linux/kernel/rcu/rcu.h
Frederic Weisbecker 2be4686d86 rcu: Introduce rcu_cpu_online()
Export the RCU point of view as to when a CPU is considered offline
(ie: when does RCU consider that a CPU is sufficiently down in the
hotplug process to not feature any possible read side).

This will be used by RCU-tasks whose vision of an offline CPU should
reasonably match the one of RCU core.

Fixes: cff9b2332ab7 ("kernel/sched: Modify initial boot task idle setup")
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
2023-11-01 22:03:27 +01:00

669 lines
21 KiB
C

/* SPDX-License-Identifier: GPL-2.0+ */
/*
* Read-Copy Update definitions shared among RCU implementations.
*
* Copyright IBM Corporation, 2011
*
* Author: Paul E. McKenney <paulmck@linux.ibm.com>
*/
#ifndef __LINUX_RCU_H
#define __LINUX_RCU_H
#include <linux/slab.h>
#include <trace/events/rcu.h>
/*
* Grace-period counter management.
*
* The two least significant bits contain the control flags.
* The most significant bits contain the grace-period sequence counter.
*
* When both control flags are zero, no grace period is in progress.
* When either bit is non-zero, a grace period has started and is in
* progress. When the grace period completes, the control flags are reset
* to 0 and the grace-period sequence counter is incremented.
*
* However some specific RCU usages make use of custom values.
*
* SRCU special control values:
*
* SRCU_SNP_INIT_SEQ : Invalid/init value set when SRCU node
* is initialized.
*
* SRCU_STATE_IDLE : No SRCU gp is in progress
*
* SRCU_STATE_SCAN1 : State set by rcu_seq_start(). Indicates
* we are scanning the readers on the slot
* defined as inactive (there might well
* be pending readers that will use that
* index, but their number is bounded).
*
* SRCU_STATE_SCAN2 : State set manually via rcu_seq_set_state()
* Indicates we are flipping the readers
* index and then scanning the readers on the
* slot newly designated as inactive (again,
* the number of pending readers that will use
* this inactive index is bounded).
*
* RCU polled GP special control value:
*
* RCU_GET_STATE_COMPLETED : State value indicating an already-completed
* polled GP has completed. This value covers
* both the state and the counter of the
* grace-period sequence number.
*/
#define RCU_SEQ_CTR_SHIFT 2
#define RCU_SEQ_STATE_MASK ((1 << RCU_SEQ_CTR_SHIFT) - 1)
/* Low-order bit definition for polled grace-period APIs. */
#define RCU_GET_STATE_COMPLETED 0x1
extern int sysctl_sched_rt_runtime;
/*
* Return the counter portion of a sequence number previously returned
* by rcu_seq_snap() or rcu_seq_current().
*/
static inline unsigned long rcu_seq_ctr(unsigned long s)
{
return s >> RCU_SEQ_CTR_SHIFT;
}
/*
* Return the state portion of a sequence number previously returned
* by rcu_seq_snap() or rcu_seq_current().
*/
static inline int rcu_seq_state(unsigned long s)
{
return s & RCU_SEQ_STATE_MASK;
}
/*
* Set the state portion of the pointed-to sequence number.
* The caller is responsible for preventing conflicting updates.
*/
static inline void rcu_seq_set_state(unsigned long *sp, int newstate)
{
WARN_ON_ONCE(newstate & ~RCU_SEQ_STATE_MASK);
WRITE_ONCE(*sp, (*sp & ~RCU_SEQ_STATE_MASK) + newstate);
}
/* Adjust sequence number for start of update-side operation. */
static inline void rcu_seq_start(unsigned long *sp)
{
WRITE_ONCE(*sp, *sp + 1);
smp_mb(); /* Ensure update-side operation after counter increment. */
WARN_ON_ONCE(rcu_seq_state(*sp) != 1);
}
/* Compute the end-of-grace-period value for the specified sequence number. */
static inline unsigned long rcu_seq_endval(unsigned long *sp)
{
return (*sp | RCU_SEQ_STATE_MASK) + 1;
}
/* Adjust sequence number for end of update-side operation. */
static inline void rcu_seq_end(unsigned long *sp)
{
smp_mb(); /* Ensure update-side operation before counter increment. */
WARN_ON_ONCE(!rcu_seq_state(*sp));
WRITE_ONCE(*sp, rcu_seq_endval(sp));
}
/*
* rcu_seq_snap - Take a snapshot of the update side's sequence number.
*
* This function returns the earliest value of the grace-period sequence number
* that will indicate that a full grace period has elapsed since the current
* time. Once the grace-period sequence number has reached this value, it will
* be safe to invoke all callbacks that have been registered prior to the
* current time. This value is the current grace-period number plus two to the
* power of the number of low-order bits reserved for state, then rounded up to
* the next value in which the state bits are all zero.
*/
static inline unsigned long rcu_seq_snap(unsigned long *sp)
{
unsigned long s;
s = (READ_ONCE(*sp) + 2 * RCU_SEQ_STATE_MASK + 1) & ~RCU_SEQ_STATE_MASK;
smp_mb(); /* Above access must not bleed into critical section. */
return s;
}
/* Return the current value the update side's sequence number, no ordering. */
static inline unsigned long rcu_seq_current(unsigned long *sp)
{
return READ_ONCE(*sp);
}
/*
* Given a snapshot from rcu_seq_snap(), determine whether or not the
* corresponding update-side operation has started.
*/
static inline bool rcu_seq_started(unsigned long *sp, unsigned long s)
{
return ULONG_CMP_LT((s - 1) & ~RCU_SEQ_STATE_MASK, READ_ONCE(*sp));
}
/*
* Given a snapshot from rcu_seq_snap(), determine whether or not a
* full update-side operation has occurred.
*/
static inline bool rcu_seq_done(unsigned long *sp, unsigned long s)
{
return ULONG_CMP_GE(READ_ONCE(*sp), s);
}
/*
* Given a snapshot from rcu_seq_snap(), determine whether or not a
* full update-side operation has occurred, but do not allow the
* (ULONG_MAX / 2) safety-factor/guard-band.
*/
static inline bool rcu_seq_done_exact(unsigned long *sp, unsigned long s)
{
unsigned long cur_s = READ_ONCE(*sp);
return ULONG_CMP_GE(cur_s, s) || ULONG_CMP_LT(cur_s, s - (2 * RCU_SEQ_STATE_MASK + 1));
}
/*
* Has a grace period completed since the time the old gp_seq was collected?
*/
static inline bool rcu_seq_completed_gp(unsigned long old, unsigned long new)
{
return ULONG_CMP_LT(old, new & ~RCU_SEQ_STATE_MASK);
}
/*
* Has a grace period started since the time the old gp_seq was collected?
*/
static inline bool rcu_seq_new_gp(unsigned long old, unsigned long new)
{
return ULONG_CMP_LT((old + RCU_SEQ_STATE_MASK) & ~RCU_SEQ_STATE_MASK,
new);
}
/*
* Roughly how many full grace periods have elapsed between the collection
* of the two specified grace periods?
*/
static inline unsigned long rcu_seq_diff(unsigned long new, unsigned long old)
{
unsigned long rnd_diff;
if (old == new)
return 0;
/*
* Compute the number of grace periods (still shifted up), plus
* one if either of new and old is not an exact grace period.
*/
rnd_diff = (new & ~RCU_SEQ_STATE_MASK) -
((old + RCU_SEQ_STATE_MASK) & ~RCU_SEQ_STATE_MASK) +
((new & RCU_SEQ_STATE_MASK) || (old & RCU_SEQ_STATE_MASK));
if (ULONG_CMP_GE(RCU_SEQ_STATE_MASK, rnd_diff))
return 1; /* Definitely no grace period has elapsed. */
return ((rnd_diff - RCU_SEQ_STATE_MASK - 1) >> RCU_SEQ_CTR_SHIFT) + 2;
}
/*
* debug_rcu_head_queue()/debug_rcu_head_unqueue() are used internally
* by call_rcu() and rcu callback execution, and are therefore not part
* of the RCU API. These are in rcupdate.h because they are used by all
* RCU implementations.
*/
#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
# define STATE_RCU_HEAD_READY 0
# define STATE_RCU_HEAD_QUEUED 1
extern const struct debug_obj_descr rcuhead_debug_descr;
static inline int debug_rcu_head_queue(struct rcu_head *head)
{
int r1;
r1 = debug_object_activate(head, &rcuhead_debug_descr);
debug_object_active_state(head, &rcuhead_debug_descr,
STATE_RCU_HEAD_READY,
STATE_RCU_HEAD_QUEUED);
return r1;
}
static inline void debug_rcu_head_unqueue(struct rcu_head *head)
{
debug_object_active_state(head, &rcuhead_debug_descr,
STATE_RCU_HEAD_QUEUED,
STATE_RCU_HEAD_READY);
debug_object_deactivate(head, &rcuhead_debug_descr);
}
#else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
static inline int debug_rcu_head_queue(struct rcu_head *head)
{
return 0;
}
static inline void debug_rcu_head_unqueue(struct rcu_head *head)
{
}
#endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
static inline void debug_rcu_head_callback(struct rcu_head *rhp)
{
if (unlikely(!rhp->func))
kmem_dump_obj(rhp);
}
extern int rcu_cpu_stall_suppress_at_boot;
static inline bool rcu_stall_is_suppressed_at_boot(void)
{
return rcu_cpu_stall_suppress_at_boot && !rcu_inkernel_boot_has_ended();
}
#ifdef CONFIG_RCU_STALL_COMMON
extern int rcu_cpu_stall_ftrace_dump;
extern int rcu_cpu_stall_suppress;
extern int rcu_cpu_stall_timeout;
extern int rcu_exp_cpu_stall_timeout;
extern int rcu_cpu_stall_cputime;
extern bool rcu_exp_stall_task_details __read_mostly;
int rcu_jiffies_till_stall_check(void);
int rcu_exp_jiffies_till_stall_check(void);
static inline bool rcu_stall_is_suppressed(void)
{
return rcu_stall_is_suppressed_at_boot() || rcu_cpu_stall_suppress;
}
#define rcu_ftrace_dump_stall_suppress() \
do { \
if (!rcu_cpu_stall_suppress) \
rcu_cpu_stall_suppress = 3; \
} while (0)
#define rcu_ftrace_dump_stall_unsuppress() \
do { \
if (rcu_cpu_stall_suppress == 3) \
rcu_cpu_stall_suppress = 0; \
} while (0)
#else /* #endif #ifdef CONFIG_RCU_STALL_COMMON */
static inline bool rcu_stall_is_suppressed(void)
{
return rcu_stall_is_suppressed_at_boot();
}
#define rcu_ftrace_dump_stall_suppress()
#define rcu_ftrace_dump_stall_unsuppress()
#endif /* #ifdef CONFIG_RCU_STALL_COMMON */
/*
* Strings used in tracepoints need to be exported via the
* tracing system such that tools like perf and trace-cmd can
* translate the string address pointers to actual text.
*/
#define TPS(x) tracepoint_string(x)
/*
* Dump the ftrace buffer, but only one time per callsite per boot.
*/
#define rcu_ftrace_dump(oops_dump_mode) \
do { \
static atomic_t ___rfd_beenhere = ATOMIC_INIT(0); \
\
if (!atomic_read(&___rfd_beenhere) && \
!atomic_xchg(&___rfd_beenhere, 1)) { \
tracing_off(); \
rcu_ftrace_dump_stall_suppress(); \
ftrace_dump(oops_dump_mode); \
rcu_ftrace_dump_stall_unsuppress(); \
} \
} while (0)
void rcu_early_boot_tests(void);
void rcu_test_sync_prims(void);
/*
* This function really isn't for public consumption, but RCU is special in
* that context switches can allow the state machine to make progress.
*/
extern void resched_cpu(int cpu);
#if !defined(CONFIG_TINY_RCU)
#include <linux/rcu_node_tree.h>
extern int rcu_num_lvls;
extern int num_rcu_lvl[];
extern int rcu_num_nodes;
static bool rcu_fanout_exact;
static int rcu_fanout_leaf;
/*
* Compute the per-level fanout, either using the exact fanout specified
* or balancing the tree, depending on the rcu_fanout_exact boot parameter.
*/
static inline void rcu_init_levelspread(int *levelspread, const int *levelcnt)
{
int i;
for (i = 0; i < RCU_NUM_LVLS; i++)
levelspread[i] = INT_MIN;
if (rcu_fanout_exact) {
levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
for (i = rcu_num_lvls - 2; i >= 0; i--)
levelspread[i] = RCU_FANOUT;
} else {
int ccur;
int cprv;
cprv = nr_cpu_ids;
for (i = rcu_num_lvls - 1; i >= 0; i--) {
ccur = levelcnt[i];
levelspread[i] = (cprv + ccur - 1) / ccur;
cprv = ccur;
}
}
}
extern void rcu_init_geometry(void);
/* Returns a pointer to the first leaf rcu_node structure. */
#define rcu_first_leaf_node() (rcu_state.level[rcu_num_lvls - 1])
/* Is this rcu_node a leaf? */
#define rcu_is_leaf_node(rnp) ((rnp)->level == rcu_num_lvls - 1)
/* Is this rcu_node the last leaf? */
#define rcu_is_last_leaf_node(rnp) ((rnp) == &rcu_state.node[rcu_num_nodes - 1])
/*
* Do a full breadth-first scan of the {s,}rcu_node structures for the
* specified state structure (for SRCU) or the only rcu_state structure
* (for RCU).
*/
#define _rcu_for_each_node_breadth_first(sp, rnp) \
for ((rnp) = &(sp)->node[0]; \
(rnp) < &(sp)->node[rcu_num_nodes]; (rnp)++)
#define rcu_for_each_node_breadth_first(rnp) \
_rcu_for_each_node_breadth_first(&rcu_state, rnp)
#define srcu_for_each_node_breadth_first(ssp, rnp) \
_rcu_for_each_node_breadth_first(ssp->srcu_sup, rnp)
/*
* Scan the leaves of the rcu_node hierarchy for the rcu_state structure.
* Note that if there is a singleton rcu_node tree with but one rcu_node
* structure, this loop -will- visit the rcu_node structure. It is still
* a leaf node, even if it is also the root node.
*/
#define rcu_for_each_leaf_node(rnp) \
for ((rnp) = rcu_first_leaf_node(); \
(rnp) < &rcu_state.node[rcu_num_nodes]; (rnp)++)
/*
* Iterate over all possible CPUs in a leaf RCU node.
*/
#define for_each_leaf_node_possible_cpu(rnp, cpu) \
for (WARN_ON_ONCE(!rcu_is_leaf_node(rnp)), \
(cpu) = cpumask_next((rnp)->grplo - 1, cpu_possible_mask); \
(cpu) <= rnp->grphi; \
(cpu) = cpumask_next((cpu), cpu_possible_mask))
/*
* Iterate over all CPUs in a leaf RCU node's specified mask.
*/
#define rcu_find_next_bit(rnp, cpu, mask) \
((rnp)->grplo + find_next_bit(&(mask), BITS_PER_LONG, (cpu)))
#define for_each_leaf_node_cpu_mask(rnp, cpu, mask) \
for (WARN_ON_ONCE(!rcu_is_leaf_node(rnp)), \
(cpu) = rcu_find_next_bit((rnp), 0, (mask)); \
(cpu) <= rnp->grphi; \
(cpu) = rcu_find_next_bit((rnp), (cpu) + 1 - (rnp->grplo), (mask)))
#endif /* !defined(CONFIG_TINY_RCU) */
#if !defined(CONFIG_TINY_RCU) || defined(CONFIG_TASKS_RCU_GENERIC)
/*
* Wrappers for the rcu_node::lock acquire and release.
*
* Because the rcu_nodes form a tree, the tree traversal locking will observe
* different lock values, this in turn means that an UNLOCK of one level
* followed by a LOCK of another level does not imply a full memory barrier;
* and most importantly transitivity is lost.
*
* In order to restore full ordering between tree levels, augment the regular
* lock acquire functions with smp_mb__after_unlock_lock().
*
* As ->lock of struct rcu_node is a __private field, therefore one should use
* these wrappers rather than directly call raw_spin_{lock,unlock}* on ->lock.
*/
#define raw_spin_lock_rcu_node(p) \
do { \
raw_spin_lock(&ACCESS_PRIVATE(p, lock)); \
smp_mb__after_unlock_lock(); \
} while (0)
#define raw_spin_unlock_rcu_node(p) \
do { \
lockdep_assert_irqs_disabled(); \
raw_spin_unlock(&ACCESS_PRIVATE(p, lock)); \
} while (0)
#define raw_spin_lock_irq_rcu_node(p) \
do { \
raw_spin_lock_irq(&ACCESS_PRIVATE(p, lock)); \
smp_mb__after_unlock_lock(); \
} while (0)
#define raw_spin_unlock_irq_rcu_node(p) \
do { \
lockdep_assert_irqs_disabled(); \
raw_spin_unlock_irq(&ACCESS_PRIVATE(p, lock)); \
} while (0)
#define raw_spin_lock_irqsave_rcu_node(p, flags) \
do { \
raw_spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags); \
smp_mb__after_unlock_lock(); \
} while (0)
#define raw_spin_unlock_irqrestore_rcu_node(p, flags) \
do { \
lockdep_assert_irqs_disabled(); \
raw_spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags); \
} while (0)
#define raw_spin_trylock_rcu_node(p) \
({ \
bool ___locked = raw_spin_trylock(&ACCESS_PRIVATE(p, lock)); \
\
if (___locked) \
smp_mb__after_unlock_lock(); \
___locked; \
})
#define raw_lockdep_assert_held_rcu_node(p) \
lockdep_assert_held(&ACCESS_PRIVATE(p, lock))
#endif // #if !defined(CONFIG_TINY_RCU) || defined(CONFIG_TASKS_RCU_GENERIC)
#ifdef CONFIG_TINY_RCU
/* Tiny RCU doesn't expedite, as its purpose in life is instead to be tiny. */
static inline bool rcu_gp_is_normal(void) { return true; }
static inline bool rcu_gp_is_expedited(void) { return false; }
static inline bool rcu_async_should_hurry(void) { return false; }
static inline void rcu_expedite_gp(void) { }
static inline void rcu_unexpedite_gp(void) { }
static inline void rcu_async_hurry(void) { }
static inline void rcu_async_relax(void) { }
static inline bool rcu_cpu_online(int cpu) { return true; }
#else /* #ifdef CONFIG_TINY_RCU */
bool rcu_gp_is_normal(void); /* Internal RCU use. */
bool rcu_gp_is_expedited(void); /* Internal RCU use. */
bool rcu_async_should_hurry(void); /* Internal RCU use. */
void rcu_expedite_gp(void);
void rcu_unexpedite_gp(void);
void rcu_async_hurry(void);
void rcu_async_relax(void);
void rcupdate_announce_bootup_oddness(void);
bool rcu_cpu_online(int cpu);
#ifdef CONFIG_TASKS_RCU_GENERIC
void show_rcu_tasks_gp_kthreads(void);
#else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
static inline void show_rcu_tasks_gp_kthreads(void) {}
#endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */
#endif /* #else #ifdef CONFIG_TINY_RCU */
#ifdef CONFIG_TASKS_RCU
struct task_struct *get_rcu_tasks_gp_kthread(void);
#endif // # ifdef CONFIG_TASKS_RCU
#ifdef CONFIG_TASKS_RUDE_RCU
struct task_struct *get_rcu_tasks_rude_gp_kthread(void);
#endif // # ifdef CONFIG_TASKS_RUDE_RCU
#define RCU_SCHEDULER_INACTIVE 0
#define RCU_SCHEDULER_INIT 1
#define RCU_SCHEDULER_RUNNING 2
enum rcutorture_type {
RCU_FLAVOR,
RCU_TASKS_FLAVOR,
RCU_TASKS_RUDE_FLAVOR,
RCU_TASKS_TRACING_FLAVOR,
RCU_TRIVIAL_FLAVOR,
SRCU_FLAVOR,
INVALID_RCU_FLAVOR
};
#if defined(CONFIG_RCU_LAZY)
unsigned long rcu_lazy_get_jiffies_till_flush(void);
void rcu_lazy_set_jiffies_till_flush(unsigned long j);
#else
static inline unsigned long rcu_lazy_get_jiffies_till_flush(void) { return 0; }
static inline void rcu_lazy_set_jiffies_till_flush(unsigned long j) { }
#endif
#if defined(CONFIG_TREE_RCU)
void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
unsigned long *gp_seq);
void do_trace_rcu_torture_read(const char *rcutorturename,
struct rcu_head *rhp,
unsigned long secs,
unsigned long c_old,
unsigned long c);
void rcu_gp_set_torture_wait(int duration);
#else
static inline void rcutorture_get_gp_data(enum rcutorture_type test_type,
int *flags, unsigned long *gp_seq)
{
*flags = 0;
*gp_seq = 0;
}
#ifdef CONFIG_RCU_TRACE
void do_trace_rcu_torture_read(const char *rcutorturename,
struct rcu_head *rhp,
unsigned long secs,
unsigned long c_old,
unsigned long c);
#else
#define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
do { } while (0)
#endif
static inline void rcu_gp_set_torture_wait(int duration) { }
#endif
#ifdef CONFIG_TINY_SRCU
static inline void srcutorture_get_gp_data(enum rcutorture_type test_type,
struct srcu_struct *sp, int *flags,
unsigned long *gp_seq)
{
if (test_type != SRCU_FLAVOR)
return;
*flags = 0;
*gp_seq = sp->srcu_idx;
}
#elif defined(CONFIG_TREE_SRCU)
void srcutorture_get_gp_data(enum rcutorture_type test_type,
struct srcu_struct *sp, int *flags,
unsigned long *gp_seq);
#endif
#ifdef CONFIG_TINY_RCU
static inline bool rcu_dynticks_zero_in_eqs(int cpu, int *vp) { return false; }
static inline unsigned long rcu_get_gp_seq(void) { return 0; }
static inline unsigned long rcu_exp_batches_completed(void) { return 0; }
static inline unsigned long
srcu_batches_completed(struct srcu_struct *sp) { return 0; }
static inline void rcu_force_quiescent_state(void) { }
static inline bool rcu_check_boost_fail(unsigned long gp_state, int *cpup) { return true; }
static inline void show_rcu_gp_kthreads(void) { }
static inline int rcu_get_gp_kthreads_prio(void) { return 0; }
static inline void rcu_fwd_progress_check(unsigned long j) { }
static inline void rcu_gp_slow_register(atomic_t *rgssp) { }
static inline void rcu_gp_slow_unregister(atomic_t *rgssp) { }
#else /* #ifdef CONFIG_TINY_RCU */
bool rcu_dynticks_zero_in_eqs(int cpu, int *vp);
unsigned long rcu_get_gp_seq(void);
unsigned long rcu_exp_batches_completed(void);
unsigned long srcu_batches_completed(struct srcu_struct *sp);
bool rcu_check_boost_fail(unsigned long gp_state, int *cpup);
void show_rcu_gp_kthreads(void);
int rcu_get_gp_kthreads_prio(void);
void rcu_fwd_progress_check(unsigned long j);
void rcu_force_quiescent_state(void);
extern struct workqueue_struct *rcu_gp_wq;
#ifdef CONFIG_RCU_EXP_KTHREAD
extern struct kthread_worker *rcu_exp_gp_kworker;
extern struct kthread_worker *rcu_exp_par_gp_kworker;
#else /* !CONFIG_RCU_EXP_KTHREAD */
extern struct workqueue_struct *rcu_par_gp_wq;
#endif /* CONFIG_RCU_EXP_KTHREAD */
void rcu_gp_slow_register(atomic_t *rgssp);
void rcu_gp_slow_unregister(atomic_t *rgssp);
#endif /* #else #ifdef CONFIG_TINY_RCU */
#ifdef CONFIG_RCU_NOCB_CPU
void rcu_bind_current_to_nocb(void);
#else
static inline void rcu_bind_current_to_nocb(void) { }
#endif
#if !defined(CONFIG_TINY_RCU) && defined(CONFIG_TASKS_RCU)
void show_rcu_tasks_classic_gp_kthread(void);
#else
static inline void show_rcu_tasks_classic_gp_kthread(void) {}
#endif
#if !defined(CONFIG_TINY_RCU) && defined(CONFIG_TASKS_RUDE_RCU)
void show_rcu_tasks_rude_gp_kthread(void);
#else
static inline void show_rcu_tasks_rude_gp_kthread(void) {}
#endif
#if !defined(CONFIG_TINY_RCU) && defined(CONFIG_TASKS_TRACE_RCU)
void show_rcu_tasks_trace_gp_kthread(void);
#else
static inline void show_rcu_tasks_trace_gp_kthread(void) {}
#endif
#ifdef CONFIG_TINY_RCU
static inline bool rcu_cpu_beenfullyonline(int cpu) { return true; }
#else
bool rcu_cpu_beenfullyonline(int cpu);
#endif
#ifdef CONFIG_RCU_STALL_COMMON
int rcu_stall_notifier_call_chain(unsigned long val, void *v);
#else // #ifdef CONFIG_RCU_STALL_COMMON
static inline int rcu_stall_notifier_call_chain(unsigned long val, void *v) { return NOTIFY_DONE; }
#endif // #else // #ifdef CONFIG_RCU_STALL_COMMON
#endif /* __LINUX_RCU_H */