2ddb77bb11
The documentation says that the bytesperline field in v4l2_pix_format refers to the largest plane in the case of planar formats (i.e. multiple planes stores in a single buffer). For almost all planar formats the first plane is also the largest (or equal) plane, except for two formats: V4L2_PIX_FMT_NV24/NV42. For this YUV 4:4:4 format the second chroma plane is twice the size of the first luma plane. Looking at the very few drivers that support this format the bytesperline value that they report is actually that of the first plane and not that of the largest plane. Rather than fixing the drivers it makes more sense to update the documentation since it is very difficult to use the largest plane for this. You would have to check what the format is in order to know to which plane bytesperline belongs, which makes calculations much more difficult. This patch updates the documentation accordingly. Signed-off-by: Hans Verkuil <hans.verkuil@cisco.com> Acked-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com> Acked-by: Sakari Ailus <sakari.ailus@linux.intel.com> Signed-off-by: Mauro Carvalho Chehab <mchehab@osg.samsung.com>
1802 lines
75 KiB
XML
1802 lines
75 KiB
XML
<title>Image Formats</title>
|
|
|
|
<para>The V4L2 API was primarily designed for devices exchanging
|
|
image data with applications. The
|
|
<structname>v4l2_pix_format</structname> and <structname>v4l2_pix_format_mplane
|
|
</structname> structures define the format and layout of an image in memory.
|
|
The former is used with the single-planar API, while the latter is used with the
|
|
multi-planar version (see <xref linkend="planar-apis"/>). Image formats are
|
|
negotiated with the &VIDIOC-S-FMT; ioctl. (The explanations here focus on video
|
|
capturing and output, for overlay frame buffer formats see also
|
|
&VIDIOC-G-FBUF;.)</para>
|
|
|
|
<section>
|
|
<title>Single-planar format structure</title>
|
|
<table pgwide="1" frame="none" id="v4l2-pix-format">
|
|
<title>struct <structname>v4l2_pix_format</structname></title>
|
|
<tgroup cols="3">
|
|
&cs-str;
|
|
<tbody valign="top">
|
|
<row>
|
|
<entry>__u32</entry>
|
|
<entry><structfield>width</structfield></entry>
|
|
<entry>Image width in pixels.</entry>
|
|
</row>
|
|
<row>
|
|
<entry>__u32</entry>
|
|
<entry><structfield>height</structfield></entry>
|
|
<entry>Image height in pixels. If <structfield>field</structfield> is
|
|
one of <constant>V4L2_FIELD_TOP</constant>, <constant>V4L2_FIELD_BOTTOM</constant>
|
|
or <constant>V4L2_FIELD_ALTERNATE</constant> then height refers to the
|
|
number of lines in the field, otherwise it refers to the number of
|
|
lines in the frame (which is twice the field height for interlaced
|
|
formats).</entry>
|
|
</row>
|
|
<row>
|
|
<entry spanname="hspan">Applications set these fields to
|
|
request an image size, drivers return the closest possible values. In
|
|
case of planar formats the <structfield>width</structfield> and
|
|
<structfield>height</structfield> applies to the largest plane. To
|
|
avoid ambiguities drivers must return values rounded up to a multiple
|
|
of the scale factor of any smaller planes. For example when the image
|
|
format is YUV 4:2:0, <structfield>width</structfield> and
|
|
<structfield>height</structfield> must be multiples of two.</entry>
|
|
</row>
|
|
<row>
|
|
<entry>__u32</entry>
|
|
<entry><structfield>pixelformat</structfield></entry>
|
|
<entry>The pixel format or type of compression, set by the
|
|
application. This is a little endian <link
|
|
linkend="v4l2-fourcc">four character code</link>. V4L2 defines
|
|
standard RGB formats in <xref linkend="rgb-formats" />, YUV formats in <xref
|
|
linkend="yuv-formats" />, and reserved codes in <xref
|
|
linkend="reserved-formats" /></entry>
|
|
</row>
|
|
<row>
|
|
<entry>&v4l2-field;</entry>
|
|
<entry><structfield>field</structfield></entry>
|
|
<entry>Video images are typically interlaced. Applications
|
|
can request to capture or output only the top or bottom field, or both
|
|
fields interlaced or sequentially stored in one buffer or alternating
|
|
in separate buffers. Drivers return the actual field order selected.
|
|
For more details on fields see <xref linkend="field-order" />.</entry>
|
|
</row>
|
|
<row>
|
|
<entry>__u32</entry>
|
|
<entry><structfield>bytesperline</structfield></entry>
|
|
<entry>Distance in bytes between the leftmost pixels in two
|
|
adjacent lines.</entry>
|
|
</row>
|
|
<row>
|
|
<entry spanname="hspan"><para>Both applications and drivers
|
|
can set this field to request padding bytes at the end of each line.
|
|
Drivers however may ignore the value requested by the application,
|
|
returning <structfield>width</structfield> times bytes per pixel or a
|
|
larger value required by the hardware. That implies applications can
|
|
just set this field to zero to get a reasonable
|
|
default.</para><para>Video hardware may access padding bytes,
|
|
therefore they must reside in accessible memory. Consider cases where
|
|
padding bytes after the last line of an image cross a system page
|
|
boundary. Input devices may write padding bytes, the value is
|
|
undefined. Output devices ignore the contents of padding
|
|
bytes.</para><para>When the image format is planar the
|
|
<structfield>bytesperline</structfield> value applies to the first
|
|
plane and is divided by the same factor as the
|
|
<structfield>width</structfield> field for the other planes. For
|
|
example the Cb and Cr planes of a YUV 4:2:0 image have half as many
|
|
padding bytes following each line as the Y plane. To avoid ambiguities
|
|
drivers must return a <structfield>bytesperline</structfield> value
|
|
rounded up to a multiple of the scale factor.</para>
|
|
<para>For compressed formats the <structfield>bytesperline</structfield>
|
|
value makes no sense. Applications and drivers must set this to 0 in
|
|
that case.</para></entry>
|
|
</row>
|
|
<row>
|
|
<entry>__u32</entry>
|
|
<entry><structfield>sizeimage</structfield></entry>
|
|
<entry>Size in bytes of the buffer to hold a complete image,
|
|
set by the driver. Usually this is
|
|
<structfield>bytesperline</structfield> times
|
|
<structfield>height</structfield>. When the image consists of variable
|
|
length compressed data this is the maximum number of bytes required to
|
|
hold an image.</entry>
|
|
</row>
|
|
<row>
|
|
<entry>&v4l2-colorspace;</entry>
|
|
<entry><structfield>colorspace</structfield></entry>
|
|
<entry>This information supplements the
|
|
<structfield>pixelformat</structfield> and must be set by the driver for
|
|
capture streams and by the application for output streams,
|
|
see <xref linkend="colorspaces" />.</entry>
|
|
</row>
|
|
<row>
|
|
<entry>__u32</entry>
|
|
<entry><structfield>priv</structfield></entry>
|
|
<entry><para>This field indicates whether the remaining fields of the
|
|
<structname>v4l2_pix_format</structname> structure, also called the extended
|
|
fields, are valid. When set to <constant>V4L2_PIX_FMT_PRIV_MAGIC</constant>, it
|
|
indicates that the extended fields have been correctly initialized. When set to
|
|
any other value it indicates that the extended fields contain undefined values.
|
|
</para>
|
|
<para>Applications that wish to use the pixel format extended fields must first
|
|
ensure that the feature is supported by querying the device for the
|
|
<link linkend="querycap"><constant>V4L2_CAP_EXT_PIX_FORMAT</constant></link>
|
|
capability. If the capability isn't set the pixel format extended fields are not
|
|
supported and using the extended fields will lead to undefined results.</para>
|
|
<para>To use the extended fields, applications must set the
|
|
<structfield>priv</structfield> field to
|
|
<constant>V4L2_PIX_FMT_PRIV_MAGIC</constant>, initialize all the extended fields
|
|
and zero the unused bytes of the <structname>v4l2_format</structname>
|
|
<structfield>raw_data</structfield> field.</para>
|
|
<para>When the <structfield>priv</structfield> field isn't set to
|
|
<constant>V4L2_PIX_FMT_PRIV_MAGIC</constant> drivers must act as if all the
|
|
extended fields were set to zero. On return drivers must set the
|
|
<structfield>priv</structfield> field to
|
|
<constant>V4L2_PIX_FMT_PRIV_MAGIC</constant> and all the extended fields to
|
|
applicable values.</para></entry>
|
|
</row>
|
|
<row>
|
|
<entry>__u32</entry>
|
|
<entry><structfield>flags</structfield></entry>
|
|
<entry>Flags set by the application or driver, see <xref
|
|
linkend="format-flags" />.</entry>
|
|
</row>
|
|
<row>
|
|
<entry>&v4l2-ycbcr-encoding;</entry>
|
|
<entry><structfield>ycbcr_enc</structfield></entry>
|
|
<entry>This information supplements the
|
|
<structfield>colorspace</structfield> and must be set by the driver for
|
|
capture streams and by the application for output streams,
|
|
see <xref linkend="colorspaces" />.</entry>
|
|
</row>
|
|
<row>
|
|
<entry>&v4l2-quantization;</entry>
|
|
<entry><structfield>quantization</structfield></entry>
|
|
<entry>This information supplements the
|
|
<structfield>colorspace</structfield> and must be set by the driver for
|
|
capture streams and by the application for output streams,
|
|
see <xref linkend="colorspaces" />.</entry>
|
|
</row>
|
|
</tbody>
|
|
</tgroup>
|
|
</table>
|
|
</section>
|
|
|
|
<section>
|
|
<title>Multi-planar format structures</title>
|
|
<para>The <structname>v4l2_plane_pix_format</structname> structures define
|
|
size and layout for each of the planes in a multi-planar format.
|
|
The <structname>v4l2_pix_format_mplane</structname> structure contains
|
|
information common to all planes (such as image width and height) and
|
|
an array of <structname>v4l2_plane_pix_format</structname> structures,
|
|
describing all planes of that format.</para>
|
|
<table pgwide="1" frame="none" id="v4l2-plane-pix-format">
|
|
<title>struct <structname>v4l2_plane_pix_format</structname></title>
|
|
<tgroup cols="3">
|
|
&cs-str;
|
|
<tbody valign="top">
|
|
<row>
|
|
<entry>__u32</entry>
|
|
<entry><structfield>sizeimage</structfield></entry>
|
|
<entry>Maximum size in bytes required for image data in this plane.
|
|
</entry>
|
|
</row>
|
|
<row>
|
|
<entry>__u16</entry>
|
|
<entry><structfield>bytesperline</structfield></entry>
|
|
<entry>Distance in bytes between the leftmost pixels in two adjacent
|
|
lines. See &v4l2-pix-format;.</entry>
|
|
</row>
|
|
<row>
|
|
<entry>__u16</entry>
|
|
<entry><structfield>reserved[7]</structfield></entry>
|
|
<entry>Reserved for future extensions. Should be zeroed by the
|
|
application.</entry>
|
|
</row>
|
|
</tbody>
|
|
</tgroup>
|
|
</table>
|
|
<table pgwide="1" frame="none" id="v4l2-pix-format-mplane">
|
|
<title>struct <structname>v4l2_pix_format_mplane</structname></title>
|
|
<tgroup cols="3">
|
|
&cs-str;
|
|
<tbody valign="top">
|
|
<row>
|
|
<entry>__u32</entry>
|
|
<entry><structfield>width</structfield></entry>
|
|
<entry>Image width in pixels. See &v4l2-pix-format;.</entry>
|
|
</row>
|
|
<row>
|
|
<entry>__u32</entry>
|
|
<entry><structfield>height</structfield></entry>
|
|
<entry>Image height in pixels. See &v4l2-pix-format;.</entry>
|
|
</row>
|
|
<row>
|
|
<entry>__u32</entry>
|
|
<entry><structfield>pixelformat</structfield></entry>
|
|
<entry>The pixel format. Both single- and multi-planar four character
|
|
codes can be used.</entry>
|
|
</row>
|
|
<row>
|
|
<entry>&v4l2-field;</entry>
|
|
<entry><structfield>field</structfield></entry>
|
|
<entry>See &v4l2-pix-format;.</entry>
|
|
</row>
|
|
<row>
|
|
<entry>&v4l2-colorspace;</entry>
|
|
<entry><structfield>colorspace</structfield></entry>
|
|
<entry>See &v4l2-pix-format;.</entry>
|
|
</row>
|
|
<row>
|
|
<entry>&v4l2-plane-pix-format;</entry>
|
|
<entry><structfield>plane_fmt[VIDEO_MAX_PLANES]</structfield></entry>
|
|
<entry>An array of structures describing format of each plane this
|
|
pixel format consists of. The number of valid entries in this array
|
|
has to be put in the <structfield>num_planes</structfield>
|
|
field.</entry>
|
|
</row>
|
|
<row>
|
|
<entry>__u8</entry>
|
|
<entry><structfield>num_planes</structfield></entry>
|
|
<entry>Number of planes (i.e. separate memory buffers) for this format
|
|
and the number of valid entries in the
|
|
<structfield>plane_fmt</structfield> array.</entry>
|
|
</row>
|
|
<row>
|
|
<entry>__u8</entry>
|
|
<entry><structfield>flags</structfield></entry>
|
|
<entry>Flags set by the application or driver, see <xref
|
|
linkend="format-flags" />.</entry>
|
|
</row>
|
|
<row>
|
|
<entry>&v4l2-ycbcr-encoding;</entry>
|
|
<entry><structfield>ycbcr_enc</structfield></entry>
|
|
<entry>This information supplements the
|
|
<structfield>colorspace</structfield> and must be set by the driver for
|
|
capture streams and by the application for output streams,
|
|
see <xref linkend="colorspaces" />.</entry>
|
|
</row>
|
|
<row>
|
|
<entry>&v4l2-quantization;</entry>
|
|
<entry><structfield>quantization</structfield></entry>
|
|
<entry>This information supplements the
|
|
<structfield>colorspace</structfield> and must be set by the driver for
|
|
capture streams and by the application for output streams,
|
|
see <xref linkend="colorspaces" />.</entry>
|
|
</row>
|
|
<row>
|
|
<entry>__u8</entry>
|
|
<entry><structfield>reserved[8]</structfield></entry>
|
|
<entry>Reserved for future extensions. Should be zeroed by the
|
|
application.</entry>
|
|
</row>
|
|
</tbody>
|
|
</tgroup>
|
|
</table>
|
|
</section>
|
|
|
|
<section>
|
|
<title>Standard Image Formats</title>
|
|
|
|
<para>In order to exchange images between drivers and
|
|
applications, it is necessary to have standard image data formats
|
|
which both sides will interpret the same way. V4L2 includes several
|
|
such formats, and this section is intended to be an unambiguous
|
|
specification of the standard image data formats in V4L2.</para>
|
|
|
|
<para>V4L2 drivers are not limited to these formats, however.
|
|
Driver-specific formats are possible. In that case the application may
|
|
depend on a codec to convert images to one of the standard formats
|
|
when needed. But the data can still be stored and retrieved in the
|
|
proprietary format. For example, a device may support a proprietary
|
|
compressed format. Applications can still capture and save the data in
|
|
the compressed format, saving much disk space, and later use a codec
|
|
to convert the images to the X Windows screen format when the video is
|
|
to be displayed.</para>
|
|
|
|
<para>Even so, ultimately, some standard formats are needed, so
|
|
the V4L2 specification would not be complete without well-defined
|
|
standard formats.</para>
|
|
|
|
<para>The V4L2 standard formats are mainly uncompressed formats. The
|
|
pixels are always arranged in memory from left to right, and from top
|
|
to bottom. The first byte of data in the image buffer is always for
|
|
the leftmost pixel of the topmost row. Following that is the pixel
|
|
immediately to its right, and so on until the end of the top row of
|
|
pixels. Following the rightmost pixel of the row there may be zero or
|
|
more bytes of padding to guarantee that each row of pixel data has a
|
|
certain alignment. Following the pad bytes, if any, is data for the
|
|
leftmost pixel of the second row from the top, and so on. The last row
|
|
has just as many pad bytes after it as the other rows.</para>
|
|
|
|
<para>In V4L2 each format has an identifier which looks like
|
|
<constant>PIX_FMT_XXX</constant>, defined in the <link
|
|
linkend="videodev">videodev2.h</link> header file. These identifiers
|
|
represent <link linkend="v4l2-fourcc">four character (FourCC) codes</link>
|
|
which are also listed below, however they are not the same as those
|
|
used in the Windows world.</para>
|
|
|
|
<para>For some formats, data is stored in separate, discontiguous
|
|
memory buffers. Those formats are identified by a separate set of FourCC codes
|
|
and are referred to as "multi-planar formats". For example, a YUV422 frame is
|
|
normally stored in one memory buffer, but it can also be placed in two or three
|
|
separate buffers, with Y component in one buffer and CbCr components in another
|
|
in the 2-planar version or with each component in its own buffer in the
|
|
3-planar case. Those sub-buffers are referred to as "planes".</para>
|
|
</section>
|
|
|
|
<section id="colorspaces">
|
|
<title>Colorspaces</title>
|
|
|
|
<para>'Color' is a very complex concept and depends on physics, chemistry and
|
|
biology. Just because you have three numbers that describe the 'red', 'green'
|
|
and 'blue' components of the color of a pixel does not mean that you can accurately
|
|
display that color. A colorspace defines what it actually <emphasis>means</emphasis>
|
|
to have an RGB value of e.g. (255, 0, 0). That is, which color should be
|
|
reproduced on the screen in a perfectly calibrated environment.</para>
|
|
|
|
<para>In order to do that we first need to have a good definition of
|
|
color, i.e. some way to uniquely and unambiguously define a color so that someone
|
|
else can reproduce it. Human color vision is trichromatic since the human eye has
|
|
color receptors that are sensitive to three different wavelengths of light. Hence
|
|
the need to use three numbers to describe color. Be glad you are not a mantis shrimp
|
|
as those are sensitive to 12 different wavelengths, so instead of RGB we would be
|
|
using the ABCDEFGHIJKL colorspace...</para>
|
|
|
|
<para>Color exists only in the eye and brain and is the result of how strongly
|
|
color receptors are stimulated. This is based on the Spectral
|
|
Power Distribution (SPD) which is a graph showing the intensity (radiant power)
|
|
of the light at wavelengths covering the visible spectrum as it enters the eye.
|
|
The science of colorimetry is about the relationship between the SPD and color as
|
|
perceived by the human brain.</para>
|
|
|
|
<para>Since the human eye has only three color receptors it is perfectly
|
|
possible that different SPDs will result in the same stimulation of those receptors
|
|
and are perceived as the same color, even though the SPD of the light is
|
|
different.</para>
|
|
|
|
<para>In the 1920s experiments were devised to determine the relationship
|
|
between SPDs and the perceived color and that resulted in the CIE 1931 standard
|
|
that defines spectral weighting functions that model the perception of color.
|
|
Specifically that standard defines functions that can take an SPD and calculate
|
|
the stimulus for each color receptor. After some further mathematical transforms
|
|
these stimuli are known as the <emphasis>CIE XYZ tristimulus</emphasis> values
|
|
and these X, Y and Z values describe a color as perceived by a human unambiguously.
|
|
These X, Y and Z values are all in the range [0…1].</para>
|
|
|
|
<para>The Y value in the CIE XYZ colorspace corresponds to luminance. Often
|
|
the CIE XYZ colorspace is transformed to the normalized CIE xyY colorspace:</para>
|
|
|
|
<para>x = X / (X + Y + Z)</para>
|
|
<para>y = Y / (X + Y + Z)</para>
|
|
|
|
<para>The x and y values are the chromaticity coordinates and can be used to
|
|
define a color without the luminance component Y. It is very confusing to
|
|
have such similar names for these colorspaces. Just be aware that if colors
|
|
are specified with lower case 'x' and 'y', then the CIE xyY colorspace is
|
|
used. Upper case 'X' and 'Y' refer to the CIE XYZ colorspace. Also, y has nothing
|
|
to do with luminance. Together x and y specify a color, and Y the luminance.
|
|
That is really all you need to remember from a practical point of view. At
|
|
the end of this section you will find reading resources that go into much more
|
|
detail if you are interested.
|
|
</para>
|
|
|
|
<para>A monitor or TV will reproduce colors by emitting light at three
|
|
different wavelengths, the combination of which will stimulate the color receptors
|
|
in the eye and thus cause the perception of color. Historically these wavelengths
|
|
were defined by the red, green and blue phosphors used in the displays. These
|
|
<emphasis>color primaries</emphasis> are part of what defines a colorspace.</para>
|
|
|
|
<para>Different display devices will have different primaries and some
|
|
primaries are more suitable for some display technologies than others. This has
|
|
resulted in a variety of colorspaces that are used for different display
|
|
technologies or uses. To define a colorspace you need to define the three
|
|
color primaries (these are typically defined as x, y chromaticity coordinates
|
|
from the CIE xyY colorspace) but also the white reference: that is the color obtained
|
|
when all three primaries are at maximum power. This determines the relative power
|
|
or energy of the primaries. This is usually chosen to be close to daylight which has
|
|
been defined as the CIE D65 Illuminant.</para>
|
|
|
|
<para>To recapitulate: the CIE XYZ colorspace uniquely identifies colors.
|
|
Other colorspaces are defined by three chromaticity coordinates defined in the
|
|
CIE xyY colorspace. Based on those a 3x3 matrix can be constructed that
|
|
transforms CIE XYZ colors to colors in the new colorspace.
|
|
</para>
|
|
|
|
<para>Both the CIE XYZ and the RGB colorspace that are derived from the
|
|
specific chromaticity primaries are linear colorspaces. But neither the eye,
|
|
nor display technology is linear. Doubling the values of all components in
|
|
the linear colorspace will not be perceived as twice the intensity of the color.
|
|
So each colorspace also defines a transfer function that takes a linear color
|
|
component value and transforms it to the non-linear component value, which is a
|
|
closer match to the non-linear performance of both the eye and displays. Linear
|
|
component values are denoted RGB, non-linear are denoted as R'G'B'. In general
|
|
colors used in graphics are all R'G'B', except in openGL which uses linear RGB.
|
|
Special care should be taken when dealing with openGL to provide linear RGB colors
|
|
or to use the built-in openGL support to apply the inverse transfer function.</para>
|
|
|
|
<para>The final piece that defines a colorspace is a function that
|
|
transforms non-linear R'G'B' to non-linear Y'CbCr. This function is determined
|
|
by the so-called luma coefficients. There may be multiple possible Y'CbCr
|
|
encodings allowed for the same colorspace. Many encodings of color
|
|
prefer to use luma (Y') and chroma (CbCr) instead of R'G'B'. Since the human
|
|
eye is more sensitive to differences in luminance than in color this encoding
|
|
allows one to reduce the amount of color information compared to the luma
|
|
data. Note that the luma (Y') is unrelated to the Y in the CIE XYZ colorspace.
|
|
Also note that Y'CbCr is often called YCbCr or YUV even though these are
|
|
strictly speaking wrong.</para>
|
|
|
|
<para>Sometimes people confuse Y'CbCr as being a colorspace. This is not
|
|
correct, it is just an encoding of an R'G'B' color into luma and chroma
|
|
values. The underlying colorspace that is associated with the R'G'B' color
|
|
is also associated with the Y'CbCr color.</para>
|
|
|
|
<para>The final step is how the RGB, R'G'B' or Y'CbCr values are
|
|
quantized. The CIE XYZ colorspace where X, Y and Z are in the range
|
|
[0…1] describes all colors that humans can perceive, but the transform to
|
|
another colorspace will produce colors that are outside the [0…1] range.
|
|
Once clamped to the [0…1] range those colors can no longer be reproduced
|
|
in that colorspace. This clamping is what reduces the extent or gamut of the
|
|
colorspace. How the range of [0…1] is translated to integer values in the
|
|
range of [0…255] (or higher, depending on the color depth) is called the
|
|
quantization. This is <emphasis>not</emphasis> part of the colorspace
|
|
definition. In practice RGB or R'G'B' values are full range, i.e. they
|
|
use the full [0…255] range. Y'CbCr values on the other hand are limited
|
|
range with Y' using [16…235] and Cb and Cr using [16…240].</para>
|
|
|
|
<para>Unfortunately, in some cases limited range RGB is also used
|
|
where the components use the range [16…235]. And full range Y'CbCr also exists
|
|
using the [0…255] range.</para>
|
|
|
|
<para>In order to correctly interpret a color you need to know the
|
|
quantization range, whether it is R'G'B' or Y'CbCr, the used Y'CbCr encoding
|
|
and the colorspace.
|
|
From that information you can calculate the corresponding CIE XYZ color
|
|
and map that again to whatever colorspace your display device uses.</para>
|
|
|
|
<para>The colorspace definition itself consists of the three
|
|
chromaticity primaries, the white reference chromaticity, a transfer
|
|
function and the luma coefficients needed to transform R'G'B' to Y'CbCr. While
|
|
some colorspace standards correctly define all four, quite often the colorspace
|
|
standard only defines some, and you have to rely on other standards for
|
|
the missing pieces. The fact that colorspaces are often a mix of different
|
|
standards also led to very confusing naming conventions where the name of
|
|
a standard was used to name a colorspace when in fact that standard was
|
|
part of various other colorspaces as well.</para>
|
|
|
|
<para>If you want to read more about colors and colorspaces, then the
|
|
following resources are useful: <xref linkend="poynton" /> is a good practical
|
|
book for video engineers, <xref linkend="colimg" /> has a much broader scope and
|
|
describes many more aspects of color (physics, chemistry, biology, etc.).
|
|
The <ulink url="http://www.brucelindbloom.com">http://www.brucelindbloom.com</ulink>
|
|
website is an excellent resource, especially with respect to the mathematics behind
|
|
colorspace conversions. The wikipedia <ulink url="http://en.wikipedia.org/wiki/CIE_1931_color_space#CIE_xy_chromaticity_diagram_and_the_CIE_xyY_color_space">CIE 1931 colorspace</ulink> article
|
|
is also very useful.</para>
|
|
</section>
|
|
|
|
<section>
|
|
<title>Defining Colorspaces in V4L2</title>
|
|
<para>In V4L2 colorspaces are defined by three values. The first is the colorspace
|
|
identifier (&v4l2-colorspace;) which defines the chromaticities, the transfer
|
|
function, the default Y'CbCr encoding and the default quantization method. The second
|
|
is the Y'CbCr encoding identifier (&v4l2-ycbcr-encoding;) to specify non-standard
|
|
Y'CbCr encodings and the third is the quantization identifier (&v4l2-quantization;)
|
|
to specify non-standard quantization methods. Most of the time only the colorspace
|
|
field of &v4l2-pix-format; or &v4l2-pix-format-mplane; needs to be filled in. Note
|
|
that the default R'G'B' quantization is full range for all colorspaces except for
|
|
BT.2020 which uses limited range R'G'B' quantization.</para>
|
|
|
|
<table pgwide="1" frame="none" id="v4l2-colorspace">
|
|
<title>V4L2 Colorspaces</title>
|
|
<tgroup cols="2" align="left">
|
|
&cs-def;
|
|
<thead>
|
|
<row>
|
|
<entry>Identifier</entry>
|
|
<entry>Details</entry>
|
|
</row>
|
|
</thead>
|
|
<tbody valign="top">
|
|
<row>
|
|
<entry><constant>V4L2_COLORSPACE_SMPTE170M</constant></entry>
|
|
<entry>See <xref linkend="col-smpte-170m" />.</entry>
|
|
</row>
|
|
<row>
|
|
<entry><constant>V4L2_COLORSPACE_REC709</constant></entry>
|
|
<entry>See <xref linkend="col-rec709" />.</entry>
|
|
</row>
|
|
<row>
|
|
<entry><constant>V4L2_COLORSPACE_SRGB</constant></entry>
|
|
<entry>See <xref linkend="col-srgb" />.</entry>
|
|
</row>
|
|
<row>
|
|
<entry><constant>V4L2_COLORSPACE_ADOBERGB</constant></entry>
|
|
<entry>See <xref linkend="col-adobergb" />.</entry>
|
|
</row>
|
|
<row>
|
|
<entry><constant>V4L2_COLORSPACE_BT2020</constant></entry>
|
|
<entry>See <xref linkend="col-bt2020" />.</entry>
|
|
</row>
|
|
<row>
|
|
<entry><constant>V4L2_COLORSPACE_SMPTE240M</constant></entry>
|
|
<entry>See <xref linkend="col-smpte-240m" />.</entry>
|
|
</row>
|
|
<row>
|
|
<entry><constant>V4L2_COLORSPACE_470_SYSTEM_M</constant></entry>
|
|
<entry>See <xref linkend="col-sysm" />.</entry>
|
|
</row>
|
|
<row>
|
|
<entry><constant>V4L2_COLORSPACE_470_SYSTEM_BG</constant></entry>
|
|
<entry>See <xref linkend="col-sysbg" />.</entry>
|
|
</row>
|
|
<row>
|
|
<entry><constant>V4L2_COLORSPACE_JPEG</constant></entry>
|
|
<entry>See <xref linkend="col-jpeg" />.</entry>
|
|
</row>
|
|
</tbody>
|
|
</tgroup>
|
|
</table>
|
|
|
|
<table pgwide="1" frame="none" id="v4l2-ycbcr-encoding">
|
|
<title>V4L2 Y'CbCr Encodings</title>
|
|
<tgroup cols="2" align="left">
|
|
&cs-def;
|
|
<thead>
|
|
<row>
|
|
<entry>Identifier</entry>
|
|
<entry>Details</entry>
|
|
</row>
|
|
</thead>
|
|
<tbody valign="top">
|
|
<row>
|
|
<entry><constant>V4L2_YCBCR_ENC_DEFAULT</constant></entry>
|
|
<entry>Use the default Y'CbCr encoding as defined by the colorspace.</entry>
|
|
</row>
|
|
<row>
|
|
<entry><constant>V4L2_YCBCR_ENC_601</constant></entry>
|
|
<entry>Use the BT.601 Y'CbCr encoding.</entry>
|
|
</row>
|
|
<row>
|
|
<entry><constant>V4L2_YCBCR_ENC_709</constant></entry>
|
|
<entry>Use the Rec. 709 Y'CbCr encoding.</entry>
|
|
</row>
|
|
<row>
|
|
<entry><constant>V4L2_YCBCR_ENC_XV601</constant></entry>
|
|
<entry>Use the extended gamut xvYCC BT.601 encoding.</entry>
|
|
</row>
|
|
<row>
|
|
<entry><constant>V4L2_YCBCR_ENC_XV709</constant></entry>
|
|
<entry>Use the extended gamut xvYCC Rec. 709 encoding.</entry>
|
|
</row>
|
|
<row>
|
|
<entry><constant>V4L2_YCBCR_ENC_SYCC</constant></entry>
|
|
<entry>Use the extended gamut sYCC encoding.</entry>
|
|
</row>
|
|
<row>
|
|
<entry><constant>V4L2_YCBCR_ENC_BT2020</constant></entry>
|
|
<entry>Use the default non-constant luminance BT.2020 Y'CbCr encoding.</entry>
|
|
</row>
|
|
<row>
|
|
<entry><constant>V4L2_YCBCR_ENC_BT2020_CONST_LUM</constant></entry>
|
|
<entry>Use the constant luminance BT.2020 Yc'CbcCrc encoding.</entry>
|
|
</row>
|
|
</tbody>
|
|
</tgroup>
|
|
</table>
|
|
|
|
<table pgwide="1" frame="none" id="v4l2-quantization">
|
|
<title>V4L2 Quantization Methods</title>
|
|
<tgroup cols="2" align="left">
|
|
&cs-def;
|
|
<thead>
|
|
<row>
|
|
<entry>Identifier</entry>
|
|
<entry>Details</entry>
|
|
</row>
|
|
</thead>
|
|
<tbody valign="top">
|
|
<row>
|
|
<entry><constant>V4L2_QUANTIZATION_DEFAULT</constant></entry>
|
|
<entry>Use the default quantization encoding as defined by the colorspace.
|
|
This is always full range for R'G'B' (except for the BT.2020 colorspace) and usually
|
|
limited range for Y'CbCr.</entry>
|
|
</row>
|
|
<row>
|
|
<entry><constant>V4L2_QUANTIZATION_FULL_RANGE</constant></entry>
|
|
<entry>Use the full range quantization encoding. I.e. the range [0…1]
|
|
is mapped to [0…255] (with possible clipping to [1…254] to avoid the
|
|
0x00 and 0xff values). Cb and Cr are mapped from [-0.5…0.5] to [0…255]
|
|
(with possible clipping to [1…254] to avoid the 0x00 and 0xff values).</entry>
|
|
</row>
|
|
<row>
|
|
<entry><constant>V4L2_QUANTIZATION_LIM_RANGE</constant></entry>
|
|
<entry>Use the limited range quantization encoding. I.e. the range [0…1]
|
|
is mapped to [16…235]. Cb and Cr are mapped from [-0.5…0.5] to [16…240].
|
|
</entry>
|
|
</row>
|
|
</tbody>
|
|
</tgroup>
|
|
</table>
|
|
</section>
|
|
|
|
<section>
|
|
<title>Detailed Colorspace Descriptions</title>
|
|
<section>
|
|
<title id="col-smpte-170m">Colorspace SMPTE 170M (<constant>V4L2_COLORSPACE_SMPTE170M</constant>)</title>
|
|
<para>The <xref linkend="smpte170m" /> standard defines the colorspace used by NTSC and PAL and by SDTV
|
|
in general. The default Y'CbCr encoding is <constant>V4L2_YCBCR_ENC_601</constant>.
|
|
The default Y'CbCr quantization is limited range. The chromaticities of the primary colors and
|
|
the white reference are:</para>
|
|
<table frame="none">
|
|
<title>SMPTE 170M Chromaticities</title>
|
|
<tgroup cols="3" align="left">
|
|
&cs-str;
|
|
<thead>
|
|
<row>
|
|
<entry>Color</entry>
|
|
<entry>x</entry>
|
|
<entry>y</entry>
|
|
</row>
|
|
</thead>
|
|
<tbody valign="top">
|
|
<row>
|
|
<entry>Red</entry>
|
|
<entry>0.630</entry>
|
|
<entry>0.340</entry>
|
|
</row>
|
|
<row>
|
|
<entry>Green</entry>
|
|
<entry>0.310</entry>
|
|
<entry>0.595</entry>
|
|
</row>
|
|
<row>
|
|
<entry>Blue</entry>
|
|
<entry>0.155</entry>
|
|
<entry>0.070</entry>
|
|
</row>
|
|
<row>
|
|
<entry>White Reference (D65)</entry>
|
|
<entry>0.3127</entry>
|
|
<entry>0.3290</entry>
|
|
</row>
|
|
</tbody>
|
|
</tgroup>
|
|
</table>
|
|
<para>The red, green and blue chromaticities are also often referred to
|
|
as the SMPTE C set, so this colorspace is sometimes called SMPTE C as well.</para>
|
|
<variablelist>
|
|
<varlistentry>
|
|
<term>The transfer function defined for SMPTE 170M is the same as the
|
|
one defined in Rec. 709.</term>
|
|
<listitem>
|
|
<para>L' = -1.099(-L)<superscript>0.45</superscript> + 0.099 for L ≤ -0.018</para>
|
|
<para>L' = 4.5L for -0.018 < L < 0.018</para>
|
|
<para>L' = 1.099L<superscript>0.45</superscript> - 0.099 for L ≥ 0.018</para>
|
|
</listitem>
|
|
</varlistentry>
|
|
</variablelist>
|
|
<variablelist>
|
|
<varlistentry>
|
|
<term>Inverse Transfer function:</term>
|
|
<listitem>
|
|
<para>L = -((L' - 0.099) / -1.099)<superscript>1/0.45</superscript> for L' ≤ -0.081</para>
|
|
<para>L = L' / 4.5 for -0.081 < L' < 0.081</para>
|
|
<para>L = ((L' + 0.099) / 1.099)<superscript>1/0.45</superscript> for L' ≥ 0.081</para>
|
|
</listitem>
|
|
</varlistentry>
|
|
</variablelist>
|
|
<variablelist>
|
|
<varlistentry>
|
|
<term>The luminance (Y') and color difference (Cb and Cr) are obtained with
|
|
the following <constant>V4L2_YCBCR_ENC_601</constant> encoding:</term>
|
|
<listitem>
|
|
<para>Y' = 0.299R' + 0.587G' + 0.114B'</para>
|
|
<para>Cb = -0.169R' - 0.331G' + 0.5B'</para>
|
|
<para>Cr = 0.5R' - 0.419G' - 0.081B'</para>
|
|
</listitem>
|
|
</varlistentry>
|
|
</variablelist>
|
|
<para>Y' is clamped to the range [0…1] and Cb and Cr are
|
|
clamped to the range [-0.5…0.5]. This conversion to Y'CbCr is identical to the one
|
|
defined in the <xref linkend="itu601" /> standard and this colorspace is sometimes called BT.601 as well, even
|
|
though BT.601 does not mention any color primaries.</para>
|
|
<para>The default quantization is limited range, but full range is possible although
|
|
rarely seen.</para>
|
|
</section>
|
|
|
|
<section>
|
|
<title id="col-rec709">Colorspace Rec. 709 (<constant>V4L2_COLORSPACE_REC709</constant>)</title>
|
|
<para>The <xref linkend="itu709" /> standard defines the colorspace used by HDTV in general. The default
|
|
Y'CbCr encoding is <constant>V4L2_YCBCR_ENC_709</constant>. The default Y'CbCr quantization is
|
|
limited range. The chromaticities of the primary colors and the white reference are:</para>
|
|
<table frame="none">
|
|
<title>Rec. 709 Chromaticities</title>
|
|
<tgroup cols="3" align="left">
|
|
&cs-str;
|
|
<thead>
|
|
<row>
|
|
<entry>Color</entry>
|
|
<entry>x</entry>
|
|
<entry>y</entry>
|
|
</row>
|
|
</thead>
|
|
<tbody valign="top">
|
|
<row>
|
|
<entry>Red</entry>
|
|
<entry>0.640</entry>
|
|
<entry>0.330</entry>
|
|
</row>
|
|
<row>
|
|
<entry>Green</entry>
|
|
<entry>0.300</entry>
|
|
<entry>0.600</entry>
|
|
</row>
|
|
<row>
|
|
<entry>Blue</entry>
|
|
<entry>0.150</entry>
|
|
<entry>0.060</entry>
|
|
</row>
|
|
<row>
|
|
<entry>White Reference (D65)</entry>
|
|
<entry>0.3127</entry>
|
|
<entry>0.3290</entry>
|
|
</row>
|
|
</tbody>
|
|
</tgroup>
|
|
</table>
|
|
<para>The full name of this standard is Rec. ITU-R BT.709-5.</para>
|
|
<variablelist>
|
|
<varlistentry>
|
|
<term>Transfer function. Normally L is in the range [0…1], but for the extended
|
|
gamut xvYCC encoding values outside that range are allowed.</term>
|
|
<listitem>
|
|
<para>L' = -1.099(-L)<superscript>0.45</superscript> + 0.099 for L ≤ -0.018</para>
|
|
<para>L' = 4.5L for -0.018 < L < 0.018</para>
|
|
<para>L' = 1.099L<superscript>0.45</superscript> - 0.099 for L ≥ 0.018</para>
|
|
</listitem>
|
|
</varlistentry>
|
|
</variablelist>
|
|
<variablelist>
|
|
<varlistentry>
|
|
<term>Inverse Transfer function:</term>
|
|
<listitem>
|
|
<para>L = -((L' - 0.099) / -1.099)<superscript>1/0.45</superscript> for L' ≤ -0.081</para>
|
|
<para>L = L' / 4.5 for -0.081 < L' < 0.081</para>
|
|
<para>L = ((L' + 0.099) / 1.099)<superscript>1/0.45</superscript> for L' ≥ 0.081</para>
|
|
</listitem>
|
|
</varlistentry>
|
|
</variablelist>
|
|
<variablelist>
|
|
<varlistentry>
|
|
<term>The luminance (Y') and color difference (Cb and Cr) are obtained with the following
|
|
<constant>V4L2_YCBCR_ENC_709</constant> encoding:</term>
|
|
<listitem>
|
|
<para>Y' = 0.2126R' + 0.7152G' + 0.0722B'</para>
|
|
<para>Cb = -0.1146R' - 0.3854G' + 0.5B'</para>
|
|
<para>Cr = 0.5R' - 0.4542G' - 0.0458B'</para>
|
|
</listitem>
|
|
</varlistentry>
|
|
</variablelist>
|
|
<para>Y' is clamped to the range [0…1] and Cb and Cr are
|
|
clamped to the range [-0.5…0.5].</para>
|
|
<para>The default quantization is limited range, but full range is possible although
|
|
rarely seen.</para>
|
|
<para>The <constant>V4L2_YCBCR_ENC_709</constant> encoding described above is the default
|
|
for this colorspace, but it can be overridden with <constant>V4L2_YCBCR_ENC_601</constant>, in which
|
|
case the BT.601 Y'CbCr encoding is used.</para>
|
|
<para>Two additional extended gamut Y'CbCr encodings are also possible with this colorspace:</para>
|
|
<variablelist>
|
|
<varlistentry>
|
|
<term>The xvYCC 709 encoding (<constant>V4L2_YCBCR_ENC_XV709</constant>, <xref linkend="xvycc" />)
|
|
is similar to the Rec. 709 encoding, but it allows for R', G' and B' values that are outside the range
|
|
[0…1]. The resulting Y', Cb and Cr values are scaled and offset:</term>
|
|
<listitem>
|
|
<para>Y' = (219 / 256) * (0.2126R' + 0.7152G' + 0.0722B') + (16 / 256)</para>
|
|
<para>Cb = (224 / 256) * (-0.1146R' - 0.3854G' + 0.5B')</para>
|
|
<para>Cr = (224 / 256) * (0.5R' - 0.4542G' - 0.0458B')</para>
|
|
</listitem>
|
|
</varlistentry>
|
|
</variablelist>
|
|
<variablelist>
|
|
<varlistentry>
|
|
<term>The xvYCC 601 encoding (<constant>V4L2_YCBCR_ENC_XV601</constant>, <xref linkend="xvycc" />) is similar
|
|
to the BT.601 encoding, but it allows for R', G' and B' values that are outside the range
|
|
[0…1]. The resulting Y', Cb and Cr values are scaled and offset:</term>
|
|
<listitem>
|
|
<para>Y' = (219 / 256) * (0.299R' + 0.587G' + 0.114B') + (16 / 256)</para>
|
|
<para>Cb = (224 / 256) * (-0.169R' - 0.331G' + 0.5B')</para>
|
|
<para>Cr = (224 / 256) * (0.5R' - 0.419G' - 0.081B')</para>
|
|
</listitem>
|
|
</varlistentry>
|
|
</variablelist>
|
|
<para>Y' is clamped to the range [0…1] and Cb and Cr are clamped
|
|
to the range [-0.5…0.5]. The non-standard xvYCC 709 or xvYCC 601 encodings can be used by
|
|
selecting <constant>V4L2_YCBCR_ENC_XV709</constant> or <constant>V4L2_YCBCR_ENC_XV601</constant>.
|
|
The xvYCC encodings always use full range quantization.</para>
|
|
</section>
|
|
|
|
<section>
|
|
<title id="col-srgb">Colorspace sRGB (<constant>V4L2_COLORSPACE_SRGB</constant>)</title>
|
|
<para>The <xref linkend="srgb" /> standard defines the colorspace used by most webcams and computer graphics. The
|
|
default Y'CbCr encoding is <constant>V4L2_YCBCR_ENC_SYCC</constant>. The default Y'CbCr quantization
|
|
is full range. The chromaticities of the primary colors and the white reference are:</para>
|
|
<table frame="none">
|
|
<title>sRGB Chromaticities</title>
|
|
<tgroup cols="3" align="left">
|
|
&cs-str;
|
|
<thead>
|
|
<row>
|
|
<entry>Color</entry>
|
|
<entry>x</entry>
|
|
<entry>y</entry>
|
|
</row>
|
|
</thead>
|
|
<tbody valign="top">
|
|
<row>
|
|
<entry>Red</entry>
|
|
<entry>0.640</entry>
|
|
<entry>0.330</entry>
|
|
</row>
|
|
<row>
|
|
<entry>Green</entry>
|
|
<entry>0.300</entry>
|
|
<entry>0.600</entry>
|
|
</row>
|
|
<row>
|
|
<entry>Blue</entry>
|
|
<entry>0.150</entry>
|
|
<entry>0.060</entry>
|
|
</row>
|
|
<row>
|
|
<entry>White Reference (D65)</entry>
|
|
<entry>0.3127</entry>
|
|
<entry>0.3290</entry>
|
|
</row>
|
|
</tbody>
|
|
</tgroup>
|
|
</table>
|
|
<para>These chromaticities are identical to the Rec. 709 colorspace.</para>
|
|
<variablelist>
|
|
<varlistentry>
|
|
<term>Transfer function. Note that negative values for L are only used by the Y'CbCr conversion.</term>
|
|
<listitem>
|
|
<para>L' = -1.055(-L)<superscript>1/2.4</superscript> + 0.055 for L < -0.0031308</para>
|
|
<para>L' = 12.92L for -0.0031308 ≤ L ≤ 0.0031308</para>
|
|
<para>L' = 1.055L<superscript>1/2.4</superscript> - 0.055 for 0.0031308 < L ≤ 1</para>
|
|
</listitem>
|
|
</varlistentry>
|
|
<varlistentry>
|
|
<term>Inverse Transfer function:</term>
|
|
<listitem>
|
|
<para>L = -((-L' + 0.055) / 1.055)<superscript>2.4</superscript> for L' < -0.04045</para>
|
|
<para>L = L' / 12.92 for -0.04045 ≤ L' ≤ 0.04045</para>
|
|
<para>L = ((L' + 0.055) / 1.055)<superscript>2.4</superscript> for L' > 0.04045</para>
|
|
</listitem>
|
|
</varlistentry>
|
|
</variablelist>
|
|
<variablelist>
|
|
<varlistentry>
|
|
<term>The luminance (Y') and color difference (Cb and Cr) are obtained with the following
|
|
<constant>V4L2_YCBCR_ENC_SYCC</constant> encoding as defined by <xref linkend="sycc" />:</term>
|
|
<listitem>
|
|
<para>Y' = 0.2990R' + 0.5870G' + 0.1140B'</para>
|
|
<para>Cb = -0.1687R' - 0.3313G' + 0.5B'</para>
|
|
<para>Cr = 0.5R' - 0.4187G' - 0.0813B'</para>
|
|
</listitem>
|
|
</varlistentry>
|
|
</variablelist>
|
|
<para>Y' is clamped to the range [0…1] and Cb and Cr are clamped
|
|
to the range [-0.5…0.5]. The <constant>V4L2_YCBCR_ENC_SYCC</constant> quantization is always
|
|
full range. Although this Y'CbCr encoding looks very similar to the <constant>V4L2_YCBCR_ENC_XV601</constant>
|
|
encoding, it is not. The <constant>V4L2_YCBCR_ENC_XV601</constant> scales and offsets the Y'CbCr
|
|
values before quantization, but this encoding does not do that.</para>
|
|
</section>
|
|
|
|
<section>
|
|
<title id="col-adobergb">Colorspace Adobe RGB (<constant>V4L2_COLORSPACE_ADOBERGB</constant>)</title>
|
|
<para>The <xref linkend="adobergb" /> standard defines the colorspace used by computer graphics
|
|
that use the AdobeRGB colorspace. This is also known as the <xref linkend="oprgb" /> standard.
|
|
The default Y'CbCr encoding is <constant>V4L2_YCBCR_ENC_601</constant>. The default Y'CbCr
|
|
quantization is limited range. The chromaticities of the primary colors and the white reference
|
|
are:</para>
|
|
<table frame="none">
|
|
<title>Adobe RGB Chromaticities</title>
|
|
<tgroup cols="3" align="left">
|
|
&cs-str;
|
|
<thead>
|
|
<row>
|
|
<entry>Color</entry>
|
|
<entry>x</entry>
|
|
<entry>y</entry>
|
|
</row>
|
|
</thead>
|
|
<tbody valign="top">
|
|
<row>
|
|
<entry>Red</entry>
|
|
<entry>0.6400</entry>
|
|
<entry>0.3300</entry>
|
|
</row>
|
|
<row>
|
|
<entry>Green</entry>
|
|
<entry>0.2100</entry>
|
|
<entry>0.7100</entry>
|
|
</row>
|
|
<row>
|
|
<entry>Blue</entry>
|
|
<entry>0.1500</entry>
|
|
<entry>0.0600</entry>
|
|
</row>
|
|
<row>
|
|
<entry>White Reference (D65)</entry>
|
|
<entry>0.3127</entry>
|
|
<entry>0.3290</entry>
|
|
</row>
|
|
</tbody>
|
|
</tgroup>
|
|
</table>
|
|
<variablelist>
|
|
<varlistentry>
|
|
<term>Transfer function:</term>
|
|
<listitem>
|
|
<para>L' = L<superscript>1/2.19921875</superscript></para>
|
|
</listitem>
|
|
</varlistentry>
|
|
<varlistentry>
|
|
<term>Inverse Transfer function:</term>
|
|
<listitem>
|
|
<para>L = L'<superscript>2.19921875</superscript></para>
|
|
</listitem>
|
|
</varlistentry>
|
|
</variablelist>
|
|
<variablelist>
|
|
<varlistentry>
|
|
<term>The luminance (Y') and color difference (Cb and Cr) are obtained with the
|
|
following <constant>V4L2_YCBCR_ENC_601</constant> encoding:</term>
|
|
<listitem>
|
|
<para>Y' = 0.299R' + 0.587G' + 0.114B'</para>
|
|
<para>Cb = -0.169R' - 0.331G' + 0.5B'</para>
|
|
<para>Cr = 0.5R' - 0.419G' - 0.081B'</para>
|
|
</listitem>
|
|
</varlistentry>
|
|
</variablelist>
|
|
<para>Y' is clamped to the range [0…1] and Cb and Cr are
|
|
clamped to the range [-0.5…0.5]. This transform is identical to one defined in
|
|
SMPTE 170M/BT.601. The Y'CbCr quantization is limited range.</para>
|
|
</section>
|
|
|
|
<section>
|
|
<title id="col-bt2020">Colorspace BT.2020 (<constant>V4L2_COLORSPACE_BT2020</constant>)</title>
|
|
<para>The <xref linkend="itu2020" /> standard defines the colorspace used by Ultra-high definition
|
|
television (UHDTV). The default Y'CbCr encoding is <constant>V4L2_YCBCR_ENC_BT2020</constant>.
|
|
The default R'G'B' quantization is limited range (!), and so is the default Y'CbCr quantization.
|
|
The chromaticities of the primary colors and the white reference are:</para>
|
|
<table frame="none">
|
|
<title>BT.2020 Chromaticities</title>
|
|
<tgroup cols="3" align="left">
|
|
&cs-str;
|
|
<thead>
|
|
<row>
|
|
<entry>Color</entry>
|
|
<entry>x</entry>
|
|
<entry>y</entry>
|
|
</row>
|
|
</thead>
|
|
<tbody valign="top">
|
|
<row>
|
|
<entry>Red</entry>
|
|
<entry>0.708</entry>
|
|
<entry>0.292</entry>
|
|
</row>
|
|
<row>
|
|
<entry>Green</entry>
|
|
<entry>0.170</entry>
|
|
<entry>0.797</entry>
|
|
</row>
|
|
<row>
|
|
<entry>Blue</entry>
|
|
<entry>0.131</entry>
|
|
<entry>0.046</entry>
|
|
</row>
|
|
<row>
|
|
<entry>White Reference (D65)</entry>
|
|
<entry>0.3127</entry>
|
|
<entry>0.3290</entry>
|
|
</row>
|
|
</tbody>
|
|
</tgroup>
|
|
</table>
|
|
<variablelist>
|
|
<varlistentry>
|
|
<term>Transfer function (same as Rec. 709):</term>
|
|
<listitem>
|
|
<para>L' = 4.5L for 0 ≤ L < 0.018</para>
|
|
<para>L' = 1.099L<superscript>0.45</superscript> - 0.099 for 0.018 ≤ L ≤ 1</para>
|
|
</listitem>
|
|
</varlistentry>
|
|
<varlistentry>
|
|
<term>Inverse Transfer function:</term>
|
|
<listitem>
|
|
<para>L = L' / 4.5 for L' < 0.081</para>
|
|
<para>L = ((L' + 0.099) / 1.099)<superscript>1/0.45</superscript> for L' ≥ 0.081</para>
|
|
</listitem>
|
|
</varlistentry>
|
|
</variablelist>
|
|
<variablelist>
|
|
<varlistentry>
|
|
<term>The luminance (Y') and color difference (Cb and Cr) are obtained with the
|
|
following <constant>V4L2_YCBCR_ENC_BT2020</constant> encoding:</term>
|
|
<listitem>
|
|
<para>Y' = 0.2627R' + 0.6789G' + 0.0593B'</para>
|
|
<para>Cb = -0.1396R' - 0.3604G' + 0.5B'</para>
|
|
<para>Cr = 0.5R' - 0.4598G' - 0.0402B'</para>
|
|
</listitem>
|
|
</varlistentry>
|
|
</variablelist>
|
|
<para>Y' is clamped to the range [0…1] and Cb and Cr are
|
|
clamped to the range [-0.5…0.5]. The Y'CbCr quantization is limited range.</para>
|
|
<para>There is also an alternate constant luminance R'G'B' to Yc'CbcCrc
|
|
(<constant>V4L2_YCBCR_ENC_BT2020_CONST_LUM</constant>) encoding:</para>
|
|
<variablelist>
|
|
<varlistentry>
|
|
<term>Luma:</term>
|
|
<listitem>
|
|
<para>Yc' = (0.2627R + 0.6789G + 0.0593B)'</para>
|
|
</listitem>
|
|
</varlistentry>
|
|
</variablelist>
|
|
<variablelist>
|
|
<varlistentry>
|
|
<term>B' - Yc' ≤ 0:</term>
|
|
<listitem>
|
|
<para>Cbc = (B' - Y') / 1.9404</para>
|
|
</listitem>
|
|
</varlistentry>
|
|
</variablelist>
|
|
<variablelist>
|
|
<varlistentry>
|
|
<term>B' - Yc' > 0:</term>
|
|
<listitem>
|
|
<para>Cbc = (B' - Y') / 1.5816</para>
|
|
</listitem>
|
|
</varlistentry>
|
|
</variablelist>
|
|
<variablelist>
|
|
<varlistentry>
|
|
<term>R' - Yc' ≤ 0:</term>
|
|
<listitem>
|
|
<para>Crc = (R' - Y') / 1.7184</para>
|
|
</listitem>
|
|
</varlistentry>
|
|
</variablelist>
|
|
<variablelist>
|
|
<varlistentry>
|
|
<term>R' - Yc' > 0:</term>
|
|
<listitem>
|
|
<para>Crc = (R' - Y') / 0.9936</para>
|
|
</listitem>
|
|
</varlistentry>
|
|
</variablelist>
|
|
<para>Yc' is clamped to the range [0…1] and Cbc and Crc are
|
|
clamped to the range [-0.5…0.5]. The Yc'CbcCrc quantization is limited range.</para>
|
|
</section>
|
|
|
|
<section>
|
|
<title id="col-smpte-240m">Colorspace SMPTE 240M (<constant>V4L2_COLORSPACE_SMPTE240M</constant>)</title>
|
|
<para>The <xref linkend="smpte240m" /> standard was an interim standard used during the early days of HDTV (1988-1998).
|
|
It has been superseded by Rec. 709. The default Y'CbCr encoding is <constant>V4L2_YCBCR_ENC_SMPTE240M</constant>.
|
|
The default Y'CbCr quantization is limited range. The chromaticities of the primary colors and the
|
|
white reference are:</para>
|
|
<table frame="none">
|
|
<title>SMPTE 240M Chromaticities</title>
|
|
<tgroup cols="3" align="left">
|
|
&cs-str;
|
|
<thead>
|
|
<row>
|
|
<entry>Color</entry>
|
|
<entry>x</entry>
|
|
<entry>y</entry>
|
|
</row>
|
|
</thead>
|
|
<tbody valign="top">
|
|
<row>
|
|
<entry>Red</entry>
|
|
<entry>0.630</entry>
|
|
<entry>0.340</entry>
|
|
</row>
|
|
<row>
|
|
<entry>Green</entry>
|
|
<entry>0.310</entry>
|
|
<entry>0.595</entry>
|
|
</row>
|
|
<row>
|
|
<entry>Blue</entry>
|
|
<entry>0.155</entry>
|
|
<entry>0.070</entry>
|
|
</row>
|
|
<row>
|
|
<entry>White Reference (D65)</entry>
|
|
<entry>0.3127</entry>
|
|
<entry>0.3290</entry>
|
|
</row>
|
|
</tbody>
|
|
</tgroup>
|
|
</table>
|
|
<para>These chromaticities are identical to the SMPTE 170M colorspace.</para>
|
|
<variablelist>
|
|
<varlistentry>
|
|
<term>Transfer function:</term>
|
|
<listitem>
|
|
<para>L' = 4L for 0 ≤ L < 0.0228</para>
|
|
<para>L' = 1.1115L<superscript>0.45</superscript> - 0.1115 for 0.0228 ≤ L ≤ 1</para>
|
|
</listitem>
|
|
</varlistentry>
|
|
<varlistentry>
|
|
<term>Inverse Transfer function:</term>
|
|
<listitem>
|
|
<para>L = L' / 4 for 0 ≤ L' < 0.0913</para>
|
|
<para>L = ((L' + 0.1115) / 1.1115)<superscript>1/0.45</superscript> for L' ≥ 0.0913</para>
|
|
</listitem>
|
|
</varlistentry>
|
|
</variablelist>
|
|
<variablelist>
|
|
<varlistentry>
|
|
<term>The luminance (Y') and color difference (Cb and Cr) are obtained with the
|
|
following <constant>V4L2_YCBCR_ENC_SMPTE240M</constant> encoding:</term>
|
|
<listitem>
|
|
<para>Y' = 0.2122R' + 0.7013G' + 0.0865B'</para>
|
|
<para>Cb = -0.1161R' - 0.3839G' + 0.5B'</para>
|
|
<para>Cr = 0.5R' - 0.4451G' - 0.0549B'</para>
|
|
</listitem>
|
|
</varlistentry>
|
|
</variablelist>
|
|
<para>Yc' is clamped to the range [0…1] and Cbc and Crc are
|
|
clamped to the range [-0.5…0.5]. The Y'CbCr quantization is limited range.</para>
|
|
</section>
|
|
|
|
<section>
|
|
<title id="col-sysm">Colorspace NTSC 1953 (<constant>V4L2_COLORSPACE_470_SYSTEM_M</constant>)</title>
|
|
<para>This standard defines the colorspace used by NTSC in 1953. In practice this
|
|
colorspace is obsolete and SMPTE 170M should be used instead. The default Y'CbCr encoding
|
|
is <constant>V4L2_YCBCR_ENC_601</constant>. The default Y'CbCr quantization is limited range.
|
|
The chromaticities of the primary colors and the white reference are:</para>
|
|
<table frame="none">
|
|
<title>NTSC 1953 Chromaticities</title>
|
|
<tgroup cols="3" align="left">
|
|
&cs-str;
|
|
<thead>
|
|
<row>
|
|
<entry>Color</entry>
|
|
<entry>x</entry>
|
|
<entry>y</entry>
|
|
</row>
|
|
</thead>
|
|
<tbody valign="top">
|
|
<row>
|
|
<entry>Red</entry>
|
|
<entry>0.67</entry>
|
|
<entry>0.33</entry>
|
|
</row>
|
|
<row>
|
|
<entry>Green</entry>
|
|
<entry>0.21</entry>
|
|
<entry>0.71</entry>
|
|
</row>
|
|
<row>
|
|
<entry>Blue</entry>
|
|
<entry>0.14</entry>
|
|
<entry>0.08</entry>
|
|
</row>
|
|
<row>
|
|
<entry>White Reference (C)</entry>
|
|
<entry>0.310</entry>
|
|
<entry>0.316</entry>
|
|
</row>
|
|
</tbody>
|
|
</tgroup>
|
|
</table>
|
|
<para>Note that this colorspace uses Illuminant C instead of D65 as the
|
|
white reference. To correctly convert an image in this colorspace to another
|
|
that uses D65 you need to apply a chromatic adaptation algorithm such as the
|
|
Bradford method.</para>
|
|
<variablelist>
|
|
<varlistentry>
|
|
<term>The transfer function was never properly defined for NTSC 1953. The
|
|
Rec. 709 transfer function is recommended in the literature:</term>
|
|
<listitem>
|
|
<para>L' = 4.5L for 0 ≤ L < 0.018</para>
|
|
<para>L' = 1.099L<superscript>0.45</superscript> - 0.099 for 0.018 ≤ L ≤ 1</para>
|
|
</listitem>
|
|
</varlistentry>
|
|
<varlistentry>
|
|
<term>Inverse Transfer function:</term>
|
|
<listitem>
|
|
<para>L = L' / 4.5 for L' < 0.081</para>
|
|
<para>L = ((L' + 0.099) / 1.099)<superscript>1/0.45</superscript> for L' ≥ 0.081</para>
|
|
</listitem>
|
|
</varlistentry>
|
|
</variablelist>
|
|
<variablelist>
|
|
<varlistentry>
|
|
<term>The luminance (Y') and color difference (Cb and Cr) are obtained with the
|
|
following <constant>V4L2_YCBCR_ENC_601</constant> encoding:</term>
|
|
<listitem>
|
|
<para>Y' = 0.299R' + 0.587G' + 0.114B'</para>
|
|
<para>Cb = -0.169R' - 0.331G' + 0.5B'</para>
|
|
<para>Cr = 0.5R' - 0.419G' - 0.081B'</para>
|
|
</listitem>
|
|
</varlistentry>
|
|
</variablelist>
|
|
<para>Y' is clamped to the range [0…1] and Cb and Cr are
|
|
clamped to the range [-0.5…0.5]. The Y'CbCr quantization is limited range.
|
|
This transform is identical to one defined in SMPTE 170M/BT.601.</para>
|
|
</section>
|
|
|
|
<section>
|
|
<title id="col-sysbg">Colorspace EBU Tech. 3213 (<constant>V4L2_COLORSPACE_470_SYSTEM_BG</constant>)</title>
|
|
<para>The <xref linkend="tech3213" /> standard defines the colorspace used by PAL/SECAM in 1975. In practice this
|
|
colorspace is obsolete and SMPTE 170M should be used instead. The default Y'CbCr encoding
|
|
is <constant>V4L2_YCBCR_ENC_601</constant>. The default Y'CbCr quantization is limited range.
|
|
The chromaticities of the primary colors and the white reference are:</para>
|
|
<table frame="none">
|
|
<title>EBU Tech. 3213 Chromaticities</title>
|
|
<tgroup cols="3" align="left">
|
|
&cs-str;
|
|
<thead>
|
|
<row>
|
|
<entry>Color</entry>
|
|
<entry>x</entry>
|
|
<entry>y</entry>
|
|
</row>
|
|
</thead>
|
|
<tbody valign="top">
|
|
<row>
|
|
<entry>Red</entry>
|
|
<entry>0.64</entry>
|
|
<entry>0.33</entry>
|
|
</row>
|
|
<row>
|
|
<entry>Green</entry>
|
|
<entry>0.29</entry>
|
|
<entry>0.60</entry>
|
|
</row>
|
|
<row>
|
|
<entry>Blue</entry>
|
|
<entry>0.15</entry>
|
|
<entry>0.06</entry>
|
|
</row>
|
|
<row>
|
|
<entry>White Reference (D65)</entry>
|
|
<entry>0.3127</entry>
|
|
<entry>0.3290</entry>
|
|
</row>
|
|
</tbody>
|
|
</tgroup>
|
|
</table>
|
|
<variablelist>
|
|
<varlistentry>
|
|
<term>The transfer function was never properly defined for this colorspace.
|
|
The Rec. 709 transfer function is recommended in the literature:</term>
|
|
<listitem>
|
|
<para>L' = 4.5L for 0 ≤ L < 0.018</para>
|
|
<para>L' = 1.099L<superscript>0.45</superscript> - 0.099 for 0.018 ≤ L ≤ 1</para>
|
|
</listitem>
|
|
</varlistentry>
|
|
<varlistentry>
|
|
<term>Inverse Transfer function:</term>
|
|
<listitem>
|
|
<para>L = L' / 4.5 for L' < 0.081</para>
|
|
<para>L = ((L' + 0.099) / 1.099)<superscript>1/0.45</superscript> for L' ≥ 0.081</para>
|
|
</listitem>
|
|
</varlistentry>
|
|
</variablelist>
|
|
<variablelist>
|
|
<varlistentry>
|
|
<term>The luminance (Y') and color difference (Cb and Cr) are obtained with the
|
|
following <constant>V4L2_YCBCR_ENC_601</constant> encoding:</term>
|
|
<listitem>
|
|
<para>Y' = 0.299R' + 0.587G' + 0.114B'</para>
|
|
<para>Cb = -0.169R' - 0.331G' + 0.5B'</para>
|
|
<para>Cr = 0.5R' - 0.419G' - 0.081B'</para>
|
|
</listitem>
|
|
</varlistentry>
|
|
</variablelist>
|
|
<para>Y' is clamped to the range [0…1] and Cb and Cr are
|
|
clamped to the range [-0.5…0.5]. The Y'CbCr quantization is limited range.
|
|
This transform is identical to one defined in SMPTE 170M/BT.601.</para>
|
|
</section>
|
|
|
|
<section>
|
|
<title id="col-jpeg">Colorspace JPEG (<constant>V4L2_COLORSPACE_JPEG</constant>)</title>
|
|
<para>This colorspace defines the colorspace used by most (Motion-)JPEG formats. The chromaticities
|
|
of the primary colors and the white reference are identical to sRGB. The Y'CbCr encoding is
|
|
<constant>V4L2_YCBCR_ENC_601</constant> with full range quantization where
|
|
Y' is scaled to [0…255] and Cb/Cr are scaled to [-128…128] and
|
|
then clipped to [-128…127].</para>
|
|
<para>Note that the JPEG standard does not actually store colorspace information.
|
|
So if something other than sRGB is used, then the driver will have to set that information
|
|
explicitly. Effectively <constant>V4L2_COLORSPACE_JPEG</constant> can be considered to be
|
|
an abbreviation for <constant>V4L2_COLORSPACE_SRGB</constant>, <constant>V4L2_YCBCR_ENC_601</constant>
|
|
and <constant>V4L2_QUANTIZATION_FULL_RANGE</constant>.</para>
|
|
</section>
|
|
|
|
</section>
|
|
|
|
<section id="pixfmt-indexed">
|
|
<title>Indexed Format</title>
|
|
|
|
<para>In this format each pixel is represented by an 8 bit index
|
|
into a 256 entry ARGB palette. It is intended for <link
|
|
linkend="osd">Video Output Overlays</link> only. There are no ioctls to
|
|
access the palette, this must be done with ioctls of the Linux framebuffer API.</para>
|
|
|
|
<table pgwide="0" frame="none">
|
|
<title>Indexed Image Format</title>
|
|
<tgroup cols="37" align="center">
|
|
<colspec colname="id" align="left" />
|
|
<colspec colname="fourcc" />
|
|
<colspec colname="bit" />
|
|
|
|
<colspec colnum="4" colname="b07" align="center" />
|
|
<colspec colnum="5" colname="b06" align="center" />
|
|
<colspec colnum="6" colname="b05" align="center" />
|
|
<colspec colnum="7" colname="b04" align="center" />
|
|
<colspec colnum="8" colname="b03" align="center" />
|
|
<colspec colnum="9" colname="b02" align="center" />
|
|
<colspec colnum="10" colname="b01" align="center" />
|
|
<colspec colnum="11" colname="b00" align="center" />
|
|
|
|
<spanspec namest="b07" nameend="b00" spanname="b0" />
|
|
<spanspec namest="b17" nameend="b10" spanname="b1" />
|
|
<spanspec namest="b27" nameend="b20" spanname="b2" />
|
|
<spanspec namest="b37" nameend="b30" spanname="b3" />
|
|
<thead>
|
|
<row>
|
|
<entry>Identifier</entry>
|
|
<entry>Code</entry>
|
|
<entry> </entry>
|
|
<entry spanname="b0">Byte 0</entry>
|
|
</row>
|
|
<row>
|
|
<entry> </entry>
|
|
<entry> </entry>
|
|
<entry>Bit</entry>
|
|
<entry>7</entry>
|
|
<entry>6</entry>
|
|
<entry>5</entry>
|
|
<entry>4</entry>
|
|
<entry>3</entry>
|
|
<entry>2</entry>
|
|
<entry>1</entry>
|
|
<entry>0</entry>
|
|
</row>
|
|
</thead>
|
|
<tbody valign="top">
|
|
<row id="V4L2-PIX-FMT-PAL8">
|
|
<entry><constant>V4L2_PIX_FMT_PAL8</constant></entry>
|
|
<entry>'PAL8'</entry>
|
|
<entry></entry>
|
|
<entry>i<subscript>7</subscript></entry>
|
|
<entry>i<subscript>6</subscript></entry>
|
|
<entry>i<subscript>5</subscript></entry>
|
|
<entry>i<subscript>4</subscript></entry>
|
|
<entry>i<subscript>3</subscript></entry>
|
|
<entry>i<subscript>2</subscript></entry>
|
|
<entry>i<subscript>1</subscript></entry>
|
|
<entry>i<subscript>0</subscript></entry>
|
|
</row>
|
|
</tbody>
|
|
</tgroup>
|
|
</table>
|
|
</section>
|
|
|
|
<section id="pixfmt-rgb">
|
|
<title>RGB Formats</title>
|
|
|
|
&sub-packed-rgb;
|
|
&sub-sbggr8;
|
|
&sub-sgbrg8;
|
|
&sub-sgrbg8;
|
|
&sub-srggb8;
|
|
&sub-sbggr16;
|
|
&sub-srggb10;
|
|
&sub-srggb10p;
|
|
&sub-srggb10alaw8;
|
|
&sub-srggb10dpcm8;
|
|
&sub-srggb12;
|
|
</section>
|
|
|
|
<section id="yuv-formats">
|
|
<title>YUV Formats</title>
|
|
|
|
<para>YUV is the format native to TV broadcast and composite video
|
|
signals. It separates the brightness information (Y) from the color
|
|
information (U and V or Cb and Cr). The color information consists of
|
|
red and blue <emphasis>color difference</emphasis> signals, this way
|
|
the green component can be reconstructed by subtracting from the
|
|
brightness component. See <xref linkend="colorspaces" /> for conversion
|
|
examples. YUV was chosen because early television would only transmit
|
|
brightness information. To add color in a way compatible with existing
|
|
receivers a new signal carrier was added to transmit the color
|
|
difference signals. Secondary in the YUV format the U and V components
|
|
usually have lower resolution than the Y component. This is an analog
|
|
video compression technique taking advantage of a property of the
|
|
human visual system, being more sensitive to brightness
|
|
information.</para>
|
|
|
|
&sub-packed-yuv;
|
|
&sub-grey;
|
|
&sub-y10;
|
|
&sub-y12;
|
|
&sub-y10b;
|
|
&sub-y16;
|
|
&sub-uv8;
|
|
&sub-yuyv;
|
|
&sub-uyvy;
|
|
&sub-yvyu;
|
|
&sub-vyuy;
|
|
&sub-y41p;
|
|
&sub-yuv420;
|
|
&sub-yuv420m;
|
|
&sub-yvu420m;
|
|
&sub-yuv410;
|
|
&sub-yuv422p;
|
|
&sub-yuv411p;
|
|
&sub-nv12;
|
|
&sub-nv12m;
|
|
&sub-nv12mt;
|
|
&sub-nv16;
|
|
&sub-nv16m;
|
|
&sub-nv24;
|
|
&sub-m420;
|
|
</section>
|
|
|
|
<section>
|
|
<title>Compressed Formats</title>
|
|
|
|
<table pgwide="1" frame="none" id="compressed-formats">
|
|
<title>Compressed Image Formats</title>
|
|
<tgroup cols="3" align="left">
|
|
&cs-def;
|
|
<thead>
|
|
<row>
|
|
<entry>Identifier</entry>
|
|
<entry>Code</entry>
|
|
<entry>Details</entry>
|
|
</row>
|
|
</thead>
|
|
<tbody valign="top">
|
|
<row id="V4L2-PIX-FMT-JPEG">
|
|
<entry><constant>V4L2_PIX_FMT_JPEG</constant></entry>
|
|
<entry>'JPEG'</entry>
|
|
<entry>TBD. See also &VIDIOC-G-JPEGCOMP;,
|
|
&VIDIOC-S-JPEGCOMP;.</entry>
|
|
</row>
|
|
<row id="V4L2-PIX-FMT-MPEG">
|
|
<entry><constant>V4L2_PIX_FMT_MPEG</constant></entry>
|
|
<entry>'MPEG'</entry>
|
|
<entry>MPEG multiplexed stream. The actual format is determined by
|
|
extended control <constant>V4L2_CID_MPEG_STREAM_TYPE</constant>, see
|
|
<xref linkend="mpeg-control-id" />.</entry>
|
|
</row>
|
|
<row id="V4L2-PIX-FMT-H264">
|
|
<entry><constant>V4L2_PIX_FMT_H264</constant></entry>
|
|
<entry>'H264'</entry>
|
|
<entry>H264 video elementary stream with start codes.</entry>
|
|
</row>
|
|
<row id="V4L2-PIX-FMT-H264-NO-SC">
|
|
<entry><constant>V4L2_PIX_FMT_H264_NO_SC</constant></entry>
|
|
<entry>'AVC1'</entry>
|
|
<entry>H264 video elementary stream without start codes.</entry>
|
|
</row>
|
|
<row id="V4L2-PIX-FMT-H264-MVC">
|
|
<entry><constant>V4L2_PIX_FMT_H264_MVC</constant></entry>
|
|
<entry>'M264'</entry>
|
|
<entry>H264 MVC video elementary stream.</entry>
|
|
</row>
|
|
<row id="V4L2-PIX-FMT-H263">
|
|
<entry><constant>V4L2_PIX_FMT_H263</constant></entry>
|
|
<entry>'H263'</entry>
|
|
<entry>H263 video elementary stream.</entry>
|
|
</row>
|
|
<row id="V4L2-PIX-FMT-MPEG1">
|
|
<entry><constant>V4L2_PIX_FMT_MPEG1</constant></entry>
|
|
<entry>'MPG1'</entry>
|
|
<entry>MPEG1 video elementary stream.</entry>
|
|
</row>
|
|
<row id="V4L2-PIX-FMT-MPEG2">
|
|
<entry><constant>V4L2_PIX_FMT_MPEG2</constant></entry>
|
|
<entry>'MPG2'</entry>
|
|
<entry>MPEG2 video elementary stream.</entry>
|
|
</row>
|
|
<row id="V4L2-PIX-FMT-MPEG4">
|
|
<entry><constant>V4L2_PIX_FMT_MPEG4</constant></entry>
|
|
<entry>'MPG4'</entry>
|
|
<entry>MPEG4 video elementary stream.</entry>
|
|
</row>
|
|
<row id="V4L2-PIX-FMT-XVID">
|
|
<entry><constant>V4L2_PIX_FMT_XVID</constant></entry>
|
|
<entry>'XVID'</entry>
|
|
<entry>Xvid video elementary stream.</entry>
|
|
</row>
|
|
<row id="V4L2-PIX-FMT-VC1-ANNEX-G">
|
|
<entry><constant>V4L2_PIX_FMT_VC1_ANNEX_G</constant></entry>
|
|
<entry>'VC1G'</entry>
|
|
<entry>VC1, SMPTE 421M Annex G compliant stream.</entry>
|
|
</row>
|
|
<row id="V4L2-PIX-FMT-VC1-ANNEX-L">
|
|
<entry><constant>V4L2_PIX_FMT_VC1_ANNEX_L</constant></entry>
|
|
<entry>'VC1L'</entry>
|
|
<entry>VC1, SMPTE 421M Annex L compliant stream.</entry>
|
|
</row>
|
|
<row id="V4L2-PIX-FMT-VP8">
|
|
<entry><constant>V4L2_PIX_FMT_VP8</constant></entry>
|
|
<entry>'VP80'</entry>
|
|
<entry>VP8 video elementary stream.</entry>
|
|
</row>
|
|
</tbody>
|
|
</tgroup>
|
|
</table>
|
|
</section>
|
|
|
|
<section id="sdr-formats">
|
|
<title>SDR Formats</title>
|
|
|
|
<para>These formats are used for <link linkend="sdr">SDR Capture</link>
|
|
interface only.</para>
|
|
|
|
&sub-sdr-cu08;
|
|
&sub-sdr-cu16le;
|
|
&sub-sdr-cs08;
|
|
&sub-sdr-cs14le;
|
|
&sub-sdr-ru12le;
|
|
|
|
</section>
|
|
|
|
<section id="pixfmt-reserved">
|
|
<title>Reserved Format Identifiers</title>
|
|
|
|
<para>These formats are not defined by this specification, they
|
|
are just listed for reference and to avoid naming conflicts. If you
|
|
want to register your own format, send an e-mail to the linux-media mailing
|
|
list &v4l-ml; for inclusion in the <filename>videodev2.h</filename>
|
|
file. If you want to share your format with other developers add a
|
|
link to your documentation and send a copy to the linux-media mailing list
|
|
for inclusion in this section. If you think your format should be listed
|
|
in a standard format section please make a proposal on the linux-media mailing
|
|
list.</para>
|
|
|
|
<table pgwide="1" frame="none" id="reserved-formats">
|
|
<title>Reserved Image Formats</title>
|
|
<tgroup cols="3" align="left">
|
|
&cs-def;
|
|
<thead>
|
|
<row>
|
|
<entry>Identifier</entry>
|
|
<entry>Code</entry>
|
|
<entry>Details</entry>
|
|
</row>
|
|
</thead>
|
|
<tbody valign="top">
|
|
<row id="V4L2-PIX-FMT-DV">
|
|
<entry><constant>V4L2_PIX_FMT_DV</constant></entry>
|
|
<entry>'dvsd'</entry>
|
|
<entry>unknown</entry>
|
|
</row>
|
|
<row id="V4L2-PIX-FMT-ET61X251">
|
|
<entry><constant>V4L2_PIX_FMT_ET61X251</constant></entry>
|
|
<entry>'E625'</entry>
|
|
<entry>Compressed format of the ET61X251 driver.</entry>
|
|
</row>
|
|
<row id="V4L2-PIX-FMT-HI240">
|
|
<entry><constant>V4L2_PIX_FMT_HI240</constant></entry>
|
|
<entry>'HI24'</entry>
|
|
<entry><para>8 bit RGB format used by the BTTV driver.</para></entry>
|
|
</row>
|
|
<row id="V4L2-PIX-FMT-HM12">
|
|
<entry><constant>V4L2_PIX_FMT_HM12</constant></entry>
|
|
<entry>'HM12'</entry>
|
|
<entry><para>YUV 4:2:0 format used by the
|
|
IVTV driver, <ulink url="http://www.ivtvdriver.org/">
|
|
http://www.ivtvdriver.org/</ulink></para><para>The format is documented in the
|
|
kernel sources in the file <filename>Documentation/video4linux/cx2341x/README.hm12</filename>
|
|
</para></entry>
|
|
</row>
|
|
<row id="V4L2-PIX-FMT-CPIA1">
|
|
<entry><constant>V4L2_PIX_FMT_CPIA1</constant></entry>
|
|
<entry>'CPIA'</entry>
|
|
<entry>YUV format used by the gspca cpia1 driver.</entry>
|
|
</row>
|
|
<row id="V4L2-PIX-FMT-JPGL">
|
|
<entry><constant>V4L2_PIX_FMT_JPGL</constant></entry>
|
|
<entry>'JPGL'</entry>
|
|
<entry>JPEG-Light format (Pegasus Lossless JPEG)
|
|
used in Divio webcams NW 80x.</entry>
|
|
</row>
|
|
<row id="V4L2-PIX-FMT-SPCA501">
|
|
<entry><constant>V4L2_PIX_FMT_SPCA501</constant></entry>
|
|
<entry>'S501'</entry>
|
|
<entry>YUYV per line used by the gspca driver.</entry>
|
|
</row>
|
|
<row id="V4L2-PIX-FMT-SPCA505">
|
|
<entry><constant>V4L2_PIX_FMT_SPCA505</constant></entry>
|
|
<entry>'S505'</entry>
|
|
<entry>YYUV per line used by the gspca driver.</entry>
|
|
</row>
|
|
<row id="V4L2-PIX-FMT-SPCA508">
|
|
<entry><constant>V4L2_PIX_FMT_SPCA508</constant></entry>
|
|
<entry>'S508'</entry>
|
|
<entry>YUVY per line used by the gspca driver.</entry>
|
|
</row>
|
|
<row id="V4L2-PIX-FMT-SPCA561">
|
|
<entry><constant>V4L2_PIX_FMT_SPCA561</constant></entry>
|
|
<entry>'S561'</entry>
|
|
<entry>Compressed GBRG Bayer format used by the gspca driver.</entry>
|
|
</row>
|
|
<row id="V4L2-PIX-FMT-PAC207">
|
|
<entry><constant>V4L2_PIX_FMT_PAC207</constant></entry>
|
|
<entry>'P207'</entry>
|
|
<entry>Compressed BGGR Bayer format used by the gspca driver.</entry>
|
|
</row>
|
|
<row id="V4L2-PIX-FMT-MR97310A">
|
|
<entry><constant>V4L2_PIX_FMT_MR97310A</constant></entry>
|
|
<entry>'M310'</entry>
|
|
<entry>Compressed BGGR Bayer format used by the gspca driver.</entry>
|
|
</row>
|
|
<row id="V4L2-PIX-FMT-JL2005BCD">
|
|
<entry><constant>V4L2_PIX_FMT_JL2005BCD</constant></entry>
|
|
<entry>'JL20'</entry>
|
|
<entry>JPEG compressed RGGB Bayer format used by the gspca driver.</entry>
|
|
</row>
|
|
<row id="V4L2-PIX-FMT-OV511">
|
|
<entry><constant>V4L2_PIX_FMT_OV511</constant></entry>
|
|
<entry>'O511'</entry>
|
|
<entry>OV511 JPEG format used by the gspca driver.</entry>
|
|
</row>
|
|
<row id="V4L2-PIX-FMT-OV518">
|
|
<entry><constant>V4L2_PIX_FMT_OV518</constant></entry>
|
|
<entry>'O518'</entry>
|
|
<entry>OV518 JPEG format used by the gspca driver.</entry>
|
|
</row>
|
|
<row id="V4L2-PIX-FMT-PJPG">
|
|
<entry><constant>V4L2_PIX_FMT_PJPG</constant></entry>
|
|
<entry>'PJPG'</entry>
|
|
<entry>Pixart 73xx JPEG format used by the gspca driver.</entry>
|
|
</row>
|
|
<row id="V4L2-PIX-FMT-SE401">
|
|
<entry><constant>V4L2_PIX_FMT_SE401</constant></entry>
|
|
<entry>'S401'</entry>
|
|
<entry>Compressed RGB format used by the gspca se401 driver</entry>
|
|
</row>
|
|
<row id="V4L2-PIX-FMT-SQ905C">
|
|
<entry><constant>V4L2_PIX_FMT_SQ905C</constant></entry>
|
|
<entry>'905C'</entry>
|
|
<entry>Compressed RGGB bayer format used by the gspca driver.</entry>
|
|
</row>
|
|
<row id="V4L2-PIX-FMT-MJPEG">
|
|
<entry><constant>V4L2_PIX_FMT_MJPEG</constant></entry>
|
|
<entry>'MJPG'</entry>
|
|
<entry>Compressed format used by the Zoran driver</entry>
|
|
</row>
|
|
<row id="V4L2-PIX-FMT-PWC1">
|
|
<entry><constant>V4L2_PIX_FMT_PWC1</constant></entry>
|
|
<entry>'PWC1'</entry>
|
|
<entry>Compressed format of the PWC driver.</entry>
|
|
</row>
|
|
<row id="V4L2-PIX-FMT-PWC2">
|
|
<entry><constant>V4L2_PIX_FMT_PWC2</constant></entry>
|
|
<entry>'PWC2'</entry>
|
|
<entry>Compressed format of the PWC driver.</entry>
|
|
</row>
|
|
<row id="V4L2-PIX-FMT-SN9C10X">
|
|
<entry><constant>V4L2_PIX_FMT_SN9C10X</constant></entry>
|
|
<entry>'S910'</entry>
|
|
<entry>Compressed format of the SN9C102 driver.</entry>
|
|
</row>
|
|
<row id="V4L2-PIX-FMT-SN9C20X-I420">
|
|
<entry><constant>V4L2_PIX_FMT_SN9C20X_I420</constant></entry>
|
|
<entry>'S920'</entry>
|
|
<entry>YUV 4:2:0 format of the gspca sn9c20x driver.</entry>
|
|
</row>
|
|
<row id="V4L2-PIX-FMT-SN9C2028">
|
|
<entry><constant>V4L2_PIX_FMT_SN9C2028</constant></entry>
|
|
<entry>'SONX'</entry>
|
|
<entry>Compressed GBRG bayer format of the gspca sn9c2028 driver.</entry>
|
|
</row>
|
|
<row id="V4L2-PIX-FMT-STV0680">
|
|
<entry><constant>V4L2_PIX_FMT_STV0680</constant></entry>
|
|
<entry>'S680'</entry>
|
|
<entry>Bayer format of the gspca stv0680 driver.</entry>
|
|
</row>
|
|
<row id="V4L2-PIX-FMT-WNVA">
|
|
<entry><constant>V4L2_PIX_FMT_WNVA</constant></entry>
|
|
<entry>'WNVA'</entry>
|
|
<entry><para>Used by the Winnov Videum driver, <ulink
|
|
url="http://www.thedirks.org/winnov/">
|
|
http://www.thedirks.org/winnov/</ulink></para></entry>
|
|
</row>
|
|
<row id="V4L2-PIX-FMT-TM6000">
|
|
<entry><constant>V4L2_PIX_FMT_TM6000</constant></entry>
|
|
<entry>'TM60'</entry>
|
|
<entry><para>Used by Trident tm6000</para></entry>
|
|
</row>
|
|
<row id="V4L2-PIX-FMT-CIT-YYVYUY">
|
|
<entry><constant>V4L2_PIX_FMT_CIT_YYVYUY</constant></entry>
|
|
<entry>'CITV'</entry>
|
|
<entry><para>Used by xirlink CIT, found at IBM webcams.</para>
|
|
<para>Uses one line of Y then 1 line of VYUY</para>
|
|
</entry>
|
|
</row>
|
|
<row id="V4L2-PIX-FMT-KONICA420">
|
|
<entry><constant>V4L2_PIX_FMT_KONICA420</constant></entry>
|
|
<entry>'KONI'</entry>
|
|
<entry><para>Used by Konica webcams.</para>
|
|
<para>YUV420 planar in blocks of 256 pixels.</para>
|
|
</entry>
|
|
</row>
|
|
<row id="V4L2-PIX-FMT-YYUV">
|
|
<entry><constant>V4L2_PIX_FMT_YYUV</constant></entry>
|
|
<entry>'YYUV'</entry>
|
|
<entry>unknown</entry>
|
|
</row>
|
|
<row id="V4L2-PIX-FMT-Y4">
|
|
<entry><constant>V4L2_PIX_FMT_Y4</constant></entry>
|
|
<entry>'Y04 '</entry>
|
|
<entry>Old 4-bit greyscale format. Only the most significant 4 bits of each byte are used,
|
|
the other bits are set to 0.</entry>
|
|
</row>
|
|
<row id="V4L2-PIX-FMT-Y6">
|
|
<entry><constant>V4L2_PIX_FMT_Y6</constant></entry>
|
|
<entry>'Y06 '</entry>
|
|
<entry>Old 6-bit greyscale format. Only the most significant 6 bits of each byte are used,
|
|
the other bits are set to 0.</entry>
|
|
</row>
|
|
<row id="V4L2-PIX-FMT-S5C-UYVY-JPG">
|
|
<entry><constant>V4L2_PIX_FMT_S5C_UYVY_JPG</constant></entry>
|
|
<entry>'S5CI'</entry>
|
|
<entry>Two-planar format used by Samsung S5C73MX cameras. The
|
|
first plane contains interleaved JPEG and UYVY image data, followed by meta data
|
|
in form of an array of offsets to the UYVY data blocks. The actual pointer array
|
|
follows immediately the interleaved JPEG/UYVY data, the number of entries in
|
|
this array equals the height of the UYVY image. Each entry is a 4-byte unsigned
|
|
integer in big endian order and it's an offset to a single pixel line of the
|
|
UYVY image. The first plane can start either with JPEG or UYVY data chunk. The
|
|
size of a single UYVY block equals the UYVY image's width multiplied by 2. The
|
|
size of a JPEG chunk depends on the image and can vary with each line.
|
|
<para>The second plane, at an offset of 4084 bytes, contains a 4-byte offset to
|
|
the pointer array in the first plane. This offset is followed by a 4-byte value
|
|
indicating size of the pointer array. All numbers in the second plane are also
|
|
in big endian order. Remaining data in the second plane is undefined. The
|
|
information in the second plane allows to easily find location of the pointer
|
|
array, which can be different for each frame. The size of the pointer array is
|
|
constant for given UYVY image height.</para>
|
|
<para>In order to extract UYVY and JPEG frames an application can initially set
|
|
a data pointer to the start of first plane and then add an offset from the first
|
|
entry of the pointers table. Such a pointer indicates start of an UYVY image
|
|
pixel line. Whole UYVY line can be copied to a separate buffer. These steps
|
|
should be repeated for each line, i.e. the number of entries in the pointer
|
|
array. Anything what's in between the UYVY lines is JPEG data and should be
|
|
concatenated to form the JPEG stream. </para>
|
|
</entry>
|
|
</row>
|
|
</tbody>
|
|
</tgroup>
|
|
</table>
|
|
|
|
<table frame="none" pgwide="1" id="format-flags">
|
|
<title>Format Flags</title>
|
|
<tgroup cols="3">
|
|
&cs-def;
|
|
<tbody valign="top">
|
|
<row>
|
|
<entry><constant>V4L2_PIX_FMT_FLAG_PREMUL_ALPHA</constant></entry>
|
|
<entry>0x00000001</entry>
|
|
<entry>The color values are premultiplied by the alpha channel
|
|
value. For example, if a light blue pixel with 50% transparency was described by
|
|
RGBA values (128, 192, 255, 128), the same pixel described with premultiplied
|
|
colors would be described by RGBA values (64, 96, 128, 128) </entry>
|
|
</row>
|
|
</tbody>
|
|
</tgroup>
|
|
</table>
|
|
</section>
|