originates from the PC CMOS RTC to all RTCs. No functional change as drivers need to be updated separately. - The usual small updates to core code clocksource drivers. Nothing really exciting" * 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (111 commits) timers: Add a function to start/reduce a timer pstore: Use ktime_get_real_fast_ns() instead of __getnstimeofday() timer: Prepare to change all DEFINE_TIMER() callbacks netfilter: ipvs: Convert timers to use timer_setup() scsi: qla2xxx: Convert timers to use timer_setup() block/aoe: discover_timer: Convert timers to use timer_setup() ide: Convert timers to use timer_setup() drbd: Convert timers to use timer_setup() mailbox: Convert timers to use timer_setup() crypto: Convert timers to use timer_setup() drivers/pcmcia: omap1: Fix error in automated timer conversion ARM: footbridge: Fix typo in timer conversion drivers/sgi-xp: Convert timers to use timer_setup() drivers/pcmcia: Convert timers to use timer_setup() drivers/memstick: Convert timers to use timer_setup() drivers/macintosh: Convert timers to use timer_setup() hwrng/xgene-rng: Convert timers to use timer_setup() auxdisplay: Convert timers to use timer_setup() sparc/led: Convert timers to use timer_setup() mips: ip22/32: Convert timers to use timer_setup() ...
413 lines
9.5 KiB
C
413 lines
9.5 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Watchdog support on powerpc systems.
|
|
*
|
|
* Copyright 2017, IBM Corporation.
|
|
*
|
|
* This uses code from arch/sparc/kernel/nmi.c and kernel/watchdog.c
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/param.h>
|
|
#include <linux/init.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/nmi.h>
|
|
#include <linux/module.h>
|
|
#include <linux/export.h>
|
|
#include <linux/kprobes.h>
|
|
#include <linux/hardirq.h>
|
|
#include <linux/reboot.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/kdebug.h>
|
|
#include <linux/sched/debug.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/smp.h>
|
|
|
|
#include <asm/paca.h>
|
|
|
|
/*
|
|
* The watchdog has a simple timer that runs on each CPU, once per timer
|
|
* period. This is the heartbeat.
|
|
*
|
|
* Then there are checks to see if the heartbeat has not triggered on a CPU
|
|
* for the panic timeout period. Currently the watchdog only supports an
|
|
* SMP check, so the heartbeat only turns on when we have 2 or more CPUs.
|
|
*
|
|
* This is not an NMI watchdog, but Linux uses that name for a generic
|
|
* watchdog in some cases, so NMI gets used in some places.
|
|
*/
|
|
|
|
static cpumask_t wd_cpus_enabled __read_mostly;
|
|
|
|
static u64 wd_panic_timeout_tb __read_mostly; /* timebase ticks until panic */
|
|
static u64 wd_smp_panic_timeout_tb __read_mostly; /* panic other CPUs */
|
|
|
|
static u64 wd_timer_period_ms __read_mostly; /* interval between heartbeat */
|
|
|
|
static DEFINE_PER_CPU(struct timer_list, wd_timer);
|
|
static DEFINE_PER_CPU(u64, wd_timer_tb);
|
|
|
|
/*
|
|
* These are for the SMP checker. CPUs clear their pending bit in their
|
|
* heartbeat. If the bitmask becomes empty, the time is noted and the
|
|
* bitmask is refilled.
|
|
*
|
|
* All CPUs clear their bit in the pending mask every timer period.
|
|
* Once all have cleared, the time is noted and the bits are reset.
|
|
* If the time since all clear was greater than the panic timeout,
|
|
* we can panic with the list of stuck CPUs.
|
|
*
|
|
* This will work best with NMI IPIs for crash code so the stuck CPUs
|
|
* can be pulled out to get their backtraces.
|
|
*/
|
|
static unsigned long __wd_smp_lock;
|
|
static cpumask_t wd_smp_cpus_pending;
|
|
static cpumask_t wd_smp_cpus_stuck;
|
|
static u64 wd_smp_last_reset_tb;
|
|
|
|
static inline void wd_smp_lock(unsigned long *flags)
|
|
{
|
|
/*
|
|
* Avoid locking layers if possible.
|
|
* This may be called from low level interrupt handlers at some
|
|
* point in future.
|
|
*/
|
|
raw_local_irq_save(*flags);
|
|
hard_irq_disable(); /* Make it soft-NMI safe */
|
|
while (unlikely(test_and_set_bit_lock(0, &__wd_smp_lock))) {
|
|
raw_local_irq_restore(*flags);
|
|
spin_until_cond(!test_bit(0, &__wd_smp_lock));
|
|
raw_local_irq_save(*flags);
|
|
hard_irq_disable();
|
|
}
|
|
}
|
|
|
|
static inline void wd_smp_unlock(unsigned long *flags)
|
|
{
|
|
clear_bit_unlock(0, &__wd_smp_lock);
|
|
raw_local_irq_restore(*flags);
|
|
}
|
|
|
|
static void wd_lockup_ipi(struct pt_regs *regs)
|
|
{
|
|
pr_emerg("Watchdog CPU:%d Hard LOCKUP\n", raw_smp_processor_id());
|
|
print_modules();
|
|
print_irqtrace_events(current);
|
|
if (regs)
|
|
show_regs(regs);
|
|
else
|
|
dump_stack();
|
|
|
|
if (hardlockup_panic)
|
|
nmi_panic(regs, "Hard LOCKUP");
|
|
}
|
|
|
|
static void set_cpumask_stuck(const struct cpumask *cpumask, u64 tb)
|
|
{
|
|
cpumask_or(&wd_smp_cpus_stuck, &wd_smp_cpus_stuck, cpumask);
|
|
cpumask_andnot(&wd_smp_cpus_pending, &wd_smp_cpus_pending, cpumask);
|
|
if (cpumask_empty(&wd_smp_cpus_pending)) {
|
|
wd_smp_last_reset_tb = tb;
|
|
cpumask_andnot(&wd_smp_cpus_pending,
|
|
&wd_cpus_enabled,
|
|
&wd_smp_cpus_stuck);
|
|
}
|
|
}
|
|
static void set_cpu_stuck(int cpu, u64 tb)
|
|
{
|
|
set_cpumask_stuck(cpumask_of(cpu), tb);
|
|
}
|
|
|
|
static void watchdog_smp_panic(int cpu, u64 tb)
|
|
{
|
|
unsigned long flags;
|
|
int c;
|
|
|
|
wd_smp_lock(&flags);
|
|
/* Double check some things under lock */
|
|
if ((s64)(tb - wd_smp_last_reset_tb) < (s64)wd_smp_panic_timeout_tb)
|
|
goto out;
|
|
if (cpumask_test_cpu(cpu, &wd_smp_cpus_pending))
|
|
goto out;
|
|
if (cpumask_weight(&wd_smp_cpus_pending) == 0)
|
|
goto out;
|
|
|
|
pr_emerg("Watchdog CPU:%d detected Hard LOCKUP other CPUS:%*pbl\n",
|
|
cpu, cpumask_pr_args(&wd_smp_cpus_pending));
|
|
|
|
/*
|
|
* Try to trigger the stuck CPUs.
|
|
*/
|
|
for_each_cpu(c, &wd_smp_cpus_pending) {
|
|
if (c == cpu)
|
|
continue;
|
|
smp_send_nmi_ipi(c, wd_lockup_ipi, 1000000);
|
|
}
|
|
smp_flush_nmi_ipi(1000000);
|
|
|
|
/* Take the stuck CPUs out of the watch group */
|
|
set_cpumask_stuck(&wd_smp_cpus_pending, tb);
|
|
|
|
wd_smp_unlock(&flags);
|
|
|
|
printk_safe_flush();
|
|
/*
|
|
* printk_safe_flush() seems to require another print
|
|
* before anything actually goes out to console.
|
|
*/
|
|
if (sysctl_hardlockup_all_cpu_backtrace)
|
|
trigger_allbutself_cpu_backtrace();
|
|
|
|
if (hardlockup_panic)
|
|
nmi_panic(NULL, "Hard LOCKUP");
|
|
|
|
return;
|
|
|
|
out:
|
|
wd_smp_unlock(&flags);
|
|
}
|
|
|
|
static void wd_smp_clear_cpu_pending(int cpu, u64 tb)
|
|
{
|
|
if (!cpumask_test_cpu(cpu, &wd_smp_cpus_pending)) {
|
|
if (unlikely(cpumask_test_cpu(cpu, &wd_smp_cpus_stuck))) {
|
|
unsigned long flags;
|
|
|
|
pr_emerg("Watchdog CPU:%d became unstuck\n", cpu);
|
|
wd_smp_lock(&flags);
|
|
cpumask_clear_cpu(cpu, &wd_smp_cpus_stuck);
|
|
wd_smp_unlock(&flags);
|
|
}
|
|
return;
|
|
}
|
|
cpumask_clear_cpu(cpu, &wd_smp_cpus_pending);
|
|
if (cpumask_empty(&wd_smp_cpus_pending)) {
|
|
unsigned long flags;
|
|
|
|
wd_smp_lock(&flags);
|
|
if (cpumask_empty(&wd_smp_cpus_pending)) {
|
|
wd_smp_last_reset_tb = tb;
|
|
cpumask_andnot(&wd_smp_cpus_pending,
|
|
&wd_cpus_enabled,
|
|
&wd_smp_cpus_stuck);
|
|
}
|
|
wd_smp_unlock(&flags);
|
|
}
|
|
}
|
|
|
|
static void watchdog_timer_interrupt(int cpu)
|
|
{
|
|
u64 tb = get_tb();
|
|
|
|
per_cpu(wd_timer_tb, cpu) = tb;
|
|
|
|
wd_smp_clear_cpu_pending(cpu, tb);
|
|
|
|
if ((s64)(tb - wd_smp_last_reset_tb) >= (s64)wd_smp_panic_timeout_tb)
|
|
watchdog_smp_panic(cpu, tb);
|
|
}
|
|
|
|
void soft_nmi_interrupt(struct pt_regs *regs)
|
|
{
|
|
unsigned long flags;
|
|
int cpu = raw_smp_processor_id();
|
|
u64 tb;
|
|
|
|
if (!cpumask_test_cpu(cpu, &wd_cpus_enabled))
|
|
return;
|
|
|
|
nmi_enter();
|
|
|
|
__this_cpu_inc(irq_stat.soft_nmi_irqs);
|
|
|
|
tb = get_tb();
|
|
if (tb - per_cpu(wd_timer_tb, cpu) >= wd_panic_timeout_tb) {
|
|
per_cpu(wd_timer_tb, cpu) = tb;
|
|
|
|
wd_smp_lock(&flags);
|
|
if (cpumask_test_cpu(cpu, &wd_smp_cpus_stuck)) {
|
|
wd_smp_unlock(&flags);
|
|
goto out;
|
|
}
|
|
set_cpu_stuck(cpu, tb);
|
|
|
|
pr_emerg("Watchdog CPU:%d Hard LOCKUP\n", cpu);
|
|
print_modules();
|
|
print_irqtrace_events(current);
|
|
if (regs)
|
|
show_regs(regs);
|
|
else
|
|
dump_stack();
|
|
|
|
wd_smp_unlock(&flags);
|
|
|
|
if (sysctl_hardlockup_all_cpu_backtrace)
|
|
trigger_allbutself_cpu_backtrace();
|
|
|
|
if (hardlockup_panic)
|
|
nmi_panic(regs, "Hard LOCKUP");
|
|
}
|
|
if (wd_panic_timeout_tb < 0x7fffffff)
|
|
mtspr(SPRN_DEC, wd_panic_timeout_tb);
|
|
|
|
out:
|
|
nmi_exit();
|
|
}
|
|
|
|
static void wd_timer_reset(unsigned int cpu, struct timer_list *t)
|
|
{
|
|
t->expires = jiffies + msecs_to_jiffies(wd_timer_period_ms);
|
|
if (wd_timer_period_ms > 1000)
|
|
t->expires = __round_jiffies_up(t->expires, cpu);
|
|
add_timer_on(t, cpu);
|
|
}
|
|
|
|
static void wd_timer_fn(struct timer_list *t)
|
|
{
|
|
int cpu = smp_processor_id();
|
|
|
|
watchdog_timer_interrupt(cpu);
|
|
|
|
wd_timer_reset(cpu, t);
|
|
}
|
|
|
|
void arch_touch_nmi_watchdog(void)
|
|
{
|
|
unsigned long ticks = tb_ticks_per_usec * wd_timer_period_ms * 1000;
|
|
int cpu = smp_processor_id();
|
|
|
|
if (get_tb() - per_cpu(wd_timer_tb, cpu) >= ticks)
|
|
watchdog_timer_interrupt(cpu);
|
|
}
|
|
EXPORT_SYMBOL(arch_touch_nmi_watchdog);
|
|
|
|
static void start_watchdog_timer_on(unsigned int cpu)
|
|
{
|
|
struct timer_list *t = per_cpu_ptr(&wd_timer, cpu);
|
|
|
|
per_cpu(wd_timer_tb, cpu) = get_tb();
|
|
|
|
timer_setup(t, wd_timer_fn, TIMER_PINNED);
|
|
wd_timer_reset(cpu, t);
|
|
}
|
|
|
|
static void stop_watchdog_timer_on(unsigned int cpu)
|
|
{
|
|
struct timer_list *t = per_cpu_ptr(&wd_timer, cpu);
|
|
|
|
del_timer_sync(t);
|
|
}
|
|
|
|
static int start_wd_on_cpu(unsigned int cpu)
|
|
{
|
|
unsigned long flags;
|
|
|
|
if (cpumask_test_cpu(cpu, &wd_cpus_enabled)) {
|
|
WARN_ON(1);
|
|
return 0;
|
|
}
|
|
|
|
if (!(watchdog_enabled & NMI_WATCHDOG_ENABLED))
|
|
return 0;
|
|
|
|
if (!cpumask_test_cpu(cpu, &watchdog_cpumask))
|
|
return 0;
|
|
|
|
wd_smp_lock(&flags);
|
|
cpumask_set_cpu(cpu, &wd_cpus_enabled);
|
|
if (cpumask_weight(&wd_cpus_enabled) == 1) {
|
|
cpumask_set_cpu(cpu, &wd_smp_cpus_pending);
|
|
wd_smp_last_reset_tb = get_tb();
|
|
}
|
|
wd_smp_unlock(&flags);
|
|
|
|
start_watchdog_timer_on(cpu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int stop_wd_on_cpu(unsigned int cpu)
|
|
{
|
|
unsigned long flags;
|
|
|
|
if (!cpumask_test_cpu(cpu, &wd_cpus_enabled))
|
|
return 0; /* Can happen in CPU unplug case */
|
|
|
|
stop_watchdog_timer_on(cpu);
|
|
|
|
wd_smp_lock(&flags);
|
|
cpumask_clear_cpu(cpu, &wd_cpus_enabled);
|
|
wd_smp_unlock(&flags);
|
|
|
|
wd_smp_clear_cpu_pending(cpu, get_tb());
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void watchdog_calc_timeouts(void)
|
|
{
|
|
wd_panic_timeout_tb = watchdog_thresh * ppc_tb_freq;
|
|
|
|
/* Have the SMP detector trigger a bit later */
|
|
wd_smp_panic_timeout_tb = wd_panic_timeout_tb * 3 / 2;
|
|
|
|
/* 2/5 is the factor that the perf based detector uses */
|
|
wd_timer_period_ms = watchdog_thresh * 1000 * 2 / 5;
|
|
}
|
|
|
|
void watchdog_nmi_stop(void)
|
|
{
|
|
int cpu;
|
|
|
|
for_each_cpu(cpu, &wd_cpus_enabled)
|
|
stop_wd_on_cpu(cpu);
|
|
}
|
|
|
|
void watchdog_nmi_start(void)
|
|
{
|
|
int cpu;
|
|
|
|
watchdog_calc_timeouts();
|
|
for_each_cpu_and(cpu, cpu_online_mask, &watchdog_cpumask)
|
|
start_wd_on_cpu(cpu);
|
|
}
|
|
|
|
/*
|
|
* Invoked from core watchdog init.
|
|
*/
|
|
int __init watchdog_nmi_probe(void)
|
|
{
|
|
int err;
|
|
|
|
err = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
|
|
"powerpc/watchdog:online",
|
|
start_wd_on_cpu, stop_wd_on_cpu);
|
|
if (err < 0) {
|
|
pr_warn("Watchdog could not be initialized");
|
|
return err;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void handle_backtrace_ipi(struct pt_regs *regs)
|
|
{
|
|
nmi_cpu_backtrace(regs);
|
|
}
|
|
|
|
static void raise_backtrace_ipi(cpumask_t *mask)
|
|
{
|
|
unsigned int cpu;
|
|
|
|
for_each_cpu(cpu, mask) {
|
|
if (cpu == smp_processor_id())
|
|
handle_backtrace_ipi(NULL);
|
|
else
|
|
smp_send_nmi_ipi(cpu, handle_backtrace_ipi, 1000000);
|
|
}
|
|
}
|
|
|
|
void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self)
|
|
{
|
|
nmi_trigger_cpumask_backtrace(mask, exclude_self, raise_backtrace_ipi);
|
|
}
|