linux/net/dsa/dsa2.c
Vladimir Oltean 2c0b03258b net: dsa: give preference to local CPU ports
Be there an "H" switch topology, where there are 2 switches connected as
follows:

         eth0                                                     eth1
          |                                                        |
       CPU port                                                CPU port
          |                        DSA link                        |
 sw0p0  sw0p1  sw0p2  sw0p3  sw0p4 -------- sw1p4  sw1p3  sw1p2  sw1p1  sw1p0
   |             |      |                            |      |             |
 user          user   user                         user   user          user
 port          port   port                         port   port          port

basically one where each switch has its own CPU port for termination,
but there is also a DSA link in case packets need to be forwarded in
hardware between one switch and another.

DSA insists to see this as a daisy chain topology, basically registering
all network interfaces as sw0p0@eth0, ... sw1p0@eth0 and disregarding
eth1 as a valid DSA master.

This is only half the story, since when asked using dsa_port_is_cpu(),
DSA will respond that sw1p1 is a CPU port, however one which has no
dp->cpu_dp pointing to it. So sw1p1 is enabled, but not used.

Furthermore, be there a driver for switches which support only one
upstream port. This driver iterates through its ports and checks using
dsa_is_upstream_port() whether the current port is an upstream one.
For switch 1, two ports pass the "is upstream port" checks:

- sw1p4 is an upstream port because it is a routing port towards the
  dedicated CPU port assigned using dsa_tree_setup_default_cpu()

- sw1p1 is also an upstream port because it is a CPU port, albeit one
  that is disabled. This is because dsa_upstream_port() returns:

	if (!cpu_dp)
		return port;

  which means that if @dp does not have a ->cpu_dp pointer (which is a
  characteristic of CPU ports themselves as well as unused ports), then
  @dp is its own upstream port.

So the driver for switch 1 rightfully says: I have two upstream ports,
but I don't support multiple upstream ports! So let me error out, I
don't know which one to choose and what to do with the other one.

Generally I am against enforcing any default policy in the kernel in
terms of user to CPU port assignment (like round robin or such) but this
case is different. To solve the conundrum, one would have to:

- Disable sw1p1 in the device tree or mark it as "not a CPU port" in
  order to comply with DSA's view of this topology as a daisy chain,
  where the termination traffic from switch 1 must pass through switch 0.
  This is counter-productive because it wastes 1Gbps of termination
  throughput in switch 1.
- Disable the DSA link between sw0p4 and sw1p4 and do software
  forwarding between switch 0 and 1, and basically treat the switches as
  part of disjoint switch trees. This is counter-productive because it
  wastes 1Gbps of autonomous forwarding throughput between switch 0 and 1.
- Treat sw0p4 and sw1p4 as user ports instead of DSA links. This could
  work, but it makes cross-chip bridging impossible. In this setup we
  would need to have 2 separate bridges, br0 spanning the ports of
  switch 0, and br1 spanning the ports of switch 1, and the "DSA links
  treated as user ports" sw0p4 (part of br0) and sw1p4 (part of br1) are
  the gateway ports between one bridge and another. This is hard to
  manage from a user's perspective, who wants to have a unified view of
  the switching fabric and the ability to transparently add ports to the
  same bridge. VLANs would also need to be explicitly managed by the
  user on these gateway ports.

So it seems that the only reasonable thing to do is to make DSA prefer
CPU ports that are local to the switch. Meaning that by default, the
user and DSA ports of switch 0 will get assigned to the CPU port from
switch 0 (sw0p1) and the user and DSA ports of switch 1 will get
assigned to the CPU port from switch 1.

The way this solves the problem is that sw1p4 is no longer an upstream
port as far as switch 1 is concerned (it no longer views sw0p1 as its
dedicated CPU port).

So here we are, the first multi-CPU port that DSA supports is also
perhaps the most uneventful one: the individual switches don't support
multiple CPUs, however the DSA switch tree as a whole does have multiple
CPU ports. No user space assignment of user ports to CPU ports is
desirable, necessary, or possible.

Ports that do not have a local CPU port (say there was an extra switch
hanging off of sw0p0) default to the standard implementation of getting
assigned to the first CPU port of the DSA switch tree. Is that good
enough? Probably not (if the downstream switch was hanging off of switch
1, we would most certainly prefer its CPU port to be sw1p1), but in
order to support that use case too, we would need to traverse the
dst->rtable in search of an optimum dedicated CPU port, one that has the
smallest number of hops between dp->ds and dp->cpu_dp->ds. At the
moment, the DSA routing table structure does not keep the number of hops
between dl->dp and dl->link_dp, and while it is probably deducible,
there is zero justification to write that code now. Let's hope DSA will
never have to support that use case.

Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2021-08-05 11:05:48 +01:00

1497 lines
33 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* net/dsa/dsa2.c - Hardware switch handling, binding version 2
* Copyright (c) 2008-2009 Marvell Semiconductor
* Copyright (c) 2013 Florian Fainelli <florian@openwrt.org>
* Copyright (c) 2016 Andrew Lunn <andrew@lunn.ch>
*/
#include <linux/device.h>
#include <linux/err.h>
#include <linux/list.h>
#include <linux/netdevice.h>
#include <linux/slab.h>
#include <linux/rtnetlink.h>
#include <linux/of.h>
#include <linux/of_net.h>
#include <net/devlink.h>
#include "dsa_priv.h"
static DEFINE_MUTEX(dsa2_mutex);
LIST_HEAD(dsa_tree_list);
/**
* dsa_tree_notify - Execute code for all switches in a DSA switch tree.
* @dst: collection of struct dsa_switch devices to notify.
* @e: event, must be of type DSA_NOTIFIER_*
* @v: event-specific value.
*
* Given a struct dsa_switch_tree, this can be used to run a function once for
* each member DSA switch. The other alternative of traversing the tree is only
* through its ports list, which does not uniquely list the switches.
*/
int dsa_tree_notify(struct dsa_switch_tree *dst, unsigned long e, void *v)
{
struct raw_notifier_head *nh = &dst->nh;
int err;
err = raw_notifier_call_chain(nh, e, v);
return notifier_to_errno(err);
}
/**
* dsa_broadcast - Notify all DSA trees in the system.
* @e: event, must be of type DSA_NOTIFIER_*
* @v: event-specific value.
*
* Can be used to notify the switching fabric of events such as cross-chip
* bridging between disjoint trees (such as islands of tagger-compatible
* switches bridged by an incompatible middle switch).
*/
int dsa_broadcast(unsigned long e, void *v)
{
struct dsa_switch_tree *dst;
int err = 0;
list_for_each_entry(dst, &dsa_tree_list, list) {
err = dsa_tree_notify(dst, e, v);
if (err)
break;
}
return err;
}
/**
* dsa_lag_map() - Map LAG netdev to a linear LAG ID
* @dst: Tree in which to record the mapping.
* @lag: Netdev that is to be mapped to an ID.
*
* dsa_lag_id/dsa_lag_dev can then be used to translate between the
* two spaces. The size of the mapping space is determined by the
* driver by setting ds->num_lag_ids. It is perfectly legal to leave
* it unset if it is not needed, in which case these functions become
* no-ops.
*/
void dsa_lag_map(struct dsa_switch_tree *dst, struct net_device *lag)
{
unsigned int id;
if (dsa_lag_id(dst, lag) >= 0)
/* Already mapped */
return;
for (id = 0; id < dst->lags_len; id++) {
if (!dsa_lag_dev(dst, id)) {
dst->lags[id] = lag;
return;
}
}
/* No IDs left, which is OK. Some drivers do not need it. The
* ones that do, e.g. mv88e6xxx, will discover that dsa_lag_id
* returns an error for this device when joining the LAG. The
* driver can then return -EOPNOTSUPP back to DSA, which will
* fall back to a software LAG.
*/
}
/**
* dsa_lag_unmap() - Remove a LAG ID mapping
* @dst: Tree in which the mapping is recorded.
* @lag: Netdev that was mapped.
*
* As there may be multiple users of the mapping, it is only removed
* if there are no other references to it.
*/
void dsa_lag_unmap(struct dsa_switch_tree *dst, struct net_device *lag)
{
struct dsa_port *dp;
unsigned int id;
dsa_lag_foreach_port(dp, dst, lag)
/* There are remaining users of this mapping */
return;
dsa_lags_foreach_id(id, dst) {
if (dsa_lag_dev(dst, id) == lag) {
dst->lags[id] = NULL;
break;
}
}
}
struct dsa_switch *dsa_switch_find(int tree_index, int sw_index)
{
struct dsa_switch_tree *dst;
struct dsa_port *dp;
list_for_each_entry(dst, &dsa_tree_list, list) {
if (dst->index != tree_index)
continue;
list_for_each_entry(dp, &dst->ports, list) {
if (dp->ds->index != sw_index)
continue;
return dp->ds;
}
}
return NULL;
}
EXPORT_SYMBOL_GPL(dsa_switch_find);
static struct dsa_switch_tree *dsa_tree_find(int index)
{
struct dsa_switch_tree *dst;
list_for_each_entry(dst, &dsa_tree_list, list)
if (dst->index == index)
return dst;
return NULL;
}
static struct dsa_switch_tree *dsa_tree_alloc(int index)
{
struct dsa_switch_tree *dst;
dst = kzalloc(sizeof(*dst), GFP_KERNEL);
if (!dst)
return NULL;
dst->index = index;
INIT_LIST_HEAD(&dst->rtable);
INIT_LIST_HEAD(&dst->ports);
INIT_LIST_HEAD(&dst->list);
list_add_tail(&dst->list, &dsa_tree_list);
kref_init(&dst->refcount);
return dst;
}
static void dsa_tree_free(struct dsa_switch_tree *dst)
{
if (dst->tag_ops)
dsa_tag_driver_put(dst->tag_ops);
list_del(&dst->list);
kfree(dst);
}
static struct dsa_switch_tree *dsa_tree_get(struct dsa_switch_tree *dst)
{
if (dst)
kref_get(&dst->refcount);
return dst;
}
static struct dsa_switch_tree *dsa_tree_touch(int index)
{
struct dsa_switch_tree *dst;
dst = dsa_tree_find(index);
if (dst)
return dsa_tree_get(dst);
else
return dsa_tree_alloc(index);
}
static void dsa_tree_release(struct kref *ref)
{
struct dsa_switch_tree *dst;
dst = container_of(ref, struct dsa_switch_tree, refcount);
dsa_tree_free(dst);
}
static void dsa_tree_put(struct dsa_switch_tree *dst)
{
if (dst)
kref_put(&dst->refcount, dsa_tree_release);
}
static struct dsa_port *dsa_tree_find_port_by_node(struct dsa_switch_tree *dst,
struct device_node *dn)
{
struct dsa_port *dp;
list_for_each_entry(dp, &dst->ports, list)
if (dp->dn == dn)
return dp;
return NULL;
}
static struct dsa_link *dsa_link_touch(struct dsa_port *dp,
struct dsa_port *link_dp)
{
struct dsa_switch *ds = dp->ds;
struct dsa_switch_tree *dst;
struct dsa_link *dl;
dst = ds->dst;
list_for_each_entry(dl, &dst->rtable, list)
if (dl->dp == dp && dl->link_dp == link_dp)
return dl;
dl = kzalloc(sizeof(*dl), GFP_KERNEL);
if (!dl)
return NULL;
dl->dp = dp;
dl->link_dp = link_dp;
INIT_LIST_HEAD(&dl->list);
list_add_tail(&dl->list, &dst->rtable);
return dl;
}
static bool dsa_port_setup_routing_table(struct dsa_port *dp)
{
struct dsa_switch *ds = dp->ds;
struct dsa_switch_tree *dst = ds->dst;
struct device_node *dn = dp->dn;
struct of_phandle_iterator it;
struct dsa_port *link_dp;
struct dsa_link *dl;
int err;
of_for_each_phandle(&it, err, dn, "link", NULL, 0) {
link_dp = dsa_tree_find_port_by_node(dst, it.node);
if (!link_dp) {
of_node_put(it.node);
return false;
}
dl = dsa_link_touch(dp, link_dp);
if (!dl) {
of_node_put(it.node);
return false;
}
}
return true;
}
static bool dsa_tree_setup_routing_table(struct dsa_switch_tree *dst)
{
bool complete = true;
struct dsa_port *dp;
list_for_each_entry(dp, &dst->ports, list) {
if (dsa_port_is_dsa(dp)) {
complete = dsa_port_setup_routing_table(dp);
if (!complete)
break;
}
}
return complete;
}
static struct dsa_port *dsa_tree_find_first_cpu(struct dsa_switch_tree *dst)
{
struct dsa_port *dp;
list_for_each_entry(dp, &dst->ports, list)
if (dsa_port_is_cpu(dp))
return dp;
return NULL;
}
/* Assign the default CPU port (the first one in the tree) to all ports of the
* fabric which don't already have one as part of their own switch.
*/
static int dsa_tree_setup_default_cpu(struct dsa_switch_tree *dst)
{
struct dsa_port *cpu_dp, *dp;
cpu_dp = dsa_tree_find_first_cpu(dst);
if (!cpu_dp) {
pr_err("DSA: tree %d has no CPU port\n", dst->index);
return -EINVAL;
}
list_for_each_entry(dp, &dst->ports, list) {
if (dp->cpu_dp)
continue;
if (dsa_port_is_user(dp) || dsa_port_is_dsa(dp))
dp->cpu_dp = cpu_dp;
}
return 0;
}
/* Perform initial assignment of CPU ports to user ports and DSA links in the
* fabric, giving preference to CPU ports local to each switch. Default to
* using the first CPU port in the switch tree if the port does not have a CPU
* port local to this switch.
*/
static int dsa_tree_setup_cpu_ports(struct dsa_switch_tree *dst)
{
struct dsa_port *cpu_dp, *dp;
list_for_each_entry(cpu_dp, &dst->ports, list) {
if (!dsa_port_is_cpu(cpu_dp))
continue;
list_for_each_entry(dp, &dst->ports, list) {
/* Prefer a local CPU port */
if (dp->ds != cpu_dp->ds)
continue;
/* Prefer the first local CPU port found */
if (dp->cpu_dp)
continue;
if (dsa_port_is_user(dp) || dsa_port_is_dsa(dp))
dp->cpu_dp = cpu_dp;
}
}
return dsa_tree_setup_default_cpu(dst);
}
static void dsa_tree_teardown_cpu_ports(struct dsa_switch_tree *dst)
{
struct dsa_port *dp;
list_for_each_entry(dp, &dst->ports, list)
if (dsa_port_is_user(dp) || dsa_port_is_dsa(dp))
dp->cpu_dp = NULL;
}
static int dsa_port_setup(struct dsa_port *dp)
{
struct devlink_port *dlp = &dp->devlink_port;
bool dsa_port_link_registered = false;
bool dsa_port_enabled = false;
int err = 0;
if (dp->setup)
return 0;
INIT_LIST_HEAD(&dp->fdbs);
INIT_LIST_HEAD(&dp->mdbs);
switch (dp->type) {
case DSA_PORT_TYPE_UNUSED:
dsa_port_disable(dp);
break;
case DSA_PORT_TYPE_CPU:
err = dsa_port_link_register_of(dp);
if (err)
break;
dsa_port_link_registered = true;
err = dsa_port_enable(dp, NULL);
if (err)
break;
dsa_port_enabled = true;
break;
case DSA_PORT_TYPE_DSA:
err = dsa_port_link_register_of(dp);
if (err)
break;
dsa_port_link_registered = true;
err = dsa_port_enable(dp, NULL);
if (err)
break;
dsa_port_enabled = true;
break;
case DSA_PORT_TYPE_USER:
of_get_mac_address(dp->dn, dp->mac);
err = dsa_slave_create(dp);
if (err)
break;
devlink_port_type_eth_set(dlp, dp->slave);
break;
}
if (err && dsa_port_enabled)
dsa_port_disable(dp);
if (err && dsa_port_link_registered)
dsa_port_link_unregister_of(dp);
if (err)
return err;
dp->setup = true;
return 0;
}
static int dsa_port_devlink_setup(struct dsa_port *dp)
{
struct devlink_port *dlp = &dp->devlink_port;
struct dsa_switch_tree *dst = dp->ds->dst;
struct devlink_port_attrs attrs = {};
struct devlink *dl = dp->ds->devlink;
const unsigned char *id;
unsigned char len;
int err;
id = (const unsigned char *)&dst->index;
len = sizeof(dst->index);
attrs.phys.port_number = dp->index;
memcpy(attrs.switch_id.id, id, len);
attrs.switch_id.id_len = len;
memset(dlp, 0, sizeof(*dlp));
switch (dp->type) {
case DSA_PORT_TYPE_UNUSED:
attrs.flavour = DEVLINK_PORT_FLAVOUR_UNUSED;
break;
case DSA_PORT_TYPE_CPU:
attrs.flavour = DEVLINK_PORT_FLAVOUR_CPU;
break;
case DSA_PORT_TYPE_DSA:
attrs.flavour = DEVLINK_PORT_FLAVOUR_DSA;
break;
case DSA_PORT_TYPE_USER:
attrs.flavour = DEVLINK_PORT_FLAVOUR_PHYSICAL;
break;
}
devlink_port_attrs_set(dlp, &attrs);
err = devlink_port_register(dl, dlp, dp->index);
if (!err)
dp->devlink_port_setup = true;
return err;
}
static void dsa_port_teardown(struct dsa_port *dp)
{
struct devlink_port *dlp = &dp->devlink_port;
struct dsa_mac_addr *a, *tmp;
if (!dp->setup)
return;
devlink_port_type_clear(dlp);
switch (dp->type) {
case DSA_PORT_TYPE_UNUSED:
break;
case DSA_PORT_TYPE_CPU:
dsa_port_disable(dp);
dsa_port_link_unregister_of(dp);
break;
case DSA_PORT_TYPE_DSA:
dsa_port_disable(dp);
dsa_port_link_unregister_of(dp);
break;
case DSA_PORT_TYPE_USER:
if (dp->slave) {
dsa_slave_destroy(dp->slave);
dp->slave = NULL;
}
break;
}
list_for_each_entry_safe(a, tmp, &dp->fdbs, list) {
list_del(&a->list);
kfree(a);
}
list_for_each_entry_safe(a, tmp, &dp->mdbs, list) {
list_del(&a->list);
kfree(a);
}
dp->setup = false;
}
static void dsa_port_devlink_teardown(struct dsa_port *dp)
{
struct devlink_port *dlp = &dp->devlink_port;
if (dp->devlink_port_setup)
devlink_port_unregister(dlp);
dp->devlink_port_setup = false;
}
static int dsa_devlink_info_get(struct devlink *dl,
struct devlink_info_req *req,
struct netlink_ext_ack *extack)
{
struct dsa_switch *ds = dsa_devlink_to_ds(dl);
if (ds->ops->devlink_info_get)
return ds->ops->devlink_info_get(ds, req, extack);
return -EOPNOTSUPP;
}
static int dsa_devlink_sb_pool_get(struct devlink *dl,
unsigned int sb_index, u16 pool_index,
struct devlink_sb_pool_info *pool_info)
{
struct dsa_switch *ds = dsa_devlink_to_ds(dl);
if (!ds->ops->devlink_sb_pool_get)
return -EOPNOTSUPP;
return ds->ops->devlink_sb_pool_get(ds, sb_index, pool_index,
pool_info);
}
static int dsa_devlink_sb_pool_set(struct devlink *dl, unsigned int sb_index,
u16 pool_index, u32 size,
enum devlink_sb_threshold_type threshold_type,
struct netlink_ext_ack *extack)
{
struct dsa_switch *ds = dsa_devlink_to_ds(dl);
if (!ds->ops->devlink_sb_pool_set)
return -EOPNOTSUPP;
return ds->ops->devlink_sb_pool_set(ds, sb_index, pool_index, size,
threshold_type, extack);
}
static int dsa_devlink_sb_port_pool_get(struct devlink_port *dlp,
unsigned int sb_index, u16 pool_index,
u32 *p_threshold)
{
struct dsa_switch *ds = dsa_devlink_port_to_ds(dlp);
int port = dsa_devlink_port_to_port(dlp);
if (!ds->ops->devlink_sb_port_pool_get)
return -EOPNOTSUPP;
return ds->ops->devlink_sb_port_pool_get(ds, port, sb_index,
pool_index, p_threshold);
}
static int dsa_devlink_sb_port_pool_set(struct devlink_port *dlp,
unsigned int sb_index, u16 pool_index,
u32 threshold,
struct netlink_ext_ack *extack)
{
struct dsa_switch *ds = dsa_devlink_port_to_ds(dlp);
int port = dsa_devlink_port_to_port(dlp);
if (!ds->ops->devlink_sb_port_pool_set)
return -EOPNOTSUPP;
return ds->ops->devlink_sb_port_pool_set(ds, port, sb_index,
pool_index, threshold, extack);
}
static int
dsa_devlink_sb_tc_pool_bind_get(struct devlink_port *dlp,
unsigned int sb_index, u16 tc_index,
enum devlink_sb_pool_type pool_type,
u16 *p_pool_index, u32 *p_threshold)
{
struct dsa_switch *ds = dsa_devlink_port_to_ds(dlp);
int port = dsa_devlink_port_to_port(dlp);
if (!ds->ops->devlink_sb_tc_pool_bind_get)
return -EOPNOTSUPP;
return ds->ops->devlink_sb_tc_pool_bind_get(ds, port, sb_index,
tc_index, pool_type,
p_pool_index, p_threshold);
}
static int
dsa_devlink_sb_tc_pool_bind_set(struct devlink_port *dlp,
unsigned int sb_index, u16 tc_index,
enum devlink_sb_pool_type pool_type,
u16 pool_index, u32 threshold,
struct netlink_ext_ack *extack)
{
struct dsa_switch *ds = dsa_devlink_port_to_ds(dlp);
int port = dsa_devlink_port_to_port(dlp);
if (!ds->ops->devlink_sb_tc_pool_bind_set)
return -EOPNOTSUPP;
return ds->ops->devlink_sb_tc_pool_bind_set(ds, port, sb_index,
tc_index, pool_type,
pool_index, threshold,
extack);
}
static int dsa_devlink_sb_occ_snapshot(struct devlink *dl,
unsigned int sb_index)
{
struct dsa_switch *ds = dsa_devlink_to_ds(dl);
if (!ds->ops->devlink_sb_occ_snapshot)
return -EOPNOTSUPP;
return ds->ops->devlink_sb_occ_snapshot(ds, sb_index);
}
static int dsa_devlink_sb_occ_max_clear(struct devlink *dl,
unsigned int sb_index)
{
struct dsa_switch *ds = dsa_devlink_to_ds(dl);
if (!ds->ops->devlink_sb_occ_max_clear)
return -EOPNOTSUPP;
return ds->ops->devlink_sb_occ_max_clear(ds, sb_index);
}
static int dsa_devlink_sb_occ_port_pool_get(struct devlink_port *dlp,
unsigned int sb_index,
u16 pool_index, u32 *p_cur,
u32 *p_max)
{
struct dsa_switch *ds = dsa_devlink_port_to_ds(dlp);
int port = dsa_devlink_port_to_port(dlp);
if (!ds->ops->devlink_sb_occ_port_pool_get)
return -EOPNOTSUPP;
return ds->ops->devlink_sb_occ_port_pool_get(ds, port, sb_index,
pool_index, p_cur, p_max);
}
static int
dsa_devlink_sb_occ_tc_port_bind_get(struct devlink_port *dlp,
unsigned int sb_index, u16 tc_index,
enum devlink_sb_pool_type pool_type,
u32 *p_cur, u32 *p_max)
{
struct dsa_switch *ds = dsa_devlink_port_to_ds(dlp);
int port = dsa_devlink_port_to_port(dlp);
if (!ds->ops->devlink_sb_occ_tc_port_bind_get)
return -EOPNOTSUPP;
return ds->ops->devlink_sb_occ_tc_port_bind_get(ds, port,
sb_index, tc_index,
pool_type, p_cur,
p_max);
}
static const struct devlink_ops dsa_devlink_ops = {
.info_get = dsa_devlink_info_get,
.sb_pool_get = dsa_devlink_sb_pool_get,
.sb_pool_set = dsa_devlink_sb_pool_set,
.sb_port_pool_get = dsa_devlink_sb_port_pool_get,
.sb_port_pool_set = dsa_devlink_sb_port_pool_set,
.sb_tc_pool_bind_get = dsa_devlink_sb_tc_pool_bind_get,
.sb_tc_pool_bind_set = dsa_devlink_sb_tc_pool_bind_set,
.sb_occ_snapshot = dsa_devlink_sb_occ_snapshot,
.sb_occ_max_clear = dsa_devlink_sb_occ_max_clear,
.sb_occ_port_pool_get = dsa_devlink_sb_occ_port_pool_get,
.sb_occ_tc_port_bind_get = dsa_devlink_sb_occ_tc_port_bind_get,
};
static int dsa_switch_setup_tag_protocol(struct dsa_switch *ds)
{
const struct dsa_device_ops *tag_ops = ds->dst->tag_ops;
struct dsa_switch_tree *dst = ds->dst;
int port, err;
if (tag_ops->proto == dst->default_proto)
return 0;
for (port = 0; port < ds->num_ports; port++) {
if (!dsa_is_cpu_port(ds, port))
continue;
err = ds->ops->change_tag_protocol(ds, port, tag_ops->proto);
if (err) {
dev_err(ds->dev, "Unable to use tag protocol \"%s\": %pe\n",
tag_ops->name, ERR_PTR(err));
return err;
}
}
return 0;
}
static int dsa_switch_setup(struct dsa_switch *ds)
{
struct dsa_devlink_priv *dl_priv;
struct dsa_port *dp;
int err;
if (ds->setup)
return 0;
/* Initialize ds->phys_mii_mask before registering the slave MDIO bus
* driver and before ops->setup() has run, since the switch drivers and
* the slave MDIO bus driver rely on these values for probing PHY
* devices or not
*/
ds->phys_mii_mask |= dsa_user_ports(ds);
/* Add the switch to devlink before calling setup, so that setup can
* add dpipe tables
*/
ds->devlink = devlink_alloc(&dsa_devlink_ops, sizeof(*dl_priv));
if (!ds->devlink)
return -ENOMEM;
dl_priv = devlink_priv(ds->devlink);
dl_priv->ds = ds;
err = devlink_register(ds->devlink, ds->dev);
if (err)
goto free_devlink;
/* Setup devlink port instances now, so that the switch
* setup() can register regions etc, against the ports
*/
list_for_each_entry(dp, &ds->dst->ports, list) {
if (dp->ds == ds) {
err = dsa_port_devlink_setup(dp);
if (err)
goto unregister_devlink_ports;
}
}
err = dsa_switch_register_notifier(ds);
if (err)
goto unregister_devlink_ports;
ds->configure_vlan_while_not_filtering = true;
err = ds->ops->setup(ds);
if (err < 0)
goto unregister_notifier;
err = dsa_switch_setup_tag_protocol(ds);
if (err)
goto teardown;
devlink_params_publish(ds->devlink);
if (!ds->slave_mii_bus && ds->ops->phy_read) {
ds->slave_mii_bus = devm_mdiobus_alloc(ds->dev);
if (!ds->slave_mii_bus) {
err = -ENOMEM;
goto teardown;
}
dsa_slave_mii_bus_init(ds);
err = mdiobus_register(ds->slave_mii_bus);
if (err < 0)
goto teardown;
}
ds->setup = true;
return 0;
teardown:
if (ds->ops->teardown)
ds->ops->teardown(ds);
unregister_notifier:
dsa_switch_unregister_notifier(ds);
unregister_devlink_ports:
list_for_each_entry(dp, &ds->dst->ports, list)
if (dp->ds == ds)
dsa_port_devlink_teardown(dp);
devlink_unregister(ds->devlink);
free_devlink:
devlink_free(ds->devlink);
ds->devlink = NULL;
return err;
}
static void dsa_switch_teardown(struct dsa_switch *ds)
{
struct dsa_port *dp;
if (!ds->setup)
return;
if (ds->slave_mii_bus && ds->ops->phy_read)
mdiobus_unregister(ds->slave_mii_bus);
dsa_switch_unregister_notifier(ds);
if (ds->ops->teardown)
ds->ops->teardown(ds);
if (ds->devlink) {
list_for_each_entry(dp, &ds->dst->ports, list)
if (dp->ds == ds)
dsa_port_devlink_teardown(dp);
devlink_unregister(ds->devlink);
devlink_free(ds->devlink);
ds->devlink = NULL;
}
ds->setup = false;
}
static int dsa_tree_setup_switches(struct dsa_switch_tree *dst)
{
struct dsa_port *dp;
int err;
list_for_each_entry(dp, &dst->ports, list) {
err = dsa_switch_setup(dp->ds);
if (err)
goto teardown;
}
list_for_each_entry(dp, &dst->ports, list) {
err = dsa_port_setup(dp);
if (err) {
dsa_port_devlink_teardown(dp);
dp->type = DSA_PORT_TYPE_UNUSED;
err = dsa_port_devlink_setup(dp);
if (err)
goto teardown;
continue;
}
}
return 0;
teardown:
list_for_each_entry(dp, &dst->ports, list)
dsa_port_teardown(dp);
list_for_each_entry(dp, &dst->ports, list)
dsa_switch_teardown(dp->ds);
return err;
}
static void dsa_tree_teardown_switches(struct dsa_switch_tree *dst)
{
struct dsa_port *dp;
list_for_each_entry(dp, &dst->ports, list)
dsa_port_teardown(dp);
list_for_each_entry(dp, &dst->ports, list)
dsa_switch_teardown(dp->ds);
}
static int dsa_tree_setup_master(struct dsa_switch_tree *dst)
{
struct dsa_port *dp;
int err;
list_for_each_entry(dp, &dst->ports, list) {
if (dsa_port_is_cpu(dp)) {
err = dsa_master_setup(dp->master, dp);
if (err)
return err;
}
}
return 0;
}
static void dsa_tree_teardown_master(struct dsa_switch_tree *dst)
{
struct dsa_port *dp;
list_for_each_entry(dp, &dst->ports, list)
if (dsa_port_is_cpu(dp))
dsa_master_teardown(dp->master);
}
static int dsa_tree_setup_lags(struct dsa_switch_tree *dst)
{
unsigned int len = 0;
struct dsa_port *dp;
list_for_each_entry(dp, &dst->ports, list) {
if (dp->ds->num_lag_ids > len)
len = dp->ds->num_lag_ids;
}
if (!len)
return 0;
dst->lags = kcalloc(len, sizeof(*dst->lags), GFP_KERNEL);
if (!dst->lags)
return -ENOMEM;
dst->lags_len = len;
return 0;
}
static void dsa_tree_teardown_lags(struct dsa_switch_tree *dst)
{
kfree(dst->lags);
}
static int dsa_tree_setup(struct dsa_switch_tree *dst)
{
bool complete;
int err;
if (dst->setup) {
pr_err("DSA: tree %d already setup! Disjoint trees?\n",
dst->index);
return -EEXIST;
}
complete = dsa_tree_setup_routing_table(dst);
if (!complete)
return 0;
err = dsa_tree_setup_cpu_ports(dst);
if (err)
return err;
err = dsa_tree_setup_switches(dst);
if (err)
goto teardown_cpu_ports;
err = dsa_tree_setup_master(dst);
if (err)
goto teardown_switches;
err = dsa_tree_setup_lags(dst);
if (err)
goto teardown_master;
dst->setup = true;
pr_info("DSA: tree %d setup\n", dst->index);
return 0;
teardown_master:
dsa_tree_teardown_master(dst);
teardown_switches:
dsa_tree_teardown_switches(dst);
teardown_cpu_ports:
dsa_tree_teardown_cpu_ports(dst);
return err;
}
static void dsa_tree_teardown(struct dsa_switch_tree *dst)
{
struct dsa_link *dl, *next;
if (!dst->setup)
return;
dsa_tree_teardown_lags(dst);
dsa_tree_teardown_master(dst);
dsa_tree_teardown_switches(dst);
dsa_tree_teardown_cpu_ports(dst);
list_for_each_entry_safe(dl, next, &dst->rtable, list) {
list_del(&dl->list);
kfree(dl);
}
pr_info("DSA: tree %d torn down\n", dst->index);
dst->setup = false;
}
/* Since the dsa/tagging sysfs device attribute is per master, the assumption
* is that all DSA switches within a tree share the same tagger, otherwise
* they would have formed disjoint trees (different "dsa,member" values).
*/
int dsa_tree_change_tag_proto(struct dsa_switch_tree *dst,
struct net_device *master,
const struct dsa_device_ops *tag_ops,
const struct dsa_device_ops *old_tag_ops)
{
struct dsa_notifier_tag_proto_info info;
struct dsa_port *dp;
int err = -EBUSY;
if (!rtnl_trylock())
return restart_syscall();
/* At the moment we don't allow changing the tag protocol under
* traffic. The rtnl_mutex also happens to serialize concurrent
* attempts to change the tagging protocol. If we ever lift the IFF_UP
* restriction, there needs to be another mutex which serializes this.
*/
if (master->flags & IFF_UP)
goto out_unlock;
list_for_each_entry(dp, &dst->ports, list) {
if (!dsa_is_user_port(dp->ds, dp->index))
continue;
if (dp->slave->flags & IFF_UP)
goto out_unlock;
}
info.tag_ops = tag_ops;
err = dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO, &info);
if (err)
goto out_unwind_tagger;
dst->tag_ops = tag_ops;
rtnl_unlock();
return 0;
out_unwind_tagger:
info.tag_ops = old_tag_ops;
dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO, &info);
out_unlock:
rtnl_unlock();
return err;
}
static struct dsa_port *dsa_port_touch(struct dsa_switch *ds, int index)
{
struct dsa_switch_tree *dst = ds->dst;
struct dsa_port *dp;
list_for_each_entry(dp, &dst->ports, list)
if (dp->ds == ds && dp->index == index)
return dp;
dp = kzalloc(sizeof(*dp), GFP_KERNEL);
if (!dp)
return NULL;
dp->ds = ds;
dp->index = index;
dp->bridge_num = -1;
INIT_LIST_HEAD(&dp->list);
list_add_tail(&dp->list, &dst->ports);
return dp;
}
static int dsa_port_parse_user(struct dsa_port *dp, const char *name)
{
if (!name)
name = "eth%d";
dp->type = DSA_PORT_TYPE_USER;
dp->name = name;
return 0;
}
static int dsa_port_parse_dsa(struct dsa_port *dp)
{
dp->type = DSA_PORT_TYPE_DSA;
return 0;
}
static enum dsa_tag_protocol dsa_get_tag_protocol(struct dsa_port *dp,
struct net_device *master)
{
enum dsa_tag_protocol tag_protocol = DSA_TAG_PROTO_NONE;
struct dsa_switch *mds, *ds = dp->ds;
unsigned int mdp_upstream;
struct dsa_port *mdp;
/* It is possible to stack DSA switches onto one another when that
* happens the switch driver may want to know if its tagging protocol
* is going to work in such a configuration.
*/
if (dsa_slave_dev_check(master)) {
mdp = dsa_slave_to_port(master);
mds = mdp->ds;
mdp_upstream = dsa_upstream_port(mds, mdp->index);
tag_protocol = mds->ops->get_tag_protocol(mds, mdp_upstream,
DSA_TAG_PROTO_NONE);
}
/* If the master device is not itself a DSA slave in a disjoint DSA
* tree, then return immediately.
*/
return ds->ops->get_tag_protocol(ds, dp->index, tag_protocol);
}
static int dsa_port_parse_cpu(struct dsa_port *dp, struct net_device *master,
const char *user_protocol)
{
struct dsa_switch *ds = dp->ds;
struct dsa_switch_tree *dst = ds->dst;
const struct dsa_device_ops *tag_ops;
enum dsa_tag_protocol default_proto;
/* Find out which protocol the switch would prefer. */
default_proto = dsa_get_tag_protocol(dp, master);
if (dst->default_proto) {
if (dst->default_proto != default_proto) {
dev_err(ds->dev,
"A DSA switch tree can have only one tagging protocol\n");
return -EINVAL;
}
} else {
dst->default_proto = default_proto;
}
/* See if the user wants to override that preference. */
if (user_protocol) {
if (!ds->ops->change_tag_protocol) {
dev_err(ds->dev, "Tag protocol cannot be modified\n");
return -EINVAL;
}
tag_ops = dsa_find_tagger_by_name(user_protocol);
} else {
tag_ops = dsa_tag_driver_get(default_proto);
}
if (IS_ERR(tag_ops)) {
if (PTR_ERR(tag_ops) == -ENOPROTOOPT)
return -EPROBE_DEFER;
dev_warn(ds->dev, "No tagger for this switch\n");
return PTR_ERR(tag_ops);
}
if (dst->tag_ops) {
if (dst->tag_ops != tag_ops) {
dev_err(ds->dev,
"A DSA switch tree can have only one tagging protocol\n");
dsa_tag_driver_put(tag_ops);
return -EINVAL;
}
/* In the case of multiple CPU ports per switch, the tagging
* protocol is still reference-counted only per switch tree.
*/
dsa_tag_driver_put(tag_ops);
} else {
dst->tag_ops = tag_ops;
}
dp->master = master;
dp->type = DSA_PORT_TYPE_CPU;
dsa_port_set_tag_protocol(dp, dst->tag_ops);
dp->dst = dst;
/* At this point, the tree may be configured to use a different
* tagger than the one chosen by the switch driver during
* .setup, in the case when a user selects a custom protocol
* through the DT.
*
* This is resolved by syncing the driver with the tree in
* dsa_switch_setup_tag_protocol once .setup has run and the
* driver is ready to accept calls to .change_tag_protocol. If
* the driver does not support the custom protocol at that
* point, the tree is wholly rejected, thereby ensuring that the
* tree and driver are always in agreement on the protocol to
* use.
*/
return 0;
}
static int dsa_port_parse_of(struct dsa_port *dp, struct device_node *dn)
{
struct device_node *ethernet = of_parse_phandle(dn, "ethernet", 0);
const char *name = of_get_property(dn, "label", NULL);
bool link = of_property_read_bool(dn, "link");
dp->dn = dn;
if (ethernet) {
struct net_device *master;
const char *user_protocol;
master = of_find_net_device_by_node(ethernet);
if (!master)
return -EPROBE_DEFER;
user_protocol = of_get_property(dn, "dsa-tag-protocol", NULL);
return dsa_port_parse_cpu(dp, master, user_protocol);
}
if (link)
return dsa_port_parse_dsa(dp);
return dsa_port_parse_user(dp, name);
}
static int dsa_switch_parse_ports_of(struct dsa_switch *ds,
struct device_node *dn)
{
struct device_node *ports, *port;
struct dsa_port *dp;
int err = 0;
u32 reg;
ports = of_get_child_by_name(dn, "ports");
if (!ports) {
/* The second possibility is "ethernet-ports" */
ports = of_get_child_by_name(dn, "ethernet-ports");
if (!ports) {
dev_err(ds->dev, "no ports child node found\n");
return -EINVAL;
}
}
for_each_available_child_of_node(ports, port) {
err = of_property_read_u32(port, "reg", &reg);
if (err)
goto out_put_node;
if (reg >= ds->num_ports) {
dev_err(ds->dev, "port %pOF index %u exceeds num_ports (%zu)\n",
port, reg, ds->num_ports);
err = -EINVAL;
goto out_put_node;
}
dp = dsa_to_port(ds, reg);
err = dsa_port_parse_of(dp, port);
if (err)
goto out_put_node;
}
out_put_node:
of_node_put(ports);
return err;
}
static int dsa_switch_parse_member_of(struct dsa_switch *ds,
struct device_node *dn)
{
u32 m[2] = { 0, 0 };
int sz;
/* Don't error out if this optional property isn't found */
sz = of_property_read_variable_u32_array(dn, "dsa,member", m, 2, 2);
if (sz < 0 && sz != -EINVAL)
return sz;
ds->index = m[1];
ds->dst = dsa_tree_touch(m[0]);
if (!ds->dst)
return -ENOMEM;
if (dsa_switch_find(ds->dst->index, ds->index)) {
dev_err(ds->dev,
"A DSA switch with index %d already exists in tree %d\n",
ds->index, ds->dst->index);
return -EEXIST;
}
if (ds->dst->last_switch < ds->index)
ds->dst->last_switch = ds->index;
return 0;
}
static int dsa_switch_touch_ports(struct dsa_switch *ds)
{
struct dsa_port *dp;
int port;
for (port = 0; port < ds->num_ports; port++) {
dp = dsa_port_touch(ds, port);
if (!dp)
return -ENOMEM;
}
return 0;
}
static int dsa_switch_parse_of(struct dsa_switch *ds, struct device_node *dn)
{
int err;
err = dsa_switch_parse_member_of(ds, dn);
if (err)
return err;
err = dsa_switch_touch_ports(ds);
if (err)
return err;
return dsa_switch_parse_ports_of(ds, dn);
}
static int dsa_port_parse(struct dsa_port *dp, const char *name,
struct device *dev)
{
if (!strcmp(name, "cpu")) {
struct net_device *master;
master = dsa_dev_to_net_device(dev);
if (!master)
return -EPROBE_DEFER;
dev_put(master);
return dsa_port_parse_cpu(dp, master, NULL);
}
if (!strcmp(name, "dsa"))
return dsa_port_parse_dsa(dp);
return dsa_port_parse_user(dp, name);
}
static int dsa_switch_parse_ports(struct dsa_switch *ds,
struct dsa_chip_data *cd)
{
bool valid_name_found = false;
struct dsa_port *dp;
struct device *dev;
const char *name;
unsigned int i;
int err;
for (i = 0; i < DSA_MAX_PORTS; i++) {
name = cd->port_names[i];
dev = cd->netdev[i];
dp = dsa_to_port(ds, i);
if (!name)
continue;
err = dsa_port_parse(dp, name, dev);
if (err)
return err;
valid_name_found = true;
}
if (!valid_name_found && i == DSA_MAX_PORTS)
return -EINVAL;
return 0;
}
static int dsa_switch_parse(struct dsa_switch *ds, struct dsa_chip_data *cd)
{
int err;
ds->cd = cd;
/* We don't support interconnected switches nor multiple trees via
* platform data, so this is the unique switch of the tree.
*/
ds->index = 0;
ds->dst = dsa_tree_touch(0);
if (!ds->dst)
return -ENOMEM;
err = dsa_switch_touch_ports(ds);
if (err)
return err;
return dsa_switch_parse_ports(ds, cd);
}
static void dsa_switch_release_ports(struct dsa_switch *ds)
{
struct dsa_switch_tree *dst = ds->dst;
struct dsa_port *dp, *next;
list_for_each_entry_safe(dp, next, &dst->ports, list) {
if (dp->ds != ds)
continue;
list_del(&dp->list);
kfree(dp);
}
}
static int dsa_switch_probe(struct dsa_switch *ds)
{
struct dsa_switch_tree *dst;
struct dsa_chip_data *pdata;
struct device_node *np;
int err;
if (!ds->dev)
return -ENODEV;
pdata = ds->dev->platform_data;
np = ds->dev->of_node;
if (!ds->num_ports)
return -EINVAL;
if (np) {
err = dsa_switch_parse_of(ds, np);
if (err)
dsa_switch_release_ports(ds);
} else if (pdata) {
err = dsa_switch_parse(ds, pdata);
if (err)
dsa_switch_release_ports(ds);
} else {
err = -ENODEV;
}
if (err)
return err;
dst = ds->dst;
dsa_tree_get(dst);
err = dsa_tree_setup(dst);
if (err) {
dsa_switch_release_ports(ds);
dsa_tree_put(dst);
}
return err;
}
int dsa_register_switch(struct dsa_switch *ds)
{
int err;
mutex_lock(&dsa2_mutex);
err = dsa_switch_probe(ds);
dsa_tree_put(ds->dst);
mutex_unlock(&dsa2_mutex);
return err;
}
EXPORT_SYMBOL_GPL(dsa_register_switch);
static void dsa_switch_remove(struct dsa_switch *ds)
{
struct dsa_switch_tree *dst = ds->dst;
dsa_tree_teardown(dst);
dsa_switch_release_ports(ds);
dsa_tree_put(dst);
}
void dsa_unregister_switch(struct dsa_switch *ds)
{
mutex_lock(&dsa2_mutex);
dsa_switch_remove(ds);
mutex_unlock(&dsa2_mutex);
}
EXPORT_SYMBOL_GPL(dsa_unregister_switch);