5f0ce664d8
For a heap makes sense to leave its contents "unmeasured" in the SGX enclave build process, meaning that they won't contribute to the cryptographic signature (a RSA-3072 signed SHA56 hash) of the enclave. Enclaves are signed blobs where the signature is calculated both from page data and also from "structural properties" of the pages. For instance a page offset of *every* page added to the enclave is hashed. For data, this is optional, not least because hashing a page has a significant contribution to the enclave load time. Thus, where there is no reason to hash, do not. The SGX ioctl interface supports this with SGX_PAGE_MEASURE flag. Only when the flag is *set*, data is measured. Add seg->measure boolean flag to struct encl_segment. Only when the flag is set, include the segment data to the signature (represented by SIGSTRUCT architectural structure). Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org> Signed-off-by: Reinette Chatre <reinette.chatre@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Acked-by: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lkml.kernel.org/r/625b6fe28fed76275e9238ec4e15ec3c0d87de81.1636997631.git.reinette.chatre@intel.com
385 lines
7.7 KiB
C
385 lines
7.7 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/* Copyright(c) 2016-20 Intel Corporation. */
|
|
|
|
#define _GNU_SOURCE
|
|
#include <assert.h>
|
|
#include <getopt.h>
|
|
#include <stdbool.h>
|
|
#include <stdint.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/types.h>
|
|
#include <unistd.h>
|
|
#include <openssl/err.h>
|
|
#include <openssl/pem.h>
|
|
#include "defines.h"
|
|
#include "main.h"
|
|
|
|
struct q1q2_ctx {
|
|
BN_CTX *bn_ctx;
|
|
BIGNUM *m;
|
|
BIGNUM *s;
|
|
BIGNUM *q1;
|
|
BIGNUM *qr;
|
|
BIGNUM *q2;
|
|
};
|
|
|
|
static void free_q1q2_ctx(struct q1q2_ctx *ctx)
|
|
{
|
|
BN_CTX_free(ctx->bn_ctx);
|
|
BN_free(ctx->m);
|
|
BN_free(ctx->s);
|
|
BN_free(ctx->q1);
|
|
BN_free(ctx->qr);
|
|
BN_free(ctx->q2);
|
|
}
|
|
|
|
static bool alloc_q1q2_ctx(const uint8_t *s, const uint8_t *m,
|
|
struct q1q2_ctx *ctx)
|
|
{
|
|
ctx->bn_ctx = BN_CTX_new();
|
|
ctx->s = BN_bin2bn(s, SGX_MODULUS_SIZE, NULL);
|
|
ctx->m = BN_bin2bn(m, SGX_MODULUS_SIZE, NULL);
|
|
ctx->q1 = BN_new();
|
|
ctx->qr = BN_new();
|
|
ctx->q2 = BN_new();
|
|
|
|
if (!ctx->bn_ctx || !ctx->s || !ctx->m || !ctx->q1 || !ctx->qr ||
|
|
!ctx->q2) {
|
|
free_q1q2_ctx(ctx);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static void reverse_bytes(void *data, int length)
|
|
{
|
|
int i = 0;
|
|
int j = length - 1;
|
|
uint8_t temp;
|
|
uint8_t *ptr = data;
|
|
|
|
while (i < j) {
|
|
temp = ptr[i];
|
|
ptr[i] = ptr[j];
|
|
ptr[j] = temp;
|
|
i++;
|
|
j--;
|
|
}
|
|
}
|
|
|
|
static bool calc_q1q2(const uint8_t *s, const uint8_t *m, uint8_t *q1,
|
|
uint8_t *q2)
|
|
{
|
|
struct q1q2_ctx ctx;
|
|
int len;
|
|
|
|
if (!alloc_q1q2_ctx(s, m, &ctx)) {
|
|
fprintf(stderr, "Not enough memory for Q1Q2 calculation\n");
|
|
return false;
|
|
}
|
|
|
|
if (!BN_mul(ctx.q1, ctx.s, ctx.s, ctx.bn_ctx))
|
|
goto out;
|
|
|
|
if (!BN_div(ctx.q1, ctx.qr, ctx.q1, ctx.m, ctx.bn_ctx))
|
|
goto out;
|
|
|
|
if (BN_num_bytes(ctx.q1) > SGX_MODULUS_SIZE) {
|
|
fprintf(stderr, "Too large Q1 %d bytes\n",
|
|
BN_num_bytes(ctx.q1));
|
|
goto out;
|
|
}
|
|
|
|
if (!BN_mul(ctx.q2, ctx.s, ctx.qr, ctx.bn_ctx))
|
|
goto out;
|
|
|
|
if (!BN_div(ctx.q2, NULL, ctx.q2, ctx.m, ctx.bn_ctx))
|
|
goto out;
|
|
|
|
if (BN_num_bytes(ctx.q2) > SGX_MODULUS_SIZE) {
|
|
fprintf(stderr, "Too large Q2 %d bytes\n",
|
|
BN_num_bytes(ctx.q2));
|
|
goto out;
|
|
}
|
|
|
|
len = BN_bn2bin(ctx.q1, q1);
|
|
reverse_bytes(q1, len);
|
|
len = BN_bn2bin(ctx.q2, q2);
|
|
reverse_bytes(q2, len);
|
|
|
|
free_q1q2_ctx(&ctx);
|
|
return true;
|
|
out:
|
|
free_q1q2_ctx(&ctx);
|
|
return false;
|
|
}
|
|
|
|
struct sgx_sigstruct_payload {
|
|
struct sgx_sigstruct_header header;
|
|
struct sgx_sigstruct_body body;
|
|
};
|
|
|
|
static bool check_crypto_errors(void)
|
|
{
|
|
int err;
|
|
bool had_errors = false;
|
|
const char *filename;
|
|
int line;
|
|
char str[256];
|
|
|
|
for ( ; ; ) {
|
|
if (ERR_peek_error() == 0)
|
|
break;
|
|
|
|
had_errors = true;
|
|
err = ERR_get_error_line(&filename, &line);
|
|
ERR_error_string_n(err, str, sizeof(str));
|
|
fprintf(stderr, "crypto: %s: %s:%d\n", str, filename, line);
|
|
}
|
|
|
|
return had_errors;
|
|
}
|
|
|
|
static inline const BIGNUM *get_modulus(RSA *key)
|
|
{
|
|
const BIGNUM *n;
|
|
|
|
RSA_get0_key(key, &n, NULL, NULL);
|
|
return n;
|
|
}
|
|
|
|
static RSA *gen_sign_key(void)
|
|
{
|
|
unsigned long sign_key_length;
|
|
BIO *bio;
|
|
RSA *key;
|
|
|
|
sign_key_length = (unsigned long)&sign_key_end -
|
|
(unsigned long)&sign_key;
|
|
|
|
bio = BIO_new_mem_buf(&sign_key, sign_key_length);
|
|
if (!bio)
|
|
return NULL;
|
|
|
|
key = PEM_read_bio_RSAPrivateKey(bio, NULL, NULL, NULL);
|
|
BIO_free(bio);
|
|
|
|
return key;
|
|
}
|
|
|
|
enum mrtags {
|
|
MRECREATE = 0x0045544145524345,
|
|
MREADD = 0x0000000044444145,
|
|
MREEXTEND = 0x00444E4554584545,
|
|
};
|
|
|
|
static bool mrenclave_update(EVP_MD_CTX *ctx, const void *data)
|
|
{
|
|
if (!EVP_DigestUpdate(ctx, data, 64)) {
|
|
fprintf(stderr, "digest update failed\n");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool mrenclave_commit(EVP_MD_CTX *ctx, uint8_t *mrenclave)
|
|
{
|
|
unsigned int size;
|
|
|
|
if (!EVP_DigestFinal_ex(ctx, (unsigned char *)mrenclave, &size)) {
|
|
fprintf(stderr, "digest commit failed\n");
|
|
return false;
|
|
}
|
|
|
|
if (size != 32) {
|
|
fprintf(stderr, "invalid digest size = %u\n", size);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
struct mrecreate {
|
|
uint64_t tag;
|
|
uint32_t ssaframesize;
|
|
uint64_t size;
|
|
uint8_t reserved[44];
|
|
} __attribute__((__packed__));
|
|
|
|
|
|
static bool mrenclave_ecreate(EVP_MD_CTX *ctx, uint64_t blob_size)
|
|
{
|
|
struct mrecreate mrecreate;
|
|
uint64_t encl_size;
|
|
|
|
for (encl_size = 0x1000; encl_size < blob_size; )
|
|
encl_size <<= 1;
|
|
|
|
memset(&mrecreate, 0, sizeof(mrecreate));
|
|
mrecreate.tag = MRECREATE;
|
|
mrecreate.ssaframesize = 1;
|
|
mrecreate.size = encl_size;
|
|
|
|
if (!EVP_DigestInit_ex(ctx, EVP_sha256(), NULL))
|
|
return false;
|
|
|
|
return mrenclave_update(ctx, &mrecreate);
|
|
}
|
|
|
|
struct mreadd {
|
|
uint64_t tag;
|
|
uint64_t offset;
|
|
uint64_t flags; /* SECINFO flags */
|
|
uint8_t reserved[40];
|
|
} __attribute__((__packed__));
|
|
|
|
static bool mrenclave_eadd(EVP_MD_CTX *ctx, uint64_t offset, uint64_t flags)
|
|
{
|
|
struct mreadd mreadd;
|
|
|
|
memset(&mreadd, 0, sizeof(mreadd));
|
|
mreadd.tag = MREADD;
|
|
mreadd.offset = offset;
|
|
mreadd.flags = flags;
|
|
|
|
return mrenclave_update(ctx, &mreadd);
|
|
}
|
|
|
|
struct mreextend {
|
|
uint64_t tag;
|
|
uint64_t offset;
|
|
uint8_t reserved[48];
|
|
} __attribute__((__packed__));
|
|
|
|
static bool mrenclave_eextend(EVP_MD_CTX *ctx, uint64_t offset,
|
|
const uint8_t *data)
|
|
{
|
|
struct mreextend mreextend;
|
|
int i;
|
|
|
|
for (i = 0; i < 0x1000; i += 0x100) {
|
|
memset(&mreextend, 0, sizeof(mreextend));
|
|
mreextend.tag = MREEXTEND;
|
|
mreextend.offset = offset + i;
|
|
|
|
if (!mrenclave_update(ctx, &mreextend))
|
|
return false;
|
|
|
|
if (!mrenclave_update(ctx, &data[i + 0x00]))
|
|
return false;
|
|
|
|
if (!mrenclave_update(ctx, &data[i + 0x40]))
|
|
return false;
|
|
|
|
if (!mrenclave_update(ctx, &data[i + 0x80]))
|
|
return false;
|
|
|
|
if (!mrenclave_update(ctx, &data[i + 0xC0]))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool mrenclave_segment(EVP_MD_CTX *ctx, struct encl *encl,
|
|
struct encl_segment *seg)
|
|
{
|
|
uint64_t end = seg->size;
|
|
uint64_t offset;
|
|
|
|
for (offset = 0; offset < end; offset += PAGE_SIZE) {
|
|
if (!mrenclave_eadd(ctx, seg->offset + offset, seg->flags))
|
|
return false;
|
|
|
|
if (seg->measure) {
|
|
if (!mrenclave_eextend(ctx, seg->offset + offset, seg->src + offset))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool encl_measure(struct encl *encl)
|
|
{
|
|
uint64_t header1[2] = {0x000000E100000006, 0x0000000000010000};
|
|
uint64_t header2[2] = {0x0000006000000101, 0x0000000100000060};
|
|
struct sgx_sigstruct *sigstruct = &encl->sigstruct;
|
|
struct sgx_sigstruct_payload payload;
|
|
uint8_t digest[SHA256_DIGEST_LENGTH];
|
|
unsigned int siglen;
|
|
RSA *key = NULL;
|
|
EVP_MD_CTX *ctx;
|
|
int i;
|
|
|
|
memset(sigstruct, 0, sizeof(*sigstruct));
|
|
|
|
sigstruct->header.header1[0] = header1[0];
|
|
sigstruct->header.header1[1] = header1[1];
|
|
sigstruct->header.header2[0] = header2[0];
|
|
sigstruct->header.header2[1] = header2[1];
|
|
sigstruct->exponent = 3;
|
|
sigstruct->body.attributes = SGX_ATTR_MODE64BIT;
|
|
sigstruct->body.xfrm = 3;
|
|
|
|
/* sanity check */
|
|
if (check_crypto_errors())
|
|
goto err;
|
|
|
|
key = gen_sign_key();
|
|
if (!key) {
|
|
ERR_print_errors_fp(stdout);
|
|
goto err;
|
|
}
|
|
|
|
BN_bn2bin(get_modulus(key), sigstruct->modulus);
|
|
|
|
ctx = EVP_MD_CTX_create();
|
|
if (!ctx)
|
|
goto err;
|
|
|
|
if (!mrenclave_ecreate(ctx, encl->src_size))
|
|
goto err;
|
|
|
|
for (i = 0; i < encl->nr_segments; i++) {
|
|
struct encl_segment *seg = &encl->segment_tbl[i];
|
|
|
|
if (!mrenclave_segment(ctx, encl, seg))
|
|
goto err;
|
|
}
|
|
|
|
if (!mrenclave_commit(ctx, sigstruct->body.mrenclave))
|
|
goto err;
|
|
|
|
memcpy(&payload.header, &sigstruct->header, sizeof(sigstruct->header));
|
|
memcpy(&payload.body, &sigstruct->body, sizeof(sigstruct->body));
|
|
|
|
SHA256((unsigned char *)&payload, sizeof(payload), digest);
|
|
|
|
if (!RSA_sign(NID_sha256, digest, SHA256_DIGEST_LENGTH,
|
|
sigstruct->signature, &siglen, key))
|
|
goto err;
|
|
|
|
if (!calc_q1q2(sigstruct->signature, sigstruct->modulus, sigstruct->q1,
|
|
sigstruct->q2))
|
|
goto err;
|
|
|
|
/* BE -> LE */
|
|
reverse_bytes(sigstruct->signature, SGX_MODULUS_SIZE);
|
|
reverse_bytes(sigstruct->modulus, SGX_MODULUS_SIZE);
|
|
|
|
EVP_MD_CTX_destroy(ctx);
|
|
RSA_free(key);
|
|
return true;
|
|
|
|
err:
|
|
EVP_MD_CTX_destroy(ctx);
|
|
RSA_free(key);
|
|
return false;
|
|
}
|