d05ca30199
As of 52dc7d32b88156248167864f77a9026abe27b432, we could leave an old linear GTT mapping in place, so that apps trying to GTT-mapped write in tiled data wouldn't get the fence added, and garbage would get displayed. Signed-off-by: Eric Anholt <eric@anholt.net>
4477 lines
118 KiB
C
4477 lines
118 KiB
C
/*
|
|
* Copyright © 2008 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*
|
|
* Authors:
|
|
* Eric Anholt <eric@anholt.net>
|
|
*
|
|
*/
|
|
|
|
#include "drmP.h"
|
|
#include "drm.h"
|
|
#include "i915_drm.h"
|
|
#include "i915_drv.h"
|
|
#include <linux/swap.h>
|
|
#include <linux/pci.h>
|
|
|
|
#define I915_GEM_GPU_DOMAINS (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
|
|
|
|
static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
|
|
static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
|
|
static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
|
|
static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
|
|
int write);
|
|
static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
|
|
uint64_t offset,
|
|
uint64_t size);
|
|
static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
|
|
static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
|
|
static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
|
|
unsigned alignment);
|
|
static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
|
|
static int i915_gem_evict_something(struct drm_device *dev);
|
|
static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
|
|
struct drm_i915_gem_pwrite *args,
|
|
struct drm_file *file_priv);
|
|
|
|
int i915_gem_do_init(struct drm_device *dev, unsigned long start,
|
|
unsigned long end)
|
|
{
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
|
|
if (start >= end ||
|
|
(start & (PAGE_SIZE - 1)) != 0 ||
|
|
(end & (PAGE_SIZE - 1)) != 0) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
drm_mm_init(&dev_priv->mm.gtt_space, start,
|
|
end - start);
|
|
|
|
dev->gtt_total = (uint32_t) (end - start);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
i915_gem_init_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file_priv)
|
|
{
|
|
struct drm_i915_gem_init *args = data;
|
|
int ret;
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file_priv)
|
|
{
|
|
struct drm_i915_gem_get_aperture *args = data;
|
|
|
|
if (!(dev->driver->driver_features & DRIVER_GEM))
|
|
return -ENODEV;
|
|
|
|
args->aper_size = dev->gtt_total;
|
|
args->aper_available_size = (args->aper_size -
|
|
atomic_read(&dev->pin_memory));
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/**
|
|
* Creates a new mm object and returns a handle to it.
|
|
*/
|
|
int
|
|
i915_gem_create_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file_priv)
|
|
{
|
|
struct drm_i915_gem_create *args = data;
|
|
struct drm_gem_object *obj;
|
|
int handle, ret;
|
|
|
|
args->size = roundup(args->size, PAGE_SIZE);
|
|
|
|
/* Allocate the new object */
|
|
obj = drm_gem_object_alloc(dev, args->size);
|
|
if (obj == NULL)
|
|
return -ENOMEM;
|
|
|
|
ret = drm_gem_handle_create(file_priv, obj, &handle);
|
|
mutex_lock(&dev->struct_mutex);
|
|
drm_gem_object_handle_unreference(obj);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
args->handle = handle;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline int
|
|
fast_shmem_read(struct page **pages,
|
|
loff_t page_base, int page_offset,
|
|
char __user *data,
|
|
int length)
|
|
{
|
|
char __iomem *vaddr;
|
|
int unwritten;
|
|
|
|
vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
|
|
if (vaddr == NULL)
|
|
return -ENOMEM;
|
|
unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
|
|
kunmap_atomic(vaddr, KM_USER0);
|
|
|
|
if (unwritten)
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
|
|
{
|
|
drm_i915_private_t *dev_priv = obj->dev->dev_private;
|
|
struct drm_i915_gem_object *obj_priv = obj->driver_private;
|
|
|
|
return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
|
|
obj_priv->tiling_mode != I915_TILING_NONE;
|
|
}
|
|
|
|
static inline int
|
|
slow_shmem_copy(struct page *dst_page,
|
|
int dst_offset,
|
|
struct page *src_page,
|
|
int src_offset,
|
|
int length)
|
|
{
|
|
char *dst_vaddr, *src_vaddr;
|
|
|
|
dst_vaddr = kmap_atomic(dst_page, KM_USER0);
|
|
if (dst_vaddr == NULL)
|
|
return -ENOMEM;
|
|
|
|
src_vaddr = kmap_atomic(src_page, KM_USER1);
|
|
if (src_vaddr == NULL) {
|
|
kunmap_atomic(dst_vaddr, KM_USER0);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
|
|
|
|
kunmap_atomic(src_vaddr, KM_USER1);
|
|
kunmap_atomic(dst_vaddr, KM_USER0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline int
|
|
slow_shmem_bit17_copy(struct page *gpu_page,
|
|
int gpu_offset,
|
|
struct page *cpu_page,
|
|
int cpu_offset,
|
|
int length,
|
|
int is_read)
|
|
{
|
|
char *gpu_vaddr, *cpu_vaddr;
|
|
|
|
/* Use the unswizzled path if this page isn't affected. */
|
|
if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
|
|
if (is_read)
|
|
return slow_shmem_copy(cpu_page, cpu_offset,
|
|
gpu_page, gpu_offset, length);
|
|
else
|
|
return slow_shmem_copy(gpu_page, gpu_offset,
|
|
cpu_page, cpu_offset, length);
|
|
}
|
|
|
|
gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
|
|
if (gpu_vaddr == NULL)
|
|
return -ENOMEM;
|
|
|
|
cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
|
|
if (cpu_vaddr == NULL) {
|
|
kunmap_atomic(gpu_vaddr, KM_USER0);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* Copy the data, XORing A6 with A17 (1). The user already knows he's
|
|
* XORing with the other bits (A9 for Y, A9 and A10 for X)
|
|
*/
|
|
while (length > 0) {
|
|
int cacheline_end = ALIGN(gpu_offset + 1, 64);
|
|
int this_length = min(cacheline_end - gpu_offset, length);
|
|
int swizzled_gpu_offset = gpu_offset ^ 64;
|
|
|
|
if (is_read) {
|
|
memcpy(cpu_vaddr + cpu_offset,
|
|
gpu_vaddr + swizzled_gpu_offset,
|
|
this_length);
|
|
} else {
|
|
memcpy(gpu_vaddr + swizzled_gpu_offset,
|
|
cpu_vaddr + cpu_offset,
|
|
this_length);
|
|
}
|
|
cpu_offset += this_length;
|
|
gpu_offset += this_length;
|
|
length -= this_length;
|
|
}
|
|
|
|
kunmap_atomic(cpu_vaddr, KM_USER1);
|
|
kunmap_atomic(gpu_vaddr, KM_USER0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* This is the fast shmem pread path, which attempts to copy_from_user directly
|
|
* from the backing pages of the object to the user's address space. On a
|
|
* fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
|
|
*/
|
|
static int
|
|
i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
|
|
struct drm_i915_gem_pread *args,
|
|
struct drm_file *file_priv)
|
|
{
|
|
struct drm_i915_gem_object *obj_priv = obj->driver_private;
|
|
ssize_t remain;
|
|
loff_t offset, page_base;
|
|
char __user *user_data;
|
|
int page_offset, page_length;
|
|
int ret;
|
|
|
|
user_data = (char __user *) (uintptr_t) args->data_ptr;
|
|
remain = args->size;
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
|
|
ret = i915_gem_object_get_pages(obj);
|
|
if (ret != 0)
|
|
goto fail_unlock;
|
|
|
|
ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
|
|
args->size);
|
|
if (ret != 0)
|
|
goto fail_put_pages;
|
|
|
|
obj_priv = obj->driver_private;
|
|
offset = args->offset;
|
|
|
|
while (remain > 0) {
|
|
/* Operation in this page
|
|
*
|
|
* page_base = page offset within aperture
|
|
* page_offset = offset within page
|
|
* page_length = bytes to copy for this page
|
|
*/
|
|
page_base = (offset & ~(PAGE_SIZE-1));
|
|
page_offset = offset & (PAGE_SIZE-1);
|
|
page_length = remain;
|
|
if ((page_offset + remain) > PAGE_SIZE)
|
|
page_length = PAGE_SIZE - page_offset;
|
|
|
|
ret = fast_shmem_read(obj_priv->pages,
|
|
page_base, page_offset,
|
|
user_data, page_length);
|
|
if (ret)
|
|
goto fail_put_pages;
|
|
|
|
remain -= page_length;
|
|
user_data += page_length;
|
|
offset += page_length;
|
|
}
|
|
|
|
fail_put_pages:
|
|
i915_gem_object_put_pages(obj);
|
|
fail_unlock:
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* This is the fallback shmem pread path, which allocates temporary storage
|
|
* in kernel space to copy_to_user into outside of the struct_mutex, so we
|
|
* can copy out of the object's backing pages while holding the struct mutex
|
|
* and not take page faults.
|
|
*/
|
|
static int
|
|
i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
|
|
struct drm_i915_gem_pread *args,
|
|
struct drm_file *file_priv)
|
|
{
|
|
struct drm_i915_gem_object *obj_priv = obj->driver_private;
|
|
struct mm_struct *mm = current->mm;
|
|
struct page **user_pages;
|
|
ssize_t remain;
|
|
loff_t offset, pinned_pages, i;
|
|
loff_t first_data_page, last_data_page, num_pages;
|
|
int shmem_page_index, shmem_page_offset;
|
|
int data_page_index, data_page_offset;
|
|
int page_length;
|
|
int ret;
|
|
uint64_t data_ptr = args->data_ptr;
|
|
int do_bit17_swizzling;
|
|
|
|
remain = args->size;
|
|
|
|
/* Pin the user pages containing the data. We can't fault while
|
|
* holding the struct mutex, yet we want to hold it while
|
|
* dereferencing the user data.
|
|
*/
|
|
first_data_page = data_ptr / PAGE_SIZE;
|
|
last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
|
|
num_pages = last_data_page - first_data_page + 1;
|
|
|
|
user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
|
|
if (user_pages == NULL)
|
|
return -ENOMEM;
|
|
|
|
down_read(&mm->mmap_sem);
|
|
pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
|
|
num_pages, 1, 0, user_pages, NULL);
|
|
up_read(&mm->mmap_sem);
|
|
if (pinned_pages < num_pages) {
|
|
ret = -EFAULT;
|
|
goto fail_put_user_pages;
|
|
}
|
|
|
|
do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
|
|
ret = i915_gem_object_get_pages(obj);
|
|
if (ret != 0)
|
|
goto fail_unlock;
|
|
|
|
ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
|
|
args->size);
|
|
if (ret != 0)
|
|
goto fail_put_pages;
|
|
|
|
obj_priv = obj->driver_private;
|
|
offset = args->offset;
|
|
|
|
while (remain > 0) {
|
|
/* Operation in this page
|
|
*
|
|
* shmem_page_index = page number within shmem file
|
|
* shmem_page_offset = offset within page in shmem file
|
|
* data_page_index = page number in get_user_pages return
|
|
* data_page_offset = offset with data_page_index page.
|
|
* page_length = bytes to copy for this page
|
|
*/
|
|
shmem_page_index = offset / PAGE_SIZE;
|
|
shmem_page_offset = offset & ~PAGE_MASK;
|
|
data_page_index = data_ptr / PAGE_SIZE - first_data_page;
|
|
data_page_offset = data_ptr & ~PAGE_MASK;
|
|
|
|
page_length = remain;
|
|
if ((shmem_page_offset + page_length) > PAGE_SIZE)
|
|
page_length = PAGE_SIZE - shmem_page_offset;
|
|
if ((data_page_offset + page_length) > PAGE_SIZE)
|
|
page_length = PAGE_SIZE - data_page_offset;
|
|
|
|
if (do_bit17_swizzling) {
|
|
ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
|
|
shmem_page_offset,
|
|
user_pages[data_page_index],
|
|
data_page_offset,
|
|
page_length,
|
|
1);
|
|
} else {
|
|
ret = slow_shmem_copy(user_pages[data_page_index],
|
|
data_page_offset,
|
|
obj_priv->pages[shmem_page_index],
|
|
shmem_page_offset,
|
|
page_length);
|
|
}
|
|
if (ret)
|
|
goto fail_put_pages;
|
|
|
|
remain -= page_length;
|
|
data_ptr += page_length;
|
|
offset += page_length;
|
|
}
|
|
|
|
fail_put_pages:
|
|
i915_gem_object_put_pages(obj);
|
|
fail_unlock:
|
|
mutex_unlock(&dev->struct_mutex);
|
|
fail_put_user_pages:
|
|
for (i = 0; i < pinned_pages; i++) {
|
|
SetPageDirty(user_pages[i]);
|
|
page_cache_release(user_pages[i]);
|
|
}
|
|
drm_free_large(user_pages);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* Reads data from the object referenced by handle.
|
|
*
|
|
* On error, the contents of *data are undefined.
|
|
*/
|
|
int
|
|
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file_priv)
|
|
{
|
|
struct drm_i915_gem_pread *args = data;
|
|
struct drm_gem_object *obj;
|
|
struct drm_i915_gem_object *obj_priv;
|
|
int ret;
|
|
|
|
obj = drm_gem_object_lookup(dev, file_priv, args->handle);
|
|
if (obj == NULL)
|
|
return -EBADF;
|
|
obj_priv = obj->driver_private;
|
|
|
|
/* Bounds check source.
|
|
*
|
|
* XXX: This could use review for overflow issues...
|
|
*/
|
|
if (args->offset > obj->size || args->size > obj->size ||
|
|
args->offset + args->size > obj->size) {
|
|
drm_gem_object_unreference(obj);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (i915_gem_object_needs_bit17_swizzle(obj)) {
|
|
ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
|
|
} else {
|
|
ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
|
|
if (ret != 0)
|
|
ret = i915_gem_shmem_pread_slow(dev, obj, args,
|
|
file_priv);
|
|
}
|
|
|
|
drm_gem_object_unreference(obj);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* This is the fast write path which cannot handle
|
|
* page faults in the source data
|
|
*/
|
|
|
|
static inline int
|
|
fast_user_write(struct io_mapping *mapping,
|
|
loff_t page_base, int page_offset,
|
|
char __user *user_data,
|
|
int length)
|
|
{
|
|
char *vaddr_atomic;
|
|
unsigned long unwritten;
|
|
|
|
vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
|
|
unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
|
|
user_data, length);
|
|
io_mapping_unmap_atomic(vaddr_atomic);
|
|
if (unwritten)
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
|
|
/* Here's the write path which can sleep for
|
|
* page faults
|
|
*/
|
|
|
|
static inline int
|
|
slow_kernel_write(struct io_mapping *mapping,
|
|
loff_t gtt_base, int gtt_offset,
|
|
struct page *user_page, int user_offset,
|
|
int length)
|
|
{
|
|
char *src_vaddr, *dst_vaddr;
|
|
unsigned long unwritten;
|
|
|
|
dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
|
|
src_vaddr = kmap_atomic(user_page, KM_USER1);
|
|
unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
|
|
src_vaddr + user_offset,
|
|
length);
|
|
kunmap_atomic(src_vaddr, KM_USER1);
|
|
io_mapping_unmap_atomic(dst_vaddr);
|
|
if (unwritten)
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
|
|
static inline int
|
|
fast_shmem_write(struct page **pages,
|
|
loff_t page_base, int page_offset,
|
|
char __user *data,
|
|
int length)
|
|
{
|
|
char __iomem *vaddr;
|
|
unsigned long unwritten;
|
|
|
|
vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
|
|
if (vaddr == NULL)
|
|
return -ENOMEM;
|
|
unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
|
|
kunmap_atomic(vaddr, KM_USER0);
|
|
|
|
if (unwritten)
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* This is the fast pwrite path, where we copy the data directly from the
|
|
* user into the GTT, uncached.
|
|
*/
|
|
static int
|
|
i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
|
|
struct drm_i915_gem_pwrite *args,
|
|
struct drm_file *file_priv)
|
|
{
|
|
struct drm_i915_gem_object *obj_priv = obj->driver_private;
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
ssize_t remain;
|
|
loff_t offset, page_base;
|
|
char __user *user_data;
|
|
int page_offset, page_length;
|
|
int ret;
|
|
|
|
user_data = (char __user *) (uintptr_t) args->data_ptr;
|
|
remain = args->size;
|
|
if (!access_ok(VERIFY_READ, user_data, remain))
|
|
return -EFAULT;
|
|
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
ret = i915_gem_object_pin(obj, 0);
|
|
if (ret) {
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return ret;
|
|
}
|
|
ret = i915_gem_object_set_to_gtt_domain(obj, 1);
|
|
if (ret)
|
|
goto fail;
|
|
|
|
obj_priv = obj->driver_private;
|
|
offset = obj_priv->gtt_offset + args->offset;
|
|
|
|
while (remain > 0) {
|
|
/* Operation in this page
|
|
*
|
|
* page_base = page offset within aperture
|
|
* page_offset = offset within page
|
|
* page_length = bytes to copy for this page
|
|
*/
|
|
page_base = (offset & ~(PAGE_SIZE-1));
|
|
page_offset = offset & (PAGE_SIZE-1);
|
|
page_length = remain;
|
|
if ((page_offset + remain) > PAGE_SIZE)
|
|
page_length = PAGE_SIZE - page_offset;
|
|
|
|
ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
|
|
page_offset, user_data, page_length);
|
|
|
|
/* If we get a fault while copying data, then (presumably) our
|
|
* source page isn't available. Return the error and we'll
|
|
* retry in the slow path.
|
|
*/
|
|
if (ret)
|
|
goto fail;
|
|
|
|
remain -= page_length;
|
|
user_data += page_length;
|
|
offset += page_length;
|
|
}
|
|
|
|
fail:
|
|
i915_gem_object_unpin(obj);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* This is the fallback GTT pwrite path, which uses get_user_pages to pin
|
|
* the memory and maps it using kmap_atomic for copying.
|
|
*
|
|
* This code resulted in x11perf -rgb10text consuming about 10% more CPU
|
|
* than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
|
|
*/
|
|
static int
|
|
i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
|
|
struct drm_i915_gem_pwrite *args,
|
|
struct drm_file *file_priv)
|
|
{
|
|
struct drm_i915_gem_object *obj_priv = obj->driver_private;
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
ssize_t remain;
|
|
loff_t gtt_page_base, offset;
|
|
loff_t first_data_page, last_data_page, num_pages;
|
|
loff_t pinned_pages, i;
|
|
struct page **user_pages;
|
|
struct mm_struct *mm = current->mm;
|
|
int gtt_page_offset, data_page_offset, data_page_index, page_length;
|
|
int ret;
|
|
uint64_t data_ptr = args->data_ptr;
|
|
|
|
remain = args->size;
|
|
|
|
/* Pin the user pages containing the data. We can't fault while
|
|
* holding the struct mutex, and all of the pwrite implementations
|
|
* want to hold it while dereferencing the user data.
|
|
*/
|
|
first_data_page = data_ptr / PAGE_SIZE;
|
|
last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
|
|
num_pages = last_data_page - first_data_page + 1;
|
|
|
|
user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
|
|
if (user_pages == NULL)
|
|
return -ENOMEM;
|
|
|
|
down_read(&mm->mmap_sem);
|
|
pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
|
|
num_pages, 0, 0, user_pages, NULL);
|
|
up_read(&mm->mmap_sem);
|
|
if (pinned_pages < num_pages) {
|
|
ret = -EFAULT;
|
|
goto out_unpin_pages;
|
|
}
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
ret = i915_gem_object_pin(obj, 0);
|
|
if (ret)
|
|
goto out_unlock;
|
|
|
|
ret = i915_gem_object_set_to_gtt_domain(obj, 1);
|
|
if (ret)
|
|
goto out_unpin_object;
|
|
|
|
obj_priv = obj->driver_private;
|
|
offset = obj_priv->gtt_offset + args->offset;
|
|
|
|
while (remain > 0) {
|
|
/* Operation in this page
|
|
*
|
|
* gtt_page_base = page offset within aperture
|
|
* gtt_page_offset = offset within page in aperture
|
|
* data_page_index = page number in get_user_pages return
|
|
* data_page_offset = offset with data_page_index page.
|
|
* page_length = bytes to copy for this page
|
|
*/
|
|
gtt_page_base = offset & PAGE_MASK;
|
|
gtt_page_offset = offset & ~PAGE_MASK;
|
|
data_page_index = data_ptr / PAGE_SIZE - first_data_page;
|
|
data_page_offset = data_ptr & ~PAGE_MASK;
|
|
|
|
page_length = remain;
|
|
if ((gtt_page_offset + page_length) > PAGE_SIZE)
|
|
page_length = PAGE_SIZE - gtt_page_offset;
|
|
if ((data_page_offset + page_length) > PAGE_SIZE)
|
|
page_length = PAGE_SIZE - data_page_offset;
|
|
|
|
ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
|
|
gtt_page_base, gtt_page_offset,
|
|
user_pages[data_page_index],
|
|
data_page_offset,
|
|
page_length);
|
|
|
|
/* If we get a fault while copying data, then (presumably) our
|
|
* source page isn't available. Return the error and we'll
|
|
* retry in the slow path.
|
|
*/
|
|
if (ret)
|
|
goto out_unpin_object;
|
|
|
|
remain -= page_length;
|
|
offset += page_length;
|
|
data_ptr += page_length;
|
|
}
|
|
|
|
out_unpin_object:
|
|
i915_gem_object_unpin(obj);
|
|
out_unlock:
|
|
mutex_unlock(&dev->struct_mutex);
|
|
out_unpin_pages:
|
|
for (i = 0; i < pinned_pages; i++)
|
|
page_cache_release(user_pages[i]);
|
|
drm_free_large(user_pages);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* This is the fast shmem pwrite path, which attempts to directly
|
|
* copy_from_user into the kmapped pages backing the object.
|
|
*/
|
|
static int
|
|
i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
|
|
struct drm_i915_gem_pwrite *args,
|
|
struct drm_file *file_priv)
|
|
{
|
|
struct drm_i915_gem_object *obj_priv = obj->driver_private;
|
|
ssize_t remain;
|
|
loff_t offset, page_base;
|
|
char __user *user_data;
|
|
int page_offset, page_length;
|
|
int ret;
|
|
|
|
user_data = (char __user *) (uintptr_t) args->data_ptr;
|
|
remain = args->size;
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
|
|
ret = i915_gem_object_get_pages(obj);
|
|
if (ret != 0)
|
|
goto fail_unlock;
|
|
|
|
ret = i915_gem_object_set_to_cpu_domain(obj, 1);
|
|
if (ret != 0)
|
|
goto fail_put_pages;
|
|
|
|
obj_priv = obj->driver_private;
|
|
offset = args->offset;
|
|
obj_priv->dirty = 1;
|
|
|
|
while (remain > 0) {
|
|
/* Operation in this page
|
|
*
|
|
* page_base = page offset within aperture
|
|
* page_offset = offset within page
|
|
* page_length = bytes to copy for this page
|
|
*/
|
|
page_base = (offset & ~(PAGE_SIZE-1));
|
|
page_offset = offset & (PAGE_SIZE-1);
|
|
page_length = remain;
|
|
if ((page_offset + remain) > PAGE_SIZE)
|
|
page_length = PAGE_SIZE - page_offset;
|
|
|
|
ret = fast_shmem_write(obj_priv->pages,
|
|
page_base, page_offset,
|
|
user_data, page_length);
|
|
if (ret)
|
|
goto fail_put_pages;
|
|
|
|
remain -= page_length;
|
|
user_data += page_length;
|
|
offset += page_length;
|
|
}
|
|
|
|
fail_put_pages:
|
|
i915_gem_object_put_pages(obj);
|
|
fail_unlock:
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* This is the fallback shmem pwrite path, which uses get_user_pages to pin
|
|
* the memory and maps it using kmap_atomic for copying.
|
|
*
|
|
* This avoids taking mmap_sem for faulting on the user's address while the
|
|
* struct_mutex is held.
|
|
*/
|
|
static int
|
|
i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
|
|
struct drm_i915_gem_pwrite *args,
|
|
struct drm_file *file_priv)
|
|
{
|
|
struct drm_i915_gem_object *obj_priv = obj->driver_private;
|
|
struct mm_struct *mm = current->mm;
|
|
struct page **user_pages;
|
|
ssize_t remain;
|
|
loff_t offset, pinned_pages, i;
|
|
loff_t first_data_page, last_data_page, num_pages;
|
|
int shmem_page_index, shmem_page_offset;
|
|
int data_page_index, data_page_offset;
|
|
int page_length;
|
|
int ret;
|
|
uint64_t data_ptr = args->data_ptr;
|
|
int do_bit17_swizzling;
|
|
|
|
remain = args->size;
|
|
|
|
/* Pin the user pages containing the data. We can't fault while
|
|
* holding the struct mutex, and all of the pwrite implementations
|
|
* want to hold it while dereferencing the user data.
|
|
*/
|
|
first_data_page = data_ptr / PAGE_SIZE;
|
|
last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
|
|
num_pages = last_data_page - first_data_page + 1;
|
|
|
|
user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
|
|
if (user_pages == NULL)
|
|
return -ENOMEM;
|
|
|
|
down_read(&mm->mmap_sem);
|
|
pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
|
|
num_pages, 0, 0, user_pages, NULL);
|
|
up_read(&mm->mmap_sem);
|
|
if (pinned_pages < num_pages) {
|
|
ret = -EFAULT;
|
|
goto fail_put_user_pages;
|
|
}
|
|
|
|
do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
|
|
ret = i915_gem_object_get_pages(obj);
|
|
if (ret != 0)
|
|
goto fail_unlock;
|
|
|
|
ret = i915_gem_object_set_to_cpu_domain(obj, 1);
|
|
if (ret != 0)
|
|
goto fail_put_pages;
|
|
|
|
obj_priv = obj->driver_private;
|
|
offset = args->offset;
|
|
obj_priv->dirty = 1;
|
|
|
|
while (remain > 0) {
|
|
/* Operation in this page
|
|
*
|
|
* shmem_page_index = page number within shmem file
|
|
* shmem_page_offset = offset within page in shmem file
|
|
* data_page_index = page number in get_user_pages return
|
|
* data_page_offset = offset with data_page_index page.
|
|
* page_length = bytes to copy for this page
|
|
*/
|
|
shmem_page_index = offset / PAGE_SIZE;
|
|
shmem_page_offset = offset & ~PAGE_MASK;
|
|
data_page_index = data_ptr / PAGE_SIZE - first_data_page;
|
|
data_page_offset = data_ptr & ~PAGE_MASK;
|
|
|
|
page_length = remain;
|
|
if ((shmem_page_offset + page_length) > PAGE_SIZE)
|
|
page_length = PAGE_SIZE - shmem_page_offset;
|
|
if ((data_page_offset + page_length) > PAGE_SIZE)
|
|
page_length = PAGE_SIZE - data_page_offset;
|
|
|
|
if (do_bit17_swizzling) {
|
|
ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
|
|
shmem_page_offset,
|
|
user_pages[data_page_index],
|
|
data_page_offset,
|
|
page_length,
|
|
0);
|
|
} else {
|
|
ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
|
|
shmem_page_offset,
|
|
user_pages[data_page_index],
|
|
data_page_offset,
|
|
page_length);
|
|
}
|
|
if (ret)
|
|
goto fail_put_pages;
|
|
|
|
remain -= page_length;
|
|
data_ptr += page_length;
|
|
offset += page_length;
|
|
}
|
|
|
|
fail_put_pages:
|
|
i915_gem_object_put_pages(obj);
|
|
fail_unlock:
|
|
mutex_unlock(&dev->struct_mutex);
|
|
fail_put_user_pages:
|
|
for (i = 0; i < pinned_pages; i++)
|
|
page_cache_release(user_pages[i]);
|
|
drm_free_large(user_pages);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* Writes data to the object referenced by handle.
|
|
*
|
|
* On error, the contents of the buffer that were to be modified are undefined.
|
|
*/
|
|
int
|
|
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file_priv)
|
|
{
|
|
struct drm_i915_gem_pwrite *args = data;
|
|
struct drm_gem_object *obj;
|
|
struct drm_i915_gem_object *obj_priv;
|
|
int ret = 0;
|
|
|
|
obj = drm_gem_object_lookup(dev, file_priv, args->handle);
|
|
if (obj == NULL)
|
|
return -EBADF;
|
|
obj_priv = obj->driver_private;
|
|
|
|
/* Bounds check destination.
|
|
*
|
|
* XXX: This could use review for overflow issues...
|
|
*/
|
|
if (args->offset > obj->size || args->size > obj->size ||
|
|
args->offset + args->size > obj->size) {
|
|
drm_gem_object_unreference(obj);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* We can only do the GTT pwrite on untiled buffers, as otherwise
|
|
* it would end up going through the fenced access, and we'll get
|
|
* different detiling behavior between reading and writing.
|
|
* pread/pwrite currently are reading and writing from the CPU
|
|
* perspective, requiring manual detiling by the client.
|
|
*/
|
|
if (obj_priv->phys_obj)
|
|
ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
|
|
else if (obj_priv->tiling_mode == I915_TILING_NONE &&
|
|
dev->gtt_total != 0) {
|
|
ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
|
|
if (ret == -EFAULT) {
|
|
ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
|
|
file_priv);
|
|
}
|
|
} else if (i915_gem_object_needs_bit17_swizzle(obj)) {
|
|
ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
|
|
} else {
|
|
ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
|
|
if (ret == -EFAULT) {
|
|
ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
|
|
file_priv);
|
|
}
|
|
}
|
|
|
|
#if WATCH_PWRITE
|
|
if (ret)
|
|
DRM_INFO("pwrite failed %d\n", ret);
|
|
#endif
|
|
|
|
drm_gem_object_unreference(obj);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* Called when user space prepares to use an object with the CPU, either
|
|
* through the mmap ioctl's mapping or a GTT mapping.
|
|
*/
|
|
int
|
|
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file_priv)
|
|
{
|
|
struct drm_i915_gem_set_domain *args = data;
|
|
struct drm_gem_object *obj;
|
|
uint32_t read_domains = args->read_domains;
|
|
uint32_t write_domain = args->write_domain;
|
|
int ret;
|
|
|
|
if (!(dev->driver->driver_features & DRIVER_GEM))
|
|
return -ENODEV;
|
|
|
|
/* Only handle setting domains to types used by the CPU. */
|
|
if (write_domain & I915_GEM_GPU_DOMAINS)
|
|
return -EINVAL;
|
|
|
|
if (read_domains & I915_GEM_GPU_DOMAINS)
|
|
return -EINVAL;
|
|
|
|
/* Having something in the write domain implies it's in the read
|
|
* domain, and only that read domain. Enforce that in the request.
|
|
*/
|
|
if (write_domain != 0 && read_domains != write_domain)
|
|
return -EINVAL;
|
|
|
|
obj = drm_gem_object_lookup(dev, file_priv, args->handle);
|
|
if (obj == NULL)
|
|
return -EBADF;
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
#if WATCH_BUF
|
|
DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
|
|
obj, obj->size, read_domains, write_domain);
|
|
#endif
|
|
if (read_domains & I915_GEM_DOMAIN_GTT) {
|
|
ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
|
|
|
|
/* Silently promote "you're not bound, there was nothing to do"
|
|
* to success, since the client was just asking us to
|
|
* make sure everything was done.
|
|
*/
|
|
if (ret == -EINVAL)
|
|
ret = 0;
|
|
} else {
|
|
ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
|
|
}
|
|
|
|
drm_gem_object_unreference(obj);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* Called when user space has done writes to this buffer
|
|
*/
|
|
int
|
|
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file_priv)
|
|
{
|
|
struct drm_i915_gem_sw_finish *args = data;
|
|
struct drm_gem_object *obj;
|
|
struct drm_i915_gem_object *obj_priv;
|
|
int ret = 0;
|
|
|
|
if (!(dev->driver->driver_features & DRIVER_GEM))
|
|
return -ENODEV;
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
obj = drm_gem_object_lookup(dev, file_priv, args->handle);
|
|
if (obj == NULL) {
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return -EBADF;
|
|
}
|
|
|
|
#if WATCH_BUF
|
|
DRM_INFO("%s: sw_finish %d (%p %zd)\n",
|
|
__func__, args->handle, obj, obj->size);
|
|
#endif
|
|
obj_priv = obj->driver_private;
|
|
|
|
/* Pinned buffers may be scanout, so flush the cache */
|
|
if (obj_priv->pin_count)
|
|
i915_gem_object_flush_cpu_write_domain(obj);
|
|
|
|
drm_gem_object_unreference(obj);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* Maps the contents of an object, returning the address it is mapped
|
|
* into.
|
|
*
|
|
* While the mapping holds a reference on the contents of the object, it doesn't
|
|
* imply a ref on the object itself.
|
|
*/
|
|
int
|
|
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file_priv)
|
|
{
|
|
struct drm_i915_gem_mmap *args = data;
|
|
struct drm_gem_object *obj;
|
|
loff_t offset;
|
|
unsigned long addr;
|
|
|
|
if (!(dev->driver->driver_features & DRIVER_GEM))
|
|
return -ENODEV;
|
|
|
|
obj = drm_gem_object_lookup(dev, file_priv, args->handle);
|
|
if (obj == NULL)
|
|
return -EBADF;
|
|
|
|
offset = args->offset;
|
|
|
|
down_write(¤t->mm->mmap_sem);
|
|
addr = do_mmap(obj->filp, 0, args->size,
|
|
PROT_READ | PROT_WRITE, MAP_SHARED,
|
|
args->offset);
|
|
up_write(¤t->mm->mmap_sem);
|
|
mutex_lock(&dev->struct_mutex);
|
|
drm_gem_object_unreference(obj);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
if (IS_ERR((void *)addr))
|
|
return addr;
|
|
|
|
args->addr_ptr = (uint64_t) addr;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* i915_gem_fault - fault a page into the GTT
|
|
* vma: VMA in question
|
|
* vmf: fault info
|
|
*
|
|
* The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
|
|
* from userspace. The fault handler takes care of binding the object to
|
|
* the GTT (if needed), allocating and programming a fence register (again,
|
|
* only if needed based on whether the old reg is still valid or the object
|
|
* is tiled) and inserting a new PTE into the faulting process.
|
|
*
|
|
* Note that the faulting process may involve evicting existing objects
|
|
* from the GTT and/or fence registers to make room. So performance may
|
|
* suffer if the GTT working set is large or there are few fence registers
|
|
* left.
|
|
*/
|
|
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
|
|
{
|
|
struct drm_gem_object *obj = vma->vm_private_data;
|
|
struct drm_device *dev = obj->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct drm_i915_gem_object *obj_priv = obj->driver_private;
|
|
pgoff_t page_offset;
|
|
unsigned long pfn;
|
|
int ret = 0;
|
|
bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
|
|
|
|
/* We don't use vmf->pgoff since that has the fake offset */
|
|
page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
|
|
PAGE_SHIFT;
|
|
|
|
/* Now bind it into the GTT if needed */
|
|
mutex_lock(&dev->struct_mutex);
|
|
if (!obj_priv->gtt_space) {
|
|
ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
|
|
if (ret) {
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return VM_FAULT_SIGBUS;
|
|
}
|
|
|
|
ret = i915_gem_object_set_to_gtt_domain(obj, write);
|
|
if (ret) {
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return VM_FAULT_SIGBUS;
|
|
}
|
|
|
|
list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
|
|
}
|
|
|
|
/* Need a new fence register? */
|
|
if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
|
|
obj_priv->tiling_mode != I915_TILING_NONE) {
|
|
ret = i915_gem_object_get_fence_reg(obj);
|
|
if (ret) {
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return VM_FAULT_SIGBUS;
|
|
}
|
|
}
|
|
|
|
pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
|
|
page_offset;
|
|
|
|
/* Finally, remap it using the new GTT offset */
|
|
ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
|
|
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
switch (ret) {
|
|
case -ENOMEM:
|
|
case -EAGAIN:
|
|
return VM_FAULT_OOM;
|
|
case -EFAULT:
|
|
case -EINVAL:
|
|
return VM_FAULT_SIGBUS;
|
|
default:
|
|
return VM_FAULT_NOPAGE;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* i915_gem_create_mmap_offset - create a fake mmap offset for an object
|
|
* @obj: obj in question
|
|
*
|
|
* GEM memory mapping works by handing back to userspace a fake mmap offset
|
|
* it can use in a subsequent mmap(2) call. The DRM core code then looks
|
|
* up the object based on the offset and sets up the various memory mapping
|
|
* structures.
|
|
*
|
|
* This routine allocates and attaches a fake offset for @obj.
|
|
*/
|
|
static int
|
|
i915_gem_create_mmap_offset(struct drm_gem_object *obj)
|
|
{
|
|
struct drm_device *dev = obj->dev;
|
|
struct drm_gem_mm *mm = dev->mm_private;
|
|
struct drm_i915_gem_object *obj_priv = obj->driver_private;
|
|
struct drm_map_list *list;
|
|
struct drm_local_map *map;
|
|
int ret = 0;
|
|
|
|
/* Set the object up for mmap'ing */
|
|
list = &obj->map_list;
|
|
list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
|
|
if (!list->map)
|
|
return -ENOMEM;
|
|
|
|
map = list->map;
|
|
map->type = _DRM_GEM;
|
|
map->size = obj->size;
|
|
map->handle = obj;
|
|
|
|
/* Get a DRM GEM mmap offset allocated... */
|
|
list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
|
|
obj->size / PAGE_SIZE, 0, 0);
|
|
if (!list->file_offset_node) {
|
|
DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
|
|
ret = -ENOMEM;
|
|
goto out_free_list;
|
|
}
|
|
|
|
list->file_offset_node = drm_mm_get_block(list->file_offset_node,
|
|
obj->size / PAGE_SIZE, 0);
|
|
if (!list->file_offset_node) {
|
|
ret = -ENOMEM;
|
|
goto out_free_list;
|
|
}
|
|
|
|
list->hash.key = list->file_offset_node->start;
|
|
if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
|
|
DRM_ERROR("failed to add to map hash\n");
|
|
goto out_free_mm;
|
|
}
|
|
|
|
/* By now we should be all set, any drm_mmap request on the offset
|
|
* below will get to our mmap & fault handler */
|
|
obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
|
|
|
|
return 0;
|
|
|
|
out_free_mm:
|
|
drm_mm_put_block(list->file_offset_node);
|
|
out_free_list:
|
|
kfree(list->map);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* i915_gem_release_mmap - remove physical page mappings
|
|
* @obj: obj in question
|
|
*
|
|
* Preserve the reservation of the mmaping with the DRM core code, but
|
|
* relinquish ownership of the pages back to the system.
|
|
*
|
|
* It is vital that we remove the page mapping if we have mapped a tiled
|
|
* object through the GTT and then lose the fence register due to
|
|
* resource pressure. Similarly if the object has been moved out of the
|
|
* aperture, than pages mapped into userspace must be revoked. Removing the
|
|
* mapping will then trigger a page fault on the next user access, allowing
|
|
* fixup by i915_gem_fault().
|
|
*/
|
|
void
|
|
i915_gem_release_mmap(struct drm_gem_object *obj)
|
|
{
|
|
struct drm_device *dev = obj->dev;
|
|
struct drm_i915_gem_object *obj_priv = obj->driver_private;
|
|
|
|
if (dev->dev_mapping)
|
|
unmap_mapping_range(dev->dev_mapping,
|
|
obj_priv->mmap_offset, obj->size, 1);
|
|
}
|
|
|
|
static void
|
|
i915_gem_free_mmap_offset(struct drm_gem_object *obj)
|
|
{
|
|
struct drm_device *dev = obj->dev;
|
|
struct drm_i915_gem_object *obj_priv = obj->driver_private;
|
|
struct drm_gem_mm *mm = dev->mm_private;
|
|
struct drm_map_list *list;
|
|
|
|
list = &obj->map_list;
|
|
drm_ht_remove_item(&mm->offset_hash, &list->hash);
|
|
|
|
if (list->file_offset_node) {
|
|
drm_mm_put_block(list->file_offset_node);
|
|
list->file_offset_node = NULL;
|
|
}
|
|
|
|
if (list->map) {
|
|
kfree(list->map);
|
|
list->map = NULL;
|
|
}
|
|
|
|
obj_priv->mmap_offset = 0;
|
|
}
|
|
|
|
/**
|
|
* i915_gem_get_gtt_alignment - return required GTT alignment for an object
|
|
* @obj: object to check
|
|
*
|
|
* Return the required GTT alignment for an object, taking into account
|
|
* potential fence register mapping if needed.
|
|
*/
|
|
static uint32_t
|
|
i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
|
|
{
|
|
struct drm_device *dev = obj->dev;
|
|
struct drm_i915_gem_object *obj_priv = obj->driver_private;
|
|
int start, i;
|
|
|
|
/*
|
|
* Minimum alignment is 4k (GTT page size), but might be greater
|
|
* if a fence register is needed for the object.
|
|
*/
|
|
if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
|
|
return 4096;
|
|
|
|
/*
|
|
* Previous chips need to be aligned to the size of the smallest
|
|
* fence register that can contain the object.
|
|
*/
|
|
if (IS_I9XX(dev))
|
|
start = 1024*1024;
|
|
else
|
|
start = 512*1024;
|
|
|
|
for (i = start; i < obj->size; i <<= 1)
|
|
;
|
|
|
|
return i;
|
|
}
|
|
|
|
/**
|
|
* i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
|
|
* @dev: DRM device
|
|
* @data: GTT mapping ioctl data
|
|
* @file_priv: GEM object info
|
|
*
|
|
* Simply returns the fake offset to userspace so it can mmap it.
|
|
* The mmap call will end up in drm_gem_mmap(), which will set things
|
|
* up so we can get faults in the handler above.
|
|
*
|
|
* The fault handler will take care of binding the object into the GTT
|
|
* (since it may have been evicted to make room for something), allocating
|
|
* a fence register, and mapping the appropriate aperture address into
|
|
* userspace.
|
|
*/
|
|
int
|
|
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file_priv)
|
|
{
|
|
struct drm_i915_gem_mmap_gtt *args = data;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct drm_gem_object *obj;
|
|
struct drm_i915_gem_object *obj_priv;
|
|
int ret;
|
|
|
|
if (!(dev->driver->driver_features & DRIVER_GEM))
|
|
return -ENODEV;
|
|
|
|
obj = drm_gem_object_lookup(dev, file_priv, args->handle);
|
|
if (obj == NULL)
|
|
return -EBADF;
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
|
|
obj_priv = obj->driver_private;
|
|
|
|
if (!obj_priv->mmap_offset) {
|
|
ret = i915_gem_create_mmap_offset(obj);
|
|
if (ret) {
|
|
drm_gem_object_unreference(obj);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
args->offset = obj_priv->mmap_offset;
|
|
|
|
obj_priv->gtt_alignment = i915_gem_get_gtt_alignment(obj);
|
|
|
|
/* Make sure the alignment is correct for fence regs etc */
|
|
if (obj_priv->agp_mem &&
|
|
(obj_priv->gtt_offset & (obj_priv->gtt_alignment - 1))) {
|
|
drm_gem_object_unreference(obj);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Pull it into the GTT so that we have a page list (makes the
|
|
* initial fault faster and any subsequent flushing possible).
|
|
*/
|
|
if (!obj_priv->agp_mem) {
|
|
ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
|
|
if (ret) {
|
|
drm_gem_object_unreference(obj);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return ret;
|
|
}
|
|
list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
|
|
}
|
|
|
|
drm_gem_object_unreference(obj);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
i915_gem_object_put_pages(struct drm_gem_object *obj)
|
|
{
|
|
struct drm_i915_gem_object *obj_priv = obj->driver_private;
|
|
int page_count = obj->size / PAGE_SIZE;
|
|
int i;
|
|
|
|
BUG_ON(obj_priv->pages_refcount == 0);
|
|
|
|
if (--obj_priv->pages_refcount != 0)
|
|
return;
|
|
|
|
if (obj_priv->tiling_mode != I915_TILING_NONE)
|
|
i915_gem_object_save_bit_17_swizzle(obj);
|
|
|
|
for (i = 0; i < page_count; i++)
|
|
if (obj_priv->pages[i] != NULL) {
|
|
if (obj_priv->dirty)
|
|
set_page_dirty(obj_priv->pages[i]);
|
|
mark_page_accessed(obj_priv->pages[i]);
|
|
page_cache_release(obj_priv->pages[i]);
|
|
}
|
|
obj_priv->dirty = 0;
|
|
|
|
drm_free_large(obj_priv->pages);
|
|
obj_priv->pages = NULL;
|
|
}
|
|
|
|
static void
|
|
i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
|
|
{
|
|
struct drm_device *dev = obj->dev;
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
struct drm_i915_gem_object *obj_priv = obj->driver_private;
|
|
|
|
/* Add a reference if we're newly entering the active list. */
|
|
if (!obj_priv->active) {
|
|
drm_gem_object_reference(obj);
|
|
obj_priv->active = 1;
|
|
}
|
|
/* Move from whatever list we were on to the tail of execution. */
|
|
spin_lock(&dev_priv->mm.active_list_lock);
|
|
list_move_tail(&obj_priv->list,
|
|
&dev_priv->mm.active_list);
|
|
spin_unlock(&dev_priv->mm.active_list_lock);
|
|
obj_priv->last_rendering_seqno = seqno;
|
|
}
|
|
|
|
static void
|
|
i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
|
|
{
|
|
struct drm_device *dev = obj->dev;
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
struct drm_i915_gem_object *obj_priv = obj->driver_private;
|
|
|
|
BUG_ON(!obj_priv->active);
|
|
list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
|
|
obj_priv->last_rendering_seqno = 0;
|
|
}
|
|
|
|
static void
|
|
i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
|
|
{
|
|
struct drm_device *dev = obj->dev;
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
struct drm_i915_gem_object *obj_priv = obj->driver_private;
|
|
|
|
i915_verify_inactive(dev, __FILE__, __LINE__);
|
|
if (obj_priv->pin_count != 0)
|
|
list_del_init(&obj_priv->list);
|
|
else
|
|
list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
|
|
|
|
obj_priv->last_rendering_seqno = 0;
|
|
if (obj_priv->active) {
|
|
obj_priv->active = 0;
|
|
drm_gem_object_unreference(obj);
|
|
}
|
|
i915_verify_inactive(dev, __FILE__, __LINE__);
|
|
}
|
|
|
|
/**
|
|
* Creates a new sequence number, emitting a write of it to the status page
|
|
* plus an interrupt, which will trigger i915_user_interrupt_handler.
|
|
*
|
|
* Must be called with struct_lock held.
|
|
*
|
|
* Returned sequence numbers are nonzero on success.
|
|
*/
|
|
static uint32_t
|
|
i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
|
|
uint32_t flush_domains)
|
|
{
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
struct drm_i915_file_private *i915_file_priv = NULL;
|
|
struct drm_i915_gem_request *request;
|
|
uint32_t seqno;
|
|
int was_empty;
|
|
RING_LOCALS;
|
|
|
|
if (file_priv != NULL)
|
|
i915_file_priv = file_priv->driver_priv;
|
|
|
|
request = kzalloc(sizeof(*request), GFP_KERNEL);
|
|
if (request == NULL)
|
|
return 0;
|
|
|
|
/* Grab the seqno we're going to make this request be, and bump the
|
|
* next (skipping 0 so it can be the reserved no-seqno value).
|
|
*/
|
|
seqno = dev_priv->mm.next_gem_seqno;
|
|
dev_priv->mm.next_gem_seqno++;
|
|
if (dev_priv->mm.next_gem_seqno == 0)
|
|
dev_priv->mm.next_gem_seqno++;
|
|
|
|
BEGIN_LP_RING(4);
|
|
OUT_RING(MI_STORE_DWORD_INDEX);
|
|
OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
|
|
OUT_RING(seqno);
|
|
|
|
OUT_RING(MI_USER_INTERRUPT);
|
|
ADVANCE_LP_RING();
|
|
|
|
DRM_DEBUG("%d\n", seqno);
|
|
|
|
request->seqno = seqno;
|
|
request->emitted_jiffies = jiffies;
|
|
was_empty = list_empty(&dev_priv->mm.request_list);
|
|
list_add_tail(&request->list, &dev_priv->mm.request_list);
|
|
if (i915_file_priv) {
|
|
list_add_tail(&request->client_list,
|
|
&i915_file_priv->mm.request_list);
|
|
} else {
|
|
INIT_LIST_HEAD(&request->client_list);
|
|
}
|
|
|
|
/* Associate any objects on the flushing list matching the write
|
|
* domain we're flushing with our flush.
|
|
*/
|
|
if (flush_domains != 0) {
|
|
struct drm_i915_gem_object *obj_priv, *next;
|
|
|
|
list_for_each_entry_safe(obj_priv, next,
|
|
&dev_priv->mm.flushing_list, list) {
|
|
struct drm_gem_object *obj = obj_priv->obj;
|
|
|
|
if ((obj->write_domain & flush_domains) ==
|
|
obj->write_domain) {
|
|
obj->write_domain = 0;
|
|
i915_gem_object_move_to_active(obj, seqno);
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
if (was_empty && !dev_priv->mm.suspended)
|
|
schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
|
|
return seqno;
|
|
}
|
|
|
|
/**
|
|
* Command execution barrier
|
|
*
|
|
* Ensures that all commands in the ring are finished
|
|
* before signalling the CPU
|
|
*/
|
|
static uint32_t
|
|
i915_retire_commands(struct drm_device *dev)
|
|
{
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
|
|
uint32_t flush_domains = 0;
|
|
RING_LOCALS;
|
|
|
|
/* The sampler always gets flushed on i965 (sigh) */
|
|
if (IS_I965G(dev))
|
|
flush_domains |= I915_GEM_DOMAIN_SAMPLER;
|
|
BEGIN_LP_RING(2);
|
|
OUT_RING(cmd);
|
|
OUT_RING(0); /* noop */
|
|
ADVANCE_LP_RING();
|
|
return flush_domains;
|
|
}
|
|
|
|
/**
|
|
* Moves buffers associated only with the given active seqno from the active
|
|
* to inactive list, potentially freeing them.
|
|
*/
|
|
static void
|
|
i915_gem_retire_request(struct drm_device *dev,
|
|
struct drm_i915_gem_request *request)
|
|
{
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
|
|
/* Move any buffers on the active list that are no longer referenced
|
|
* by the ringbuffer to the flushing/inactive lists as appropriate.
|
|
*/
|
|
spin_lock(&dev_priv->mm.active_list_lock);
|
|
while (!list_empty(&dev_priv->mm.active_list)) {
|
|
struct drm_gem_object *obj;
|
|
struct drm_i915_gem_object *obj_priv;
|
|
|
|
obj_priv = list_first_entry(&dev_priv->mm.active_list,
|
|
struct drm_i915_gem_object,
|
|
list);
|
|
obj = obj_priv->obj;
|
|
|
|
/* If the seqno being retired doesn't match the oldest in the
|
|
* list, then the oldest in the list must still be newer than
|
|
* this seqno.
|
|
*/
|
|
if (obj_priv->last_rendering_seqno != request->seqno)
|
|
goto out;
|
|
|
|
#if WATCH_LRU
|
|
DRM_INFO("%s: retire %d moves to inactive list %p\n",
|
|
__func__, request->seqno, obj);
|
|
#endif
|
|
|
|
if (obj->write_domain != 0)
|
|
i915_gem_object_move_to_flushing(obj);
|
|
else {
|
|
/* Take a reference on the object so it won't be
|
|
* freed while the spinlock is held. The list
|
|
* protection for this spinlock is safe when breaking
|
|
* the lock like this since the next thing we do
|
|
* is just get the head of the list again.
|
|
*/
|
|
drm_gem_object_reference(obj);
|
|
i915_gem_object_move_to_inactive(obj);
|
|
spin_unlock(&dev_priv->mm.active_list_lock);
|
|
drm_gem_object_unreference(obj);
|
|
spin_lock(&dev_priv->mm.active_list_lock);
|
|
}
|
|
}
|
|
out:
|
|
spin_unlock(&dev_priv->mm.active_list_lock);
|
|
}
|
|
|
|
/**
|
|
* Returns true if seq1 is later than seq2.
|
|
*/
|
|
static int
|
|
i915_seqno_passed(uint32_t seq1, uint32_t seq2)
|
|
{
|
|
return (int32_t)(seq1 - seq2) >= 0;
|
|
}
|
|
|
|
uint32_t
|
|
i915_get_gem_seqno(struct drm_device *dev)
|
|
{
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
|
|
return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
|
|
}
|
|
|
|
/**
|
|
* This function clears the request list as sequence numbers are passed.
|
|
*/
|
|
void
|
|
i915_gem_retire_requests(struct drm_device *dev)
|
|
{
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
uint32_t seqno;
|
|
|
|
if (!dev_priv->hw_status_page)
|
|
return;
|
|
|
|
seqno = i915_get_gem_seqno(dev);
|
|
|
|
while (!list_empty(&dev_priv->mm.request_list)) {
|
|
struct drm_i915_gem_request *request;
|
|
uint32_t retiring_seqno;
|
|
|
|
request = list_first_entry(&dev_priv->mm.request_list,
|
|
struct drm_i915_gem_request,
|
|
list);
|
|
retiring_seqno = request->seqno;
|
|
|
|
if (i915_seqno_passed(seqno, retiring_seqno) ||
|
|
dev_priv->mm.wedged) {
|
|
i915_gem_retire_request(dev, request);
|
|
|
|
list_del(&request->list);
|
|
list_del(&request->client_list);
|
|
kfree(request);
|
|
} else
|
|
break;
|
|
}
|
|
}
|
|
|
|
void
|
|
i915_gem_retire_work_handler(struct work_struct *work)
|
|
{
|
|
drm_i915_private_t *dev_priv;
|
|
struct drm_device *dev;
|
|
|
|
dev_priv = container_of(work, drm_i915_private_t,
|
|
mm.retire_work.work);
|
|
dev = dev_priv->dev;
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
i915_gem_retire_requests(dev);
|
|
if (!dev_priv->mm.suspended &&
|
|
!list_empty(&dev_priv->mm.request_list))
|
|
schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
}
|
|
|
|
/**
|
|
* Waits for a sequence number to be signaled, and cleans up the
|
|
* request and object lists appropriately for that event.
|
|
*/
|
|
static int
|
|
i915_wait_request(struct drm_device *dev, uint32_t seqno)
|
|
{
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
u32 ier;
|
|
int ret = 0;
|
|
|
|
BUG_ON(seqno == 0);
|
|
|
|
if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
|
|
if (IS_IGDNG(dev))
|
|
ier = I915_READ(DEIER) | I915_READ(GTIER);
|
|
else
|
|
ier = I915_READ(IER);
|
|
if (!ier) {
|
|
DRM_ERROR("something (likely vbetool) disabled "
|
|
"interrupts, re-enabling\n");
|
|
i915_driver_irq_preinstall(dev);
|
|
i915_driver_irq_postinstall(dev);
|
|
}
|
|
|
|
dev_priv->mm.waiting_gem_seqno = seqno;
|
|
i915_user_irq_get(dev);
|
|
ret = wait_event_interruptible(dev_priv->irq_queue,
|
|
i915_seqno_passed(i915_get_gem_seqno(dev),
|
|
seqno) ||
|
|
dev_priv->mm.wedged);
|
|
i915_user_irq_put(dev);
|
|
dev_priv->mm.waiting_gem_seqno = 0;
|
|
}
|
|
if (dev_priv->mm.wedged)
|
|
ret = -EIO;
|
|
|
|
if (ret && ret != -ERESTARTSYS)
|
|
DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
|
|
__func__, ret, seqno, i915_get_gem_seqno(dev));
|
|
|
|
/* Directly dispatch request retiring. While we have the work queue
|
|
* to handle this, the waiter on a request often wants an associated
|
|
* buffer to have made it to the inactive list, and we would need
|
|
* a separate wait queue to handle that.
|
|
*/
|
|
if (ret == 0)
|
|
i915_gem_retire_requests(dev);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void
|
|
i915_gem_flush(struct drm_device *dev,
|
|
uint32_t invalidate_domains,
|
|
uint32_t flush_domains)
|
|
{
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
uint32_t cmd;
|
|
RING_LOCALS;
|
|
|
|
#if WATCH_EXEC
|
|
DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
|
|
invalidate_domains, flush_domains);
|
|
#endif
|
|
|
|
if (flush_domains & I915_GEM_DOMAIN_CPU)
|
|
drm_agp_chipset_flush(dev);
|
|
|
|
if ((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) {
|
|
/*
|
|
* read/write caches:
|
|
*
|
|
* I915_GEM_DOMAIN_RENDER is always invalidated, but is
|
|
* only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
|
|
* also flushed at 2d versus 3d pipeline switches.
|
|
*
|
|
* read-only caches:
|
|
*
|
|
* I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
|
|
* MI_READ_FLUSH is set, and is always flushed on 965.
|
|
*
|
|
* I915_GEM_DOMAIN_COMMAND may not exist?
|
|
*
|
|
* I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
|
|
* invalidated when MI_EXE_FLUSH is set.
|
|
*
|
|
* I915_GEM_DOMAIN_VERTEX, which exists on 965, is
|
|
* invalidated with every MI_FLUSH.
|
|
*
|
|
* TLBs:
|
|
*
|
|
* On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
|
|
* and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
|
|
* I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
|
|
* are flushed at any MI_FLUSH.
|
|
*/
|
|
|
|
cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
|
|
if ((invalidate_domains|flush_domains) &
|
|
I915_GEM_DOMAIN_RENDER)
|
|
cmd &= ~MI_NO_WRITE_FLUSH;
|
|
if (!IS_I965G(dev)) {
|
|
/*
|
|
* On the 965, the sampler cache always gets flushed
|
|
* and this bit is reserved.
|
|
*/
|
|
if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
|
|
cmd |= MI_READ_FLUSH;
|
|
}
|
|
if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
|
|
cmd |= MI_EXE_FLUSH;
|
|
|
|
#if WATCH_EXEC
|
|
DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
|
|
#endif
|
|
BEGIN_LP_RING(2);
|
|
OUT_RING(cmd);
|
|
OUT_RING(0); /* noop */
|
|
ADVANCE_LP_RING();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Ensures that all rendering to the object has completed and the object is
|
|
* safe to unbind from the GTT or access from the CPU.
|
|
*/
|
|
static int
|
|
i915_gem_object_wait_rendering(struct drm_gem_object *obj)
|
|
{
|
|
struct drm_device *dev = obj->dev;
|
|
struct drm_i915_gem_object *obj_priv = obj->driver_private;
|
|
int ret;
|
|
|
|
/* This function only exists to support waiting for existing rendering,
|
|
* not for emitting required flushes.
|
|
*/
|
|
BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
|
|
|
|
/* If there is rendering queued on the buffer being evicted, wait for
|
|
* it.
|
|
*/
|
|
if (obj_priv->active) {
|
|
#if WATCH_BUF
|
|
DRM_INFO("%s: object %p wait for seqno %08x\n",
|
|
__func__, obj, obj_priv->last_rendering_seqno);
|
|
#endif
|
|
ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
|
|
if (ret != 0)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Unbinds an object from the GTT aperture.
|
|
*/
|
|
int
|
|
i915_gem_object_unbind(struct drm_gem_object *obj)
|
|
{
|
|
struct drm_device *dev = obj->dev;
|
|
struct drm_i915_gem_object *obj_priv = obj->driver_private;
|
|
int ret = 0;
|
|
|
|
#if WATCH_BUF
|
|
DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
|
|
DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
|
|
#endif
|
|
if (obj_priv->gtt_space == NULL)
|
|
return 0;
|
|
|
|
if (obj_priv->pin_count != 0) {
|
|
DRM_ERROR("Attempting to unbind pinned buffer\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Move the object to the CPU domain to ensure that
|
|
* any possible CPU writes while it's not in the GTT
|
|
* are flushed when we go to remap it. This will
|
|
* also ensure that all pending GPU writes are finished
|
|
* before we unbind.
|
|
*/
|
|
ret = i915_gem_object_set_to_cpu_domain(obj, 1);
|
|
if (ret) {
|
|
if (ret != -ERESTARTSYS)
|
|
DRM_ERROR("set_domain failed: %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
if (obj_priv->agp_mem != NULL) {
|
|
drm_unbind_agp(obj_priv->agp_mem);
|
|
drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
|
|
obj_priv->agp_mem = NULL;
|
|
}
|
|
|
|
BUG_ON(obj_priv->active);
|
|
|
|
/* blow away mappings if mapped through GTT */
|
|
i915_gem_release_mmap(obj);
|
|
|
|
if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
|
|
i915_gem_clear_fence_reg(obj);
|
|
|
|
i915_gem_object_put_pages(obj);
|
|
|
|
if (obj_priv->gtt_space) {
|
|
atomic_dec(&dev->gtt_count);
|
|
atomic_sub(obj->size, &dev->gtt_memory);
|
|
|
|
drm_mm_put_block(obj_priv->gtt_space);
|
|
obj_priv->gtt_space = NULL;
|
|
}
|
|
|
|
/* Remove ourselves from the LRU list if present. */
|
|
if (!list_empty(&obj_priv->list))
|
|
list_del_init(&obj_priv->list);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
i915_gem_evict_something(struct drm_device *dev)
|
|
{
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
struct drm_gem_object *obj;
|
|
struct drm_i915_gem_object *obj_priv;
|
|
int ret = 0;
|
|
|
|
for (;;) {
|
|
/* If there's an inactive buffer available now, grab it
|
|
* and be done.
|
|
*/
|
|
if (!list_empty(&dev_priv->mm.inactive_list)) {
|
|
obj_priv = list_first_entry(&dev_priv->mm.inactive_list,
|
|
struct drm_i915_gem_object,
|
|
list);
|
|
obj = obj_priv->obj;
|
|
BUG_ON(obj_priv->pin_count != 0);
|
|
#if WATCH_LRU
|
|
DRM_INFO("%s: evicting %p\n", __func__, obj);
|
|
#endif
|
|
BUG_ON(obj_priv->active);
|
|
|
|
/* Wait on the rendering and unbind the buffer. */
|
|
ret = i915_gem_object_unbind(obj);
|
|
break;
|
|
}
|
|
|
|
/* If we didn't get anything, but the ring is still processing
|
|
* things, wait for one of those things to finish and hopefully
|
|
* leave us a buffer to evict.
|
|
*/
|
|
if (!list_empty(&dev_priv->mm.request_list)) {
|
|
struct drm_i915_gem_request *request;
|
|
|
|
request = list_first_entry(&dev_priv->mm.request_list,
|
|
struct drm_i915_gem_request,
|
|
list);
|
|
|
|
ret = i915_wait_request(dev, request->seqno);
|
|
if (ret)
|
|
break;
|
|
|
|
/* if waiting caused an object to become inactive,
|
|
* then loop around and wait for it. Otherwise, we
|
|
* assume that waiting freed and unbound something,
|
|
* so there should now be some space in the GTT
|
|
*/
|
|
if (!list_empty(&dev_priv->mm.inactive_list))
|
|
continue;
|
|
break;
|
|
}
|
|
|
|
/* If we didn't have anything on the request list but there
|
|
* are buffers awaiting a flush, emit one and try again.
|
|
* When we wait on it, those buffers waiting for that flush
|
|
* will get moved to inactive.
|
|
*/
|
|
if (!list_empty(&dev_priv->mm.flushing_list)) {
|
|
obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
|
|
struct drm_i915_gem_object,
|
|
list);
|
|
obj = obj_priv->obj;
|
|
|
|
i915_gem_flush(dev,
|
|
obj->write_domain,
|
|
obj->write_domain);
|
|
i915_add_request(dev, NULL, obj->write_domain);
|
|
|
|
obj = NULL;
|
|
continue;
|
|
}
|
|
|
|
DRM_ERROR("inactive empty %d request empty %d "
|
|
"flushing empty %d\n",
|
|
list_empty(&dev_priv->mm.inactive_list),
|
|
list_empty(&dev_priv->mm.request_list),
|
|
list_empty(&dev_priv->mm.flushing_list));
|
|
/* If we didn't do any of the above, there's nothing to be done
|
|
* and we just can't fit it in.
|
|
*/
|
|
return -ENOSPC;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
i915_gem_evict_everything(struct drm_device *dev)
|
|
{
|
|
int ret;
|
|
|
|
for (;;) {
|
|
ret = i915_gem_evict_something(dev);
|
|
if (ret != 0)
|
|
break;
|
|
}
|
|
if (ret == -ENOSPC)
|
|
return 0;
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
i915_gem_object_get_pages(struct drm_gem_object *obj)
|
|
{
|
|
struct drm_i915_gem_object *obj_priv = obj->driver_private;
|
|
int page_count, i;
|
|
struct address_space *mapping;
|
|
struct inode *inode;
|
|
struct page *page;
|
|
int ret;
|
|
|
|
if (obj_priv->pages_refcount++ != 0)
|
|
return 0;
|
|
|
|
/* Get the list of pages out of our struct file. They'll be pinned
|
|
* at this point until we release them.
|
|
*/
|
|
page_count = obj->size / PAGE_SIZE;
|
|
BUG_ON(obj_priv->pages != NULL);
|
|
obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
|
|
if (obj_priv->pages == NULL) {
|
|
DRM_ERROR("Faled to allocate page list\n");
|
|
obj_priv->pages_refcount--;
|
|
return -ENOMEM;
|
|
}
|
|
|
|
inode = obj->filp->f_path.dentry->d_inode;
|
|
mapping = inode->i_mapping;
|
|
for (i = 0; i < page_count; i++) {
|
|
page = read_mapping_page(mapping, i, NULL);
|
|
if (IS_ERR(page)) {
|
|
ret = PTR_ERR(page);
|
|
DRM_ERROR("read_mapping_page failed: %d\n", ret);
|
|
i915_gem_object_put_pages(obj);
|
|
return ret;
|
|
}
|
|
obj_priv->pages[i] = page;
|
|
}
|
|
|
|
if (obj_priv->tiling_mode != I915_TILING_NONE)
|
|
i915_gem_object_do_bit_17_swizzle(obj);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
|
|
{
|
|
struct drm_gem_object *obj = reg->obj;
|
|
struct drm_device *dev = obj->dev;
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
struct drm_i915_gem_object *obj_priv = obj->driver_private;
|
|
int regnum = obj_priv->fence_reg;
|
|
uint64_t val;
|
|
|
|
val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
|
|
0xfffff000) << 32;
|
|
val |= obj_priv->gtt_offset & 0xfffff000;
|
|
val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
|
|
if (obj_priv->tiling_mode == I915_TILING_Y)
|
|
val |= 1 << I965_FENCE_TILING_Y_SHIFT;
|
|
val |= I965_FENCE_REG_VALID;
|
|
|
|
I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
|
|
}
|
|
|
|
static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
|
|
{
|
|
struct drm_gem_object *obj = reg->obj;
|
|
struct drm_device *dev = obj->dev;
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
struct drm_i915_gem_object *obj_priv = obj->driver_private;
|
|
int regnum = obj_priv->fence_reg;
|
|
int tile_width;
|
|
uint32_t fence_reg, val;
|
|
uint32_t pitch_val;
|
|
|
|
if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
|
|
(obj_priv->gtt_offset & (obj->size - 1))) {
|
|
WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
|
|
__func__, obj_priv->gtt_offset, obj->size);
|
|
return;
|
|
}
|
|
|
|
if (obj_priv->tiling_mode == I915_TILING_Y &&
|
|
HAS_128_BYTE_Y_TILING(dev))
|
|
tile_width = 128;
|
|
else
|
|
tile_width = 512;
|
|
|
|
/* Note: pitch better be a power of two tile widths */
|
|
pitch_val = obj_priv->stride / tile_width;
|
|
pitch_val = ffs(pitch_val) - 1;
|
|
|
|
val = obj_priv->gtt_offset;
|
|
if (obj_priv->tiling_mode == I915_TILING_Y)
|
|
val |= 1 << I830_FENCE_TILING_Y_SHIFT;
|
|
val |= I915_FENCE_SIZE_BITS(obj->size);
|
|
val |= pitch_val << I830_FENCE_PITCH_SHIFT;
|
|
val |= I830_FENCE_REG_VALID;
|
|
|
|
if (regnum < 8)
|
|
fence_reg = FENCE_REG_830_0 + (regnum * 4);
|
|
else
|
|
fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
|
|
I915_WRITE(fence_reg, val);
|
|
}
|
|
|
|
static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
|
|
{
|
|
struct drm_gem_object *obj = reg->obj;
|
|
struct drm_device *dev = obj->dev;
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
struct drm_i915_gem_object *obj_priv = obj->driver_private;
|
|
int regnum = obj_priv->fence_reg;
|
|
uint32_t val;
|
|
uint32_t pitch_val;
|
|
uint32_t fence_size_bits;
|
|
|
|
if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
|
|
(obj_priv->gtt_offset & (obj->size - 1))) {
|
|
WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
|
|
__func__, obj_priv->gtt_offset);
|
|
return;
|
|
}
|
|
|
|
pitch_val = obj_priv->stride / 128;
|
|
pitch_val = ffs(pitch_val) - 1;
|
|
WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
|
|
|
|
val = obj_priv->gtt_offset;
|
|
if (obj_priv->tiling_mode == I915_TILING_Y)
|
|
val |= 1 << I830_FENCE_TILING_Y_SHIFT;
|
|
fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
|
|
WARN_ON(fence_size_bits & ~0x00000f00);
|
|
val |= fence_size_bits;
|
|
val |= pitch_val << I830_FENCE_PITCH_SHIFT;
|
|
val |= I830_FENCE_REG_VALID;
|
|
|
|
I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
|
|
}
|
|
|
|
/**
|
|
* i915_gem_object_get_fence_reg - set up a fence reg for an object
|
|
* @obj: object to map through a fence reg
|
|
*
|
|
* When mapping objects through the GTT, userspace wants to be able to write
|
|
* to them without having to worry about swizzling if the object is tiled.
|
|
*
|
|
* This function walks the fence regs looking for a free one for @obj,
|
|
* stealing one if it can't find any.
|
|
*
|
|
* It then sets up the reg based on the object's properties: address, pitch
|
|
* and tiling format.
|
|
*/
|
|
int
|
|
i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
|
|
{
|
|
struct drm_device *dev = obj->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct drm_i915_gem_object *obj_priv = obj->driver_private;
|
|
struct drm_i915_fence_reg *reg = NULL;
|
|
struct drm_i915_gem_object *old_obj_priv = NULL;
|
|
int i, ret, avail;
|
|
|
|
switch (obj_priv->tiling_mode) {
|
|
case I915_TILING_NONE:
|
|
WARN(1, "allocating a fence for non-tiled object?\n");
|
|
break;
|
|
case I915_TILING_X:
|
|
if (!obj_priv->stride)
|
|
return -EINVAL;
|
|
WARN((obj_priv->stride & (512 - 1)),
|
|
"object 0x%08x is X tiled but has non-512B pitch\n",
|
|
obj_priv->gtt_offset);
|
|
break;
|
|
case I915_TILING_Y:
|
|
if (!obj_priv->stride)
|
|
return -EINVAL;
|
|
WARN((obj_priv->stride & (128 - 1)),
|
|
"object 0x%08x is Y tiled but has non-128B pitch\n",
|
|
obj_priv->gtt_offset);
|
|
break;
|
|
}
|
|
|
|
/* First try to find a free reg */
|
|
try_again:
|
|
avail = 0;
|
|
for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
|
|
reg = &dev_priv->fence_regs[i];
|
|
if (!reg->obj)
|
|
break;
|
|
|
|
old_obj_priv = reg->obj->driver_private;
|
|
if (!old_obj_priv->pin_count)
|
|
avail++;
|
|
}
|
|
|
|
/* None available, try to steal one or wait for a user to finish */
|
|
if (i == dev_priv->num_fence_regs) {
|
|
uint32_t seqno = dev_priv->mm.next_gem_seqno;
|
|
|
|
if (avail == 0)
|
|
return -ENOSPC;
|
|
|
|
for (i = dev_priv->fence_reg_start;
|
|
i < dev_priv->num_fence_regs; i++) {
|
|
uint32_t this_seqno;
|
|
|
|
reg = &dev_priv->fence_regs[i];
|
|
old_obj_priv = reg->obj->driver_private;
|
|
|
|
if (old_obj_priv->pin_count)
|
|
continue;
|
|
|
|
/* i915 uses fences for GPU access to tiled buffers */
|
|
if (IS_I965G(dev) || !old_obj_priv->active)
|
|
break;
|
|
|
|
/* find the seqno of the first available fence */
|
|
this_seqno = old_obj_priv->last_rendering_seqno;
|
|
if (this_seqno != 0 &&
|
|
reg->obj->write_domain == 0 &&
|
|
i915_seqno_passed(seqno, this_seqno))
|
|
seqno = this_seqno;
|
|
}
|
|
|
|
/*
|
|
* Now things get ugly... we have to wait for one of the
|
|
* objects to finish before trying again.
|
|
*/
|
|
if (i == dev_priv->num_fence_regs) {
|
|
if (seqno == dev_priv->mm.next_gem_seqno) {
|
|
i915_gem_flush(dev,
|
|
I915_GEM_GPU_DOMAINS,
|
|
I915_GEM_GPU_DOMAINS);
|
|
seqno = i915_add_request(dev, NULL,
|
|
I915_GEM_GPU_DOMAINS);
|
|
if (seqno == 0)
|
|
return -ENOMEM;
|
|
}
|
|
|
|
ret = i915_wait_request(dev, seqno);
|
|
if (ret)
|
|
return ret;
|
|
goto try_again;
|
|
}
|
|
|
|
/*
|
|
* Zap this virtual mapping so we can set up a fence again
|
|
* for this object next time we need it.
|
|
*/
|
|
i915_gem_release_mmap(reg->obj);
|
|
old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
|
|
}
|
|
|
|
obj_priv->fence_reg = i;
|
|
reg->obj = obj;
|
|
|
|
if (IS_I965G(dev))
|
|
i965_write_fence_reg(reg);
|
|
else if (IS_I9XX(dev))
|
|
i915_write_fence_reg(reg);
|
|
else
|
|
i830_write_fence_reg(reg);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* i915_gem_clear_fence_reg - clear out fence register info
|
|
* @obj: object to clear
|
|
*
|
|
* Zeroes out the fence register itself and clears out the associated
|
|
* data structures in dev_priv and obj_priv.
|
|
*/
|
|
static void
|
|
i915_gem_clear_fence_reg(struct drm_gem_object *obj)
|
|
{
|
|
struct drm_device *dev = obj->dev;
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
struct drm_i915_gem_object *obj_priv = obj->driver_private;
|
|
|
|
if (IS_I965G(dev))
|
|
I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
|
|
else {
|
|
uint32_t fence_reg;
|
|
|
|
if (obj_priv->fence_reg < 8)
|
|
fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
|
|
else
|
|
fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
|
|
8) * 4;
|
|
|
|
I915_WRITE(fence_reg, 0);
|
|
}
|
|
|
|
dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
|
|
obj_priv->fence_reg = I915_FENCE_REG_NONE;
|
|
}
|
|
|
|
/**
|
|
* i915_gem_object_put_fence_reg - waits on outstanding fenced access
|
|
* to the buffer to finish, and then resets the fence register.
|
|
* @obj: tiled object holding a fence register.
|
|
*
|
|
* Zeroes out the fence register itself and clears out the associated
|
|
* data structures in dev_priv and obj_priv.
|
|
*/
|
|
int
|
|
i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
|
|
{
|
|
struct drm_device *dev = obj->dev;
|
|
struct drm_i915_gem_object *obj_priv = obj->driver_private;
|
|
|
|
if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
|
|
return 0;
|
|
|
|
/* On the i915, GPU access to tiled buffers is via a fence,
|
|
* therefore we must wait for any outstanding access to complete
|
|
* before clearing the fence.
|
|
*/
|
|
if (!IS_I965G(dev)) {
|
|
int ret;
|
|
|
|
i915_gem_object_flush_gpu_write_domain(obj);
|
|
i915_gem_object_flush_gtt_write_domain(obj);
|
|
ret = i915_gem_object_wait_rendering(obj);
|
|
if (ret != 0)
|
|
return ret;
|
|
}
|
|
|
|
i915_gem_clear_fence_reg (obj);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Finds free space in the GTT aperture and binds the object there.
|
|
*/
|
|
static int
|
|
i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
|
|
{
|
|
struct drm_device *dev = obj->dev;
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
struct drm_i915_gem_object *obj_priv = obj->driver_private;
|
|
struct drm_mm_node *free_space;
|
|
int page_count, ret;
|
|
|
|
if (dev_priv->mm.suspended)
|
|
return -EBUSY;
|
|
if (alignment == 0)
|
|
alignment = i915_gem_get_gtt_alignment(obj);
|
|
if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
|
|
DRM_ERROR("Invalid object alignment requested %u\n", alignment);
|
|
return -EINVAL;
|
|
}
|
|
|
|
search_free:
|
|
free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
|
|
obj->size, alignment, 0);
|
|
if (free_space != NULL) {
|
|
obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
|
|
alignment);
|
|
if (obj_priv->gtt_space != NULL) {
|
|
obj_priv->gtt_space->private = obj;
|
|
obj_priv->gtt_offset = obj_priv->gtt_space->start;
|
|
}
|
|
}
|
|
if (obj_priv->gtt_space == NULL) {
|
|
bool lists_empty;
|
|
|
|
/* If the gtt is empty and we're still having trouble
|
|
* fitting our object in, we're out of memory.
|
|
*/
|
|
#if WATCH_LRU
|
|
DRM_INFO("%s: GTT full, evicting something\n", __func__);
|
|
#endif
|
|
spin_lock(&dev_priv->mm.active_list_lock);
|
|
lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
|
|
list_empty(&dev_priv->mm.flushing_list) &&
|
|
list_empty(&dev_priv->mm.active_list));
|
|
spin_unlock(&dev_priv->mm.active_list_lock);
|
|
if (lists_empty) {
|
|
DRM_ERROR("GTT full, but LRU list empty\n");
|
|
return -ENOSPC;
|
|
}
|
|
|
|
ret = i915_gem_evict_something(dev);
|
|
if (ret != 0) {
|
|
if (ret != -ERESTARTSYS)
|
|
DRM_ERROR("Failed to evict a buffer %d\n", ret);
|
|
return ret;
|
|
}
|
|
goto search_free;
|
|
}
|
|
|
|
#if WATCH_BUF
|
|
DRM_INFO("Binding object of size %zd at 0x%08x\n",
|
|
obj->size, obj_priv->gtt_offset);
|
|
#endif
|
|
ret = i915_gem_object_get_pages(obj);
|
|
if (ret) {
|
|
drm_mm_put_block(obj_priv->gtt_space);
|
|
obj_priv->gtt_space = NULL;
|
|
return ret;
|
|
}
|
|
|
|
page_count = obj->size / PAGE_SIZE;
|
|
/* Create an AGP memory structure pointing at our pages, and bind it
|
|
* into the GTT.
|
|
*/
|
|
obj_priv->agp_mem = drm_agp_bind_pages(dev,
|
|
obj_priv->pages,
|
|
page_count,
|
|
obj_priv->gtt_offset,
|
|
obj_priv->agp_type);
|
|
if (obj_priv->agp_mem == NULL) {
|
|
i915_gem_object_put_pages(obj);
|
|
drm_mm_put_block(obj_priv->gtt_space);
|
|
obj_priv->gtt_space = NULL;
|
|
return -ENOMEM;
|
|
}
|
|
atomic_inc(&dev->gtt_count);
|
|
atomic_add(obj->size, &dev->gtt_memory);
|
|
|
|
/* Assert that the object is not currently in any GPU domain. As it
|
|
* wasn't in the GTT, there shouldn't be any way it could have been in
|
|
* a GPU cache
|
|
*/
|
|
BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
|
|
BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
i915_gem_clflush_object(struct drm_gem_object *obj)
|
|
{
|
|
struct drm_i915_gem_object *obj_priv = obj->driver_private;
|
|
|
|
/* If we don't have a page list set up, then we're not pinned
|
|
* to GPU, and we can ignore the cache flush because it'll happen
|
|
* again at bind time.
|
|
*/
|
|
if (obj_priv->pages == NULL)
|
|
return;
|
|
|
|
/* XXX: The 865 in particular appears to be weird in how it handles
|
|
* cache flushing. We haven't figured it out, but the
|
|
* clflush+agp_chipset_flush doesn't appear to successfully get the
|
|
* data visible to the PGU, while wbinvd + agp_chipset_flush does.
|
|
*/
|
|
if (IS_I865G(obj->dev)) {
|
|
wbinvd();
|
|
return;
|
|
}
|
|
|
|
drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
|
|
}
|
|
|
|
/** Flushes any GPU write domain for the object if it's dirty. */
|
|
static void
|
|
i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
|
|
{
|
|
struct drm_device *dev = obj->dev;
|
|
uint32_t seqno;
|
|
|
|
if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
|
|
return;
|
|
|
|
/* Queue the GPU write cache flushing we need. */
|
|
i915_gem_flush(dev, 0, obj->write_domain);
|
|
seqno = i915_add_request(dev, NULL, obj->write_domain);
|
|
obj->write_domain = 0;
|
|
i915_gem_object_move_to_active(obj, seqno);
|
|
}
|
|
|
|
/** Flushes the GTT write domain for the object if it's dirty. */
|
|
static void
|
|
i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
|
|
{
|
|
if (obj->write_domain != I915_GEM_DOMAIN_GTT)
|
|
return;
|
|
|
|
/* No actual flushing is required for the GTT write domain. Writes
|
|
* to it immediately go to main memory as far as we know, so there's
|
|
* no chipset flush. It also doesn't land in render cache.
|
|
*/
|
|
obj->write_domain = 0;
|
|
}
|
|
|
|
/** Flushes the CPU write domain for the object if it's dirty. */
|
|
static void
|
|
i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
|
|
{
|
|
struct drm_device *dev = obj->dev;
|
|
|
|
if (obj->write_domain != I915_GEM_DOMAIN_CPU)
|
|
return;
|
|
|
|
i915_gem_clflush_object(obj);
|
|
drm_agp_chipset_flush(dev);
|
|
obj->write_domain = 0;
|
|
}
|
|
|
|
/**
|
|
* Moves a single object to the GTT read, and possibly write domain.
|
|
*
|
|
* This function returns when the move is complete, including waiting on
|
|
* flushes to occur.
|
|
*/
|
|
int
|
|
i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
|
|
{
|
|
struct drm_i915_gem_object *obj_priv = obj->driver_private;
|
|
int ret;
|
|
|
|
/* Not valid to be called on unbound objects. */
|
|
if (obj_priv->gtt_space == NULL)
|
|
return -EINVAL;
|
|
|
|
i915_gem_object_flush_gpu_write_domain(obj);
|
|
/* Wait on any GPU rendering and flushing to occur. */
|
|
ret = i915_gem_object_wait_rendering(obj);
|
|
if (ret != 0)
|
|
return ret;
|
|
|
|
/* If we're writing through the GTT domain, then CPU and GPU caches
|
|
* will need to be invalidated at next use.
|
|
*/
|
|
if (write)
|
|
obj->read_domains &= I915_GEM_DOMAIN_GTT;
|
|
|
|
i915_gem_object_flush_cpu_write_domain(obj);
|
|
|
|
/* It should now be out of any other write domains, and we can update
|
|
* the domain values for our changes.
|
|
*/
|
|
BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
|
|
obj->read_domains |= I915_GEM_DOMAIN_GTT;
|
|
if (write) {
|
|
obj->write_domain = I915_GEM_DOMAIN_GTT;
|
|
obj_priv->dirty = 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Moves a single object to the CPU read, and possibly write domain.
|
|
*
|
|
* This function returns when the move is complete, including waiting on
|
|
* flushes to occur.
|
|
*/
|
|
static int
|
|
i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
|
|
{
|
|
int ret;
|
|
|
|
i915_gem_object_flush_gpu_write_domain(obj);
|
|
/* Wait on any GPU rendering and flushing to occur. */
|
|
ret = i915_gem_object_wait_rendering(obj);
|
|
if (ret != 0)
|
|
return ret;
|
|
|
|
i915_gem_object_flush_gtt_write_domain(obj);
|
|
|
|
/* If we have a partially-valid cache of the object in the CPU,
|
|
* finish invalidating it and free the per-page flags.
|
|
*/
|
|
i915_gem_object_set_to_full_cpu_read_domain(obj);
|
|
|
|
/* Flush the CPU cache if it's still invalid. */
|
|
if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
|
|
i915_gem_clflush_object(obj);
|
|
|
|
obj->read_domains |= I915_GEM_DOMAIN_CPU;
|
|
}
|
|
|
|
/* It should now be out of any other write domains, and we can update
|
|
* the domain values for our changes.
|
|
*/
|
|
BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
|
|
|
|
/* If we're writing through the CPU, then the GPU read domains will
|
|
* need to be invalidated at next use.
|
|
*/
|
|
if (write) {
|
|
obj->read_domains &= I915_GEM_DOMAIN_CPU;
|
|
obj->write_domain = I915_GEM_DOMAIN_CPU;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Set the next domain for the specified object. This
|
|
* may not actually perform the necessary flushing/invaliding though,
|
|
* as that may want to be batched with other set_domain operations
|
|
*
|
|
* This is (we hope) the only really tricky part of gem. The goal
|
|
* is fairly simple -- track which caches hold bits of the object
|
|
* and make sure they remain coherent. A few concrete examples may
|
|
* help to explain how it works. For shorthand, we use the notation
|
|
* (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
|
|
* a pair of read and write domain masks.
|
|
*
|
|
* Case 1: the batch buffer
|
|
*
|
|
* 1. Allocated
|
|
* 2. Written by CPU
|
|
* 3. Mapped to GTT
|
|
* 4. Read by GPU
|
|
* 5. Unmapped from GTT
|
|
* 6. Freed
|
|
*
|
|
* Let's take these a step at a time
|
|
*
|
|
* 1. Allocated
|
|
* Pages allocated from the kernel may still have
|
|
* cache contents, so we set them to (CPU, CPU) always.
|
|
* 2. Written by CPU (using pwrite)
|
|
* The pwrite function calls set_domain (CPU, CPU) and
|
|
* this function does nothing (as nothing changes)
|
|
* 3. Mapped by GTT
|
|
* This function asserts that the object is not
|
|
* currently in any GPU-based read or write domains
|
|
* 4. Read by GPU
|
|
* i915_gem_execbuffer calls set_domain (COMMAND, 0).
|
|
* As write_domain is zero, this function adds in the
|
|
* current read domains (CPU+COMMAND, 0).
|
|
* flush_domains is set to CPU.
|
|
* invalidate_domains is set to COMMAND
|
|
* clflush is run to get data out of the CPU caches
|
|
* then i915_dev_set_domain calls i915_gem_flush to
|
|
* emit an MI_FLUSH and drm_agp_chipset_flush
|
|
* 5. Unmapped from GTT
|
|
* i915_gem_object_unbind calls set_domain (CPU, CPU)
|
|
* flush_domains and invalidate_domains end up both zero
|
|
* so no flushing/invalidating happens
|
|
* 6. Freed
|
|
* yay, done
|
|
*
|
|
* Case 2: The shared render buffer
|
|
*
|
|
* 1. Allocated
|
|
* 2. Mapped to GTT
|
|
* 3. Read/written by GPU
|
|
* 4. set_domain to (CPU,CPU)
|
|
* 5. Read/written by CPU
|
|
* 6. Read/written by GPU
|
|
*
|
|
* 1. Allocated
|
|
* Same as last example, (CPU, CPU)
|
|
* 2. Mapped to GTT
|
|
* Nothing changes (assertions find that it is not in the GPU)
|
|
* 3. Read/written by GPU
|
|
* execbuffer calls set_domain (RENDER, RENDER)
|
|
* flush_domains gets CPU
|
|
* invalidate_domains gets GPU
|
|
* clflush (obj)
|
|
* MI_FLUSH and drm_agp_chipset_flush
|
|
* 4. set_domain (CPU, CPU)
|
|
* flush_domains gets GPU
|
|
* invalidate_domains gets CPU
|
|
* wait_rendering (obj) to make sure all drawing is complete.
|
|
* This will include an MI_FLUSH to get the data from GPU
|
|
* to memory
|
|
* clflush (obj) to invalidate the CPU cache
|
|
* Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
|
|
* 5. Read/written by CPU
|
|
* cache lines are loaded and dirtied
|
|
* 6. Read written by GPU
|
|
* Same as last GPU access
|
|
*
|
|
* Case 3: The constant buffer
|
|
*
|
|
* 1. Allocated
|
|
* 2. Written by CPU
|
|
* 3. Read by GPU
|
|
* 4. Updated (written) by CPU again
|
|
* 5. Read by GPU
|
|
*
|
|
* 1. Allocated
|
|
* (CPU, CPU)
|
|
* 2. Written by CPU
|
|
* (CPU, CPU)
|
|
* 3. Read by GPU
|
|
* (CPU+RENDER, 0)
|
|
* flush_domains = CPU
|
|
* invalidate_domains = RENDER
|
|
* clflush (obj)
|
|
* MI_FLUSH
|
|
* drm_agp_chipset_flush
|
|
* 4. Updated (written) by CPU again
|
|
* (CPU, CPU)
|
|
* flush_domains = 0 (no previous write domain)
|
|
* invalidate_domains = 0 (no new read domains)
|
|
* 5. Read by GPU
|
|
* (CPU+RENDER, 0)
|
|
* flush_domains = CPU
|
|
* invalidate_domains = RENDER
|
|
* clflush (obj)
|
|
* MI_FLUSH
|
|
* drm_agp_chipset_flush
|
|
*/
|
|
static void
|
|
i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
|
|
{
|
|
struct drm_device *dev = obj->dev;
|
|
struct drm_i915_gem_object *obj_priv = obj->driver_private;
|
|
uint32_t invalidate_domains = 0;
|
|
uint32_t flush_domains = 0;
|
|
|
|
BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
|
|
BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
|
|
|
|
#if WATCH_BUF
|
|
DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
|
|
__func__, obj,
|
|
obj->read_domains, obj->pending_read_domains,
|
|
obj->write_domain, obj->pending_write_domain);
|
|
#endif
|
|
/*
|
|
* If the object isn't moving to a new write domain,
|
|
* let the object stay in multiple read domains
|
|
*/
|
|
if (obj->pending_write_domain == 0)
|
|
obj->pending_read_domains |= obj->read_domains;
|
|
else
|
|
obj_priv->dirty = 1;
|
|
|
|
/*
|
|
* Flush the current write domain if
|
|
* the new read domains don't match. Invalidate
|
|
* any read domains which differ from the old
|
|
* write domain
|
|
*/
|
|
if (obj->write_domain &&
|
|
obj->write_domain != obj->pending_read_domains) {
|
|
flush_domains |= obj->write_domain;
|
|
invalidate_domains |=
|
|
obj->pending_read_domains & ~obj->write_domain;
|
|
}
|
|
/*
|
|
* Invalidate any read caches which may have
|
|
* stale data. That is, any new read domains.
|
|
*/
|
|
invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
|
|
if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
|
|
#if WATCH_BUF
|
|
DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
|
|
__func__, flush_domains, invalidate_domains);
|
|
#endif
|
|
i915_gem_clflush_object(obj);
|
|
}
|
|
|
|
/* The actual obj->write_domain will be updated with
|
|
* pending_write_domain after we emit the accumulated flush for all
|
|
* of our domain changes in execbuffers (which clears objects'
|
|
* write_domains). So if we have a current write domain that we
|
|
* aren't changing, set pending_write_domain to that.
|
|
*/
|
|
if (flush_domains == 0 && obj->pending_write_domain == 0)
|
|
obj->pending_write_domain = obj->write_domain;
|
|
obj->read_domains = obj->pending_read_domains;
|
|
|
|
dev->invalidate_domains |= invalidate_domains;
|
|
dev->flush_domains |= flush_domains;
|
|
#if WATCH_BUF
|
|
DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
|
|
__func__,
|
|
obj->read_domains, obj->write_domain,
|
|
dev->invalidate_domains, dev->flush_domains);
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Moves the object from a partially CPU read to a full one.
|
|
*
|
|
* Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
|
|
* and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
|
|
*/
|
|
static void
|
|
i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
|
|
{
|
|
struct drm_i915_gem_object *obj_priv = obj->driver_private;
|
|
|
|
if (!obj_priv->page_cpu_valid)
|
|
return;
|
|
|
|
/* If we're partially in the CPU read domain, finish moving it in.
|
|
*/
|
|
if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
|
|
int i;
|
|
|
|
for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
|
|
if (obj_priv->page_cpu_valid[i])
|
|
continue;
|
|
drm_clflush_pages(obj_priv->pages + i, 1);
|
|
}
|
|
}
|
|
|
|
/* Free the page_cpu_valid mappings which are now stale, whether
|
|
* or not we've got I915_GEM_DOMAIN_CPU.
|
|
*/
|
|
kfree(obj_priv->page_cpu_valid);
|
|
obj_priv->page_cpu_valid = NULL;
|
|
}
|
|
|
|
/**
|
|
* Set the CPU read domain on a range of the object.
|
|
*
|
|
* The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
|
|
* not entirely valid. The page_cpu_valid member of the object flags which
|
|
* pages have been flushed, and will be respected by
|
|
* i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
|
|
* of the whole object.
|
|
*
|
|
* This function returns when the move is complete, including waiting on
|
|
* flushes to occur.
|
|
*/
|
|
static int
|
|
i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
|
|
uint64_t offset, uint64_t size)
|
|
{
|
|
struct drm_i915_gem_object *obj_priv = obj->driver_private;
|
|
int i, ret;
|
|
|
|
if (offset == 0 && size == obj->size)
|
|
return i915_gem_object_set_to_cpu_domain(obj, 0);
|
|
|
|
i915_gem_object_flush_gpu_write_domain(obj);
|
|
/* Wait on any GPU rendering and flushing to occur. */
|
|
ret = i915_gem_object_wait_rendering(obj);
|
|
if (ret != 0)
|
|
return ret;
|
|
i915_gem_object_flush_gtt_write_domain(obj);
|
|
|
|
/* If we're already fully in the CPU read domain, we're done. */
|
|
if (obj_priv->page_cpu_valid == NULL &&
|
|
(obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
|
|
return 0;
|
|
|
|
/* Otherwise, create/clear the per-page CPU read domain flag if we're
|
|
* newly adding I915_GEM_DOMAIN_CPU
|
|
*/
|
|
if (obj_priv->page_cpu_valid == NULL) {
|
|
obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
|
|
GFP_KERNEL);
|
|
if (obj_priv->page_cpu_valid == NULL)
|
|
return -ENOMEM;
|
|
} else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
|
|
memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
|
|
|
|
/* Flush the cache on any pages that are still invalid from the CPU's
|
|
* perspective.
|
|
*/
|
|
for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
|
|
i++) {
|
|
if (obj_priv->page_cpu_valid[i])
|
|
continue;
|
|
|
|
drm_clflush_pages(obj_priv->pages + i, 1);
|
|
|
|
obj_priv->page_cpu_valid[i] = 1;
|
|
}
|
|
|
|
/* It should now be out of any other write domains, and we can update
|
|
* the domain values for our changes.
|
|
*/
|
|
BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
|
|
|
|
obj->read_domains |= I915_GEM_DOMAIN_CPU;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Pin an object to the GTT and evaluate the relocations landing in it.
|
|
*/
|
|
static int
|
|
i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
|
|
struct drm_file *file_priv,
|
|
struct drm_i915_gem_exec_object *entry,
|
|
struct drm_i915_gem_relocation_entry *relocs)
|
|
{
|
|
struct drm_device *dev = obj->dev;
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
struct drm_i915_gem_object *obj_priv = obj->driver_private;
|
|
int i, ret;
|
|
void __iomem *reloc_page;
|
|
|
|
/* Choose the GTT offset for our buffer and put it there. */
|
|
ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
|
|
if (ret)
|
|
return ret;
|
|
|
|
entry->offset = obj_priv->gtt_offset;
|
|
|
|
/* Apply the relocations, using the GTT aperture to avoid cache
|
|
* flushing requirements.
|
|
*/
|
|
for (i = 0; i < entry->relocation_count; i++) {
|
|
struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
|
|
struct drm_gem_object *target_obj;
|
|
struct drm_i915_gem_object *target_obj_priv;
|
|
uint32_t reloc_val, reloc_offset;
|
|
uint32_t __iomem *reloc_entry;
|
|
|
|
target_obj = drm_gem_object_lookup(obj->dev, file_priv,
|
|
reloc->target_handle);
|
|
if (target_obj == NULL) {
|
|
i915_gem_object_unpin(obj);
|
|
return -EBADF;
|
|
}
|
|
target_obj_priv = target_obj->driver_private;
|
|
|
|
/* The target buffer should have appeared before us in the
|
|
* exec_object list, so it should have a GTT space bound by now.
|
|
*/
|
|
if (target_obj_priv->gtt_space == NULL) {
|
|
DRM_ERROR("No GTT space found for object %d\n",
|
|
reloc->target_handle);
|
|
drm_gem_object_unreference(target_obj);
|
|
i915_gem_object_unpin(obj);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (reloc->offset > obj->size - 4) {
|
|
DRM_ERROR("Relocation beyond object bounds: "
|
|
"obj %p target %d offset %d size %d.\n",
|
|
obj, reloc->target_handle,
|
|
(int) reloc->offset, (int) obj->size);
|
|
drm_gem_object_unreference(target_obj);
|
|
i915_gem_object_unpin(obj);
|
|
return -EINVAL;
|
|
}
|
|
if (reloc->offset & 3) {
|
|
DRM_ERROR("Relocation not 4-byte aligned: "
|
|
"obj %p target %d offset %d.\n",
|
|
obj, reloc->target_handle,
|
|
(int) reloc->offset);
|
|
drm_gem_object_unreference(target_obj);
|
|
i915_gem_object_unpin(obj);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
|
|
reloc->read_domains & I915_GEM_DOMAIN_CPU) {
|
|
DRM_ERROR("reloc with read/write CPU domains: "
|
|
"obj %p target %d offset %d "
|
|
"read %08x write %08x",
|
|
obj, reloc->target_handle,
|
|
(int) reloc->offset,
|
|
reloc->read_domains,
|
|
reloc->write_domain);
|
|
drm_gem_object_unreference(target_obj);
|
|
i915_gem_object_unpin(obj);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (reloc->write_domain && target_obj->pending_write_domain &&
|
|
reloc->write_domain != target_obj->pending_write_domain) {
|
|
DRM_ERROR("Write domain conflict: "
|
|
"obj %p target %d offset %d "
|
|
"new %08x old %08x\n",
|
|
obj, reloc->target_handle,
|
|
(int) reloc->offset,
|
|
reloc->write_domain,
|
|
target_obj->pending_write_domain);
|
|
drm_gem_object_unreference(target_obj);
|
|
i915_gem_object_unpin(obj);
|
|
return -EINVAL;
|
|
}
|
|
|
|
#if WATCH_RELOC
|
|
DRM_INFO("%s: obj %p offset %08x target %d "
|
|
"read %08x write %08x gtt %08x "
|
|
"presumed %08x delta %08x\n",
|
|
__func__,
|
|
obj,
|
|
(int) reloc->offset,
|
|
(int) reloc->target_handle,
|
|
(int) reloc->read_domains,
|
|
(int) reloc->write_domain,
|
|
(int) target_obj_priv->gtt_offset,
|
|
(int) reloc->presumed_offset,
|
|
reloc->delta);
|
|
#endif
|
|
|
|
target_obj->pending_read_domains |= reloc->read_domains;
|
|
target_obj->pending_write_domain |= reloc->write_domain;
|
|
|
|
/* If the relocation already has the right value in it, no
|
|
* more work needs to be done.
|
|
*/
|
|
if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
|
|
drm_gem_object_unreference(target_obj);
|
|
continue;
|
|
}
|
|
|
|
ret = i915_gem_object_set_to_gtt_domain(obj, 1);
|
|
if (ret != 0) {
|
|
drm_gem_object_unreference(target_obj);
|
|
i915_gem_object_unpin(obj);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Map the page containing the relocation we're going to
|
|
* perform.
|
|
*/
|
|
reloc_offset = obj_priv->gtt_offset + reloc->offset;
|
|
reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
|
|
(reloc_offset &
|
|
~(PAGE_SIZE - 1)));
|
|
reloc_entry = (uint32_t __iomem *)(reloc_page +
|
|
(reloc_offset & (PAGE_SIZE - 1)));
|
|
reloc_val = target_obj_priv->gtt_offset + reloc->delta;
|
|
|
|
#if WATCH_BUF
|
|
DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
|
|
obj, (unsigned int) reloc->offset,
|
|
readl(reloc_entry), reloc_val);
|
|
#endif
|
|
writel(reloc_val, reloc_entry);
|
|
io_mapping_unmap_atomic(reloc_page);
|
|
|
|
/* The updated presumed offset for this entry will be
|
|
* copied back out to the user.
|
|
*/
|
|
reloc->presumed_offset = target_obj_priv->gtt_offset;
|
|
|
|
drm_gem_object_unreference(target_obj);
|
|
}
|
|
|
|
#if WATCH_BUF
|
|
if (0)
|
|
i915_gem_dump_object(obj, 128, __func__, ~0);
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
/** Dispatch a batchbuffer to the ring
|
|
*/
|
|
static int
|
|
i915_dispatch_gem_execbuffer(struct drm_device *dev,
|
|
struct drm_i915_gem_execbuffer *exec,
|
|
struct drm_clip_rect *cliprects,
|
|
uint64_t exec_offset)
|
|
{
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
int nbox = exec->num_cliprects;
|
|
int i = 0, count;
|
|
uint32_t exec_start, exec_len;
|
|
RING_LOCALS;
|
|
|
|
exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
|
|
exec_len = (uint32_t) exec->batch_len;
|
|
|
|
count = nbox ? nbox : 1;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
if (i < nbox) {
|
|
int ret = i915_emit_box(dev, cliprects, i,
|
|
exec->DR1, exec->DR4);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
if (IS_I830(dev) || IS_845G(dev)) {
|
|
BEGIN_LP_RING(4);
|
|
OUT_RING(MI_BATCH_BUFFER);
|
|
OUT_RING(exec_start | MI_BATCH_NON_SECURE);
|
|
OUT_RING(exec_start + exec_len - 4);
|
|
OUT_RING(0);
|
|
ADVANCE_LP_RING();
|
|
} else {
|
|
BEGIN_LP_RING(2);
|
|
if (IS_I965G(dev)) {
|
|
OUT_RING(MI_BATCH_BUFFER_START |
|
|
(2 << 6) |
|
|
MI_BATCH_NON_SECURE_I965);
|
|
OUT_RING(exec_start);
|
|
} else {
|
|
OUT_RING(MI_BATCH_BUFFER_START |
|
|
(2 << 6));
|
|
OUT_RING(exec_start | MI_BATCH_NON_SECURE);
|
|
}
|
|
ADVANCE_LP_RING();
|
|
}
|
|
}
|
|
|
|
/* XXX breadcrumb */
|
|
return 0;
|
|
}
|
|
|
|
/* Throttle our rendering by waiting until the ring has completed our requests
|
|
* emitted over 20 msec ago.
|
|
*
|
|
* Note that if we were to use the current jiffies each time around the loop,
|
|
* we wouldn't escape the function with any frames outstanding if the time to
|
|
* render a frame was over 20ms.
|
|
*
|
|
* This should get us reasonable parallelism between CPU and GPU but also
|
|
* relatively low latency when blocking on a particular request to finish.
|
|
*/
|
|
static int
|
|
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
|
|
{
|
|
struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
|
|
int ret = 0;
|
|
unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
while (!list_empty(&i915_file_priv->mm.request_list)) {
|
|
struct drm_i915_gem_request *request;
|
|
|
|
request = list_first_entry(&i915_file_priv->mm.request_list,
|
|
struct drm_i915_gem_request,
|
|
client_list);
|
|
|
|
if (time_after_eq(request->emitted_jiffies, recent_enough))
|
|
break;
|
|
|
|
ret = i915_wait_request(dev, request->seqno);
|
|
if (ret != 0)
|
|
break;
|
|
}
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object *exec_list,
|
|
uint32_t buffer_count,
|
|
struct drm_i915_gem_relocation_entry **relocs)
|
|
{
|
|
uint32_t reloc_count = 0, reloc_index = 0, i;
|
|
int ret;
|
|
|
|
*relocs = NULL;
|
|
for (i = 0; i < buffer_count; i++) {
|
|
if (reloc_count + exec_list[i].relocation_count < reloc_count)
|
|
return -EINVAL;
|
|
reloc_count += exec_list[i].relocation_count;
|
|
}
|
|
|
|
*relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
|
|
if (*relocs == NULL)
|
|
return -ENOMEM;
|
|
|
|
for (i = 0; i < buffer_count; i++) {
|
|
struct drm_i915_gem_relocation_entry __user *user_relocs;
|
|
|
|
user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
|
|
|
|
ret = copy_from_user(&(*relocs)[reloc_index],
|
|
user_relocs,
|
|
exec_list[i].relocation_count *
|
|
sizeof(**relocs));
|
|
if (ret != 0) {
|
|
drm_free_large(*relocs);
|
|
*relocs = NULL;
|
|
return -EFAULT;
|
|
}
|
|
|
|
reloc_index += exec_list[i].relocation_count;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object *exec_list,
|
|
uint32_t buffer_count,
|
|
struct drm_i915_gem_relocation_entry *relocs)
|
|
{
|
|
uint32_t reloc_count = 0, i;
|
|
int ret = 0;
|
|
|
|
for (i = 0; i < buffer_count; i++) {
|
|
struct drm_i915_gem_relocation_entry __user *user_relocs;
|
|
int unwritten;
|
|
|
|
user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
|
|
|
|
unwritten = copy_to_user(user_relocs,
|
|
&relocs[reloc_count],
|
|
exec_list[i].relocation_count *
|
|
sizeof(*relocs));
|
|
|
|
if (unwritten) {
|
|
ret = -EFAULT;
|
|
goto err;
|
|
}
|
|
|
|
reloc_count += exec_list[i].relocation_count;
|
|
}
|
|
|
|
err:
|
|
drm_free_large(relocs);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer *exec,
|
|
uint64_t exec_offset)
|
|
{
|
|
uint32_t exec_start, exec_len;
|
|
|
|
exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
|
|
exec_len = (uint32_t) exec->batch_len;
|
|
|
|
if ((exec_start | exec_len) & 0x7)
|
|
return -EINVAL;
|
|
|
|
if (!exec_start)
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
i915_gem_execbuffer(struct drm_device *dev, void *data,
|
|
struct drm_file *file_priv)
|
|
{
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
struct drm_i915_gem_execbuffer *args = data;
|
|
struct drm_i915_gem_exec_object *exec_list = NULL;
|
|
struct drm_gem_object **object_list = NULL;
|
|
struct drm_gem_object *batch_obj;
|
|
struct drm_i915_gem_object *obj_priv;
|
|
struct drm_clip_rect *cliprects = NULL;
|
|
struct drm_i915_gem_relocation_entry *relocs;
|
|
int ret, ret2, i, pinned = 0;
|
|
uint64_t exec_offset;
|
|
uint32_t seqno, flush_domains, reloc_index;
|
|
int pin_tries;
|
|
|
|
#if WATCH_EXEC
|
|
DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
|
|
(int) args->buffers_ptr, args->buffer_count, args->batch_len);
|
|
#endif
|
|
|
|
if (args->buffer_count < 1) {
|
|
DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
|
|
return -EINVAL;
|
|
}
|
|
/* Copy in the exec list from userland */
|
|
exec_list = drm_calloc_large(sizeof(*exec_list), args->buffer_count);
|
|
object_list = drm_calloc_large(sizeof(*object_list), args->buffer_count);
|
|
if (exec_list == NULL || object_list == NULL) {
|
|
DRM_ERROR("Failed to allocate exec or object list "
|
|
"for %d buffers\n",
|
|
args->buffer_count);
|
|
ret = -ENOMEM;
|
|
goto pre_mutex_err;
|
|
}
|
|
ret = copy_from_user(exec_list,
|
|
(struct drm_i915_relocation_entry __user *)
|
|
(uintptr_t) args->buffers_ptr,
|
|
sizeof(*exec_list) * args->buffer_count);
|
|
if (ret != 0) {
|
|
DRM_ERROR("copy %d exec entries failed %d\n",
|
|
args->buffer_count, ret);
|
|
goto pre_mutex_err;
|
|
}
|
|
|
|
if (args->num_cliprects != 0) {
|
|
cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
|
|
GFP_KERNEL);
|
|
if (cliprects == NULL)
|
|
goto pre_mutex_err;
|
|
|
|
ret = copy_from_user(cliprects,
|
|
(struct drm_clip_rect __user *)
|
|
(uintptr_t) args->cliprects_ptr,
|
|
sizeof(*cliprects) * args->num_cliprects);
|
|
if (ret != 0) {
|
|
DRM_ERROR("copy %d cliprects failed: %d\n",
|
|
args->num_cliprects, ret);
|
|
goto pre_mutex_err;
|
|
}
|
|
}
|
|
|
|
ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
|
|
&relocs);
|
|
if (ret != 0)
|
|
goto pre_mutex_err;
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
|
|
i915_verify_inactive(dev, __FILE__, __LINE__);
|
|
|
|
if (dev_priv->mm.wedged) {
|
|
DRM_ERROR("Execbuf while wedged\n");
|
|
mutex_unlock(&dev->struct_mutex);
|
|
ret = -EIO;
|
|
goto pre_mutex_err;
|
|
}
|
|
|
|
if (dev_priv->mm.suspended) {
|
|
DRM_ERROR("Execbuf while VT-switched.\n");
|
|
mutex_unlock(&dev->struct_mutex);
|
|
ret = -EBUSY;
|
|
goto pre_mutex_err;
|
|
}
|
|
|
|
/* Look up object handles */
|
|
for (i = 0; i < args->buffer_count; i++) {
|
|
object_list[i] = drm_gem_object_lookup(dev, file_priv,
|
|
exec_list[i].handle);
|
|
if (object_list[i] == NULL) {
|
|
DRM_ERROR("Invalid object handle %d at index %d\n",
|
|
exec_list[i].handle, i);
|
|
ret = -EBADF;
|
|
goto err;
|
|
}
|
|
|
|
obj_priv = object_list[i]->driver_private;
|
|
if (obj_priv->in_execbuffer) {
|
|
DRM_ERROR("Object %p appears more than once in object list\n",
|
|
object_list[i]);
|
|
ret = -EBADF;
|
|
goto err;
|
|
}
|
|
obj_priv->in_execbuffer = true;
|
|
}
|
|
|
|
/* Pin and relocate */
|
|
for (pin_tries = 0; ; pin_tries++) {
|
|
ret = 0;
|
|
reloc_index = 0;
|
|
|
|
for (i = 0; i < args->buffer_count; i++) {
|
|
object_list[i]->pending_read_domains = 0;
|
|
object_list[i]->pending_write_domain = 0;
|
|
ret = i915_gem_object_pin_and_relocate(object_list[i],
|
|
file_priv,
|
|
&exec_list[i],
|
|
&relocs[reloc_index]);
|
|
if (ret)
|
|
break;
|
|
pinned = i + 1;
|
|
reloc_index += exec_list[i].relocation_count;
|
|
}
|
|
/* success */
|
|
if (ret == 0)
|
|
break;
|
|
|
|
/* error other than GTT full, or we've already tried again */
|
|
if (ret != -ENOSPC || pin_tries >= 1) {
|
|
if (ret != -ERESTARTSYS)
|
|
DRM_ERROR("Failed to pin buffers %d\n", ret);
|
|
goto err;
|
|
}
|
|
|
|
/* unpin all of our buffers */
|
|
for (i = 0; i < pinned; i++)
|
|
i915_gem_object_unpin(object_list[i]);
|
|
pinned = 0;
|
|
|
|
/* evict everyone we can from the aperture */
|
|
ret = i915_gem_evict_everything(dev);
|
|
if (ret)
|
|
goto err;
|
|
}
|
|
|
|
/* Set the pending read domains for the batch buffer to COMMAND */
|
|
batch_obj = object_list[args->buffer_count-1];
|
|
if (batch_obj->pending_write_domain) {
|
|
DRM_ERROR("Attempting to use self-modifying batch buffer\n");
|
|
ret = -EINVAL;
|
|
goto err;
|
|
}
|
|
batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
|
|
|
|
/* Sanity check the batch buffer, prior to moving objects */
|
|
exec_offset = exec_list[args->buffer_count - 1].offset;
|
|
ret = i915_gem_check_execbuffer (args, exec_offset);
|
|
if (ret != 0) {
|
|
DRM_ERROR("execbuf with invalid offset/length\n");
|
|
goto err;
|
|
}
|
|
|
|
i915_verify_inactive(dev, __FILE__, __LINE__);
|
|
|
|
/* Zero the global flush/invalidate flags. These
|
|
* will be modified as new domains are computed
|
|
* for each object
|
|
*/
|
|
dev->invalidate_domains = 0;
|
|
dev->flush_domains = 0;
|
|
|
|
for (i = 0; i < args->buffer_count; i++) {
|
|
struct drm_gem_object *obj = object_list[i];
|
|
|
|
/* Compute new gpu domains and update invalidate/flush */
|
|
i915_gem_object_set_to_gpu_domain(obj);
|
|
}
|
|
|
|
i915_verify_inactive(dev, __FILE__, __LINE__);
|
|
|
|
if (dev->invalidate_domains | dev->flush_domains) {
|
|
#if WATCH_EXEC
|
|
DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
|
|
__func__,
|
|
dev->invalidate_domains,
|
|
dev->flush_domains);
|
|
#endif
|
|
i915_gem_flush(dev,
|
|
dev->invalidate_domains,
|
|
dev->flush_domains);
|
|
if (dev->flush_domains)
|
|
(void)i915_add_request(dev, file_priv,
|
|
dev->flush_domains);
|
|
}
|
|
|
|
for (i = 0; i < args->buffer_count; i++) {
|
|
struct drm_gem_object *obj = object_list[i];
|
|
|
|
obj->write_domain = obj->pending_write_domain;
|
|
}
|
|
|
|
i915_verify_inactive(dev, __FILE__, __LINE__);
|
|
|
|
#if WATCH_COHERENCY
|
|
for (i = 0; i < args->buffer_count; i++) {
|
|
i915_gem_object_check_coherency(object_list[i],
|
|
exec_list[i].handle);
|
|
}
|
|
#endif
|
|
|
|
#if WATCH_EXEC
|
|
i915_gem_dump_object(batch_obj,
|
|
args->batch_len,
|
|
__func__,
|
|
~0);
|
|
#endif
|
|
|
|
/* Exec the batchbuffer */
|
|
ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
|
|
if (ret) {
|
|
DRM_ERROR("dispatch failed %d\n", ret);
|
|
goto err;
|
|
}
|
|
|
|
/*
|
|
* Ensure that the commands in the batch buffer are
|
|
* finished before the interrupt fires
|
|
*/
|
|
flush_domains = i915_retire_commands(dev);
|
|
|
|
i915_verify_inactive(dev, __FILE__, __LINE__);
|
|
|
|
/*
|
|
* Get a seqno representing the execution of the current buffer,
|
|
* which we can wait on. We would like to mitigate these interrupts,
|
|
* likely by only creating seqnos occasionally (so that we have
|
|
* *some* interrupts representing completion of buffers that we can
|
|
* wait on when trying to clear up gtt space).
|
|
*/
|
|
seqno = i915_add_request(dev, file_priv, flush_domains);
|
|
BUG_ON(seqno == 0);
|
|
for (i = 0; i < args->buffer_count; i++) {
|
|
struct drm_gem_object *obj = object_list[i];
|
|
|
|
i915_gem_object_move_to_active(obj, seqno);
|
|
#if WATCH_LRU
|
|
DRM_INFO("%s: move to exec list %p\n", __func__, obj);
|
|
#endif
|
|
}
|
|
#if WATCH_LRU
|
|
i915_dump_lru(dev, __func__);
|
|
#endif
|
|
|
|
i915_verify_inactive(dev, __FILE__, __LINE__);
|
|
|
|
err:
|
|
for (i = 0; i < pinned; i++)
|
|
i915_gem_object_unpin(object_list[i]);
|
|
|
|
for (i = 0; i < args->buffer_count; i++) {
|
|
if (object_list[i]) {
|
|
obj_priv = object_list[i]->driver_private;
|
|
obj_priv->in_execbuffer = false;
|
|
}
|
|
drm_gem_object_unreference(object_list[i]);
|
|
}
|
|
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
if (!ret) {
|
|
/* Copy the new buffer offsets back to the user's exec list. */
|
|
ret = copy_to_user((struct drm_i915_relocation_entry __user *)
|
|
(uintptr_t) args->buffers_ptr,
|
|
exec_list,
|
|
sizeof(*exec_list) * args->buffer_count);
|
|
if (ret) {
|
|
ret = -EFAULT;
|
|
DRM_ERROR("failed to copy %d exec entries "
|
|
"back to user (%d)\n",
|
|
args->buffer_count, ret);
|
|
}
|
|
}
|
|
|
|
/* Copy the updated relocations out regardless of current error
|
|
* state. Failure to update the relocs would mean that the next
|
|
* time userland calls execbuf, it would do so with presumed offset
|
|
* state that didn't match the actual object state.
|
|
*/
|
|
ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
|
|
relocs);
|
|
if (ret2 != 0) {
|
|
DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
|
|
|
|
if (ret == 0)
|
|
ret = ret2;
|
|
}
|
|
|
|
pre_mutex_err:
|
|
drm_free_large(object_list);
|
|
drm_free_large(exec_list);
|
|
kfree(cliprects);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
|
|
{
|
|
struct drm_device *dev = obj->dev;
|
|
struct drm_i915_gem_object *obj_priv = obj->driver_private;
|
|
int ret;
|
|
|
|
i915_verify_inactive(dev, __FILE__, __LINE__);
|
|
if (obj_priv->gtt_space == NULL) {
|
|
ret = i915_gem_object_bind_to_gtt(obj, alignment);
|
|
if (ret != 0) {
|
|
if (ret != -EBUSY && ret != -ERESTARTSYS)
|
|
DRM_ERROR("Failure to bind: %d\n", ret);
|
|
return ret;
|
|
}
|
|
}
|
|
/*
|
|
* Pre-965 chips need a fence register set up in order to
|
|
* properly handle tiled surfaces.
|
|
*/
|
|
if (!IS_I965G(dev) &&
|
|
obj_priv->fence_reg == I915_FENCE_REG_NONE &&
|
|
obj_priv->tiling_mode != I915_TILING_NONE) {
|
|
ret = i915_gem_object_get_fence_reg(obj);
|
|
if (ret != 0) {
|
|
if (ret != -EBUSY && ret != -ERESTARTSYS)
|
|
DRM_ERROR("Failure to install fence: %d\n",
|
|
ret);
|
|
return ret;
|
|
}
|
|
}
|
|
obj_priv->pin_count++;
|
|
|
|
/* If the object is not active and not pending a flush,
|
|
* remove it from the inactive list
|
|
*/
|
|
if (obj_priv->pin_count == 1) {
|
|
atomic_inc(&dev->pin_count);
|
|
atomic_add(obj->size, &dev->pin_memory);
|
|
if (!obj_priv->active &&
|
|
(obj->write_domain & I915_GEM_GPU_DOMAINS) == 0 &&
|
|
!list_empty(&obj_priv->list))
|
|
list_del_init(&obj_priv->list);
|
|
}
|
|
i915_verify_inactive(dev, __FILE__, __LINE__);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
i915_gem_object_unpin(struct drm_gem_object *obj)
|
|
{
|
|
struct drm_device *dev = obj->dev;
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
struct drm_i915_gem_object *obj_priv = obj->driver_private;
|
|
|
|
i915_verify_inactive(dev, __FILE__, __LINE__);
|
|
obj_priv->pin_count--;
|
|
BUG_ON(obj_priv->pin_count < 0);
|
|
BUG_ON(obj_priv->gtt_space == NULL);
|
|
|
|
/* If the object is no longer pinned, and is
|
|
* neither active nor being flushed, then stick it on
|
|
* the inactive list
|
|
*/
|
|
if (obj_priv->pin_count == 0) {
|
|
if (!obj_priv->active &&
|
|
(obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
|
|
list_move_tail(&obj_priv->list,
|
|
&dev_priv->mm.inactive_list);
|
|
atomic_dec(&dev->pin_count);
|
|
atomic_sub(obj->size, &dev->pin_memory);
|
|
}
|
|
i915_verify_inactive(dev, __FILE__, __LINE__);
|
|
}
|
|
|
|
int
|
|
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file_priv)
|
|
{
|
|
struct drm_i915_gem_pin *args = data;
|
|
struct drm_gem_object *obj;
|
|
struct drm_i915_gem_object *obj_priv;
|
|
int ret;
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
|
|
obj = drm_gem_object_lookup(dev, file_priv, args->handle);
|
|
if (obj == NULL) {
|
|
DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
|
|
args->handle);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return -EBADF;
|
|
}
|
|
obj_priv = obj->driver_private;
|
|
|
|
if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
|
|
DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
|
|
args->handle);
|
|
drm_gem_object_unreference(obj);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return -EINVAL;
|
|
}
|
|
|
|
obj_priv->user_pin_count++;
|
|
obj_priv->pin_filp = file_priv;
|
|
if (obj_priv->user_pin_count == 1) {
|
|
ret = i915_gem_object_pin(obj, args->alignment);
|
|
if (ret != 0) {
|
|
drm_gem_object_unreference(obj);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
/* XXX - flush the CPU caches for pinned objects
|
|
* as the X server doesn't manage domains yet
|
|
*/
|
|
i915_gem_object_flush_cpu_write_domain(obj);
|
|
args->offset = obj_priv->gtt_offset;
|
|
drm_gem_object_unreference(obj);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file_priv)
|
|
{
|
|
struct drm_i915_gem_pin *args = data;
|
|
struct drm_gem_object *obj;
|
|
struct drm_i915_gem_object *obj_priv;
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
|
|
obj = drm_gem_object_lookup(dev, file_priv, args->handle);
|
|
if (obj == NULL) {
|
|
DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
|
|
args->handle);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return -EBADF;
|
|
}
|
|
|
|
obj_priv = obj->driver_private;
|
|
if (obj_priv->pin_filp != file_priv) {
|
|
DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
|
|
args->handle);
|
|
drm_gem_object_unreference(obj);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return -EINVAL;
|
|
}
|
|
obj_priv->user_pin_count--;
|
|
if (obj_priv->user_pin_count == 0) {
|
|
obj_priv->pin_filp = NULL;
|
|
i915_gem_object_unpin(obj);
|
|
}
|
|
|
|
drm_gem_object_unreference(obj);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file_priv)
|
|
{
|
|
struct drm_i915_gem_busy *args = data;
|
|
struct drm_gem_object *obj;
|
|
struct drm_i915_gem_object *obj_priv;
|
|
|
|
obj = drm_gem_object_lookup(dev, file_priv, args->handle);
|
|
if (obj == NULL) {
|
|
DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
|
|
args->handle);
|
|
return -EBADF;
|
|
}
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
/* Update the active list for the hardware's current position.
|
|
* Otherwise this only updates on a delayed timer or when irqs are
|
|
* actually unmasked, and our working set ends up being larger than
|
|
* required.
|
|
*/
|
|
i915_gem_retire_requests(dev);
|
|
|
|
obj_priv = obj->driver_private;
|
|
/* Don't count being on the flushing list against the object being
|
|
* done. Otherwise, a buffer left on the flushing list but not getting
|
|
* flushed (because nobody's flushing that domain) won't ever return
|
|
* unbusy and get reused by libdrm's bo cache. The other expected
|
|
* consumer of this interface, OpenGL's occlusion queries, also specs
|
|
* that the objects get unbusy "eventually" without any interference.
|
|
*/
|
|
args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
|
|
|
|
drm_gem_object_unreference(obj);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file_priv)
|
|
{
|
|
return i915_gem_ring_throttle(dev, file_priv);
|
|
}
|
|
|
|
int i915_gem_init_object(struct drm_gem_object *obj)
|
|
{
|
|
struct drm_i915_gem_object *obj_priv;
|
|
|
|
obj_priv = kzalloc(sizeof(*obj_priv), GFP_KERNEL);
|
|
if (obj_priv == NULL)
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* We've just allocated pages from the kernel,
|
|
* so they've just been written by the CPU with
|
|
* zeros. They'll need to be clflushed before we
|
|
* use them with the GPU.
|
|
*/
|
|
obj->write_domain = I915_GEM_DOMAIN_CPU;
|
|
obj->read_domains = I915_GEM_DOMAIN_CPU;
|
|
|
|
obj_priv->agp_type = AGP_USER_MEMORY;
|
|
|
|
obj->driver_private = obj_priv;
|
|
obj_priv->obj = obj;
|
|
obj_priv->fence_reg = I915_FENCE_REG_NONE;
|
|
INIT_LIST_HEAD(&obj_priv->list);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void i915_gem_free_object(struct drm_gem_object *obj)
|
|
{
|
|
struct drm_device *dev = obj->dev;
|
|
struct drm_i915_gem_object *obj_priv = obj->driver_private;
|
|
|
|
while (obj_priv->pin_count > 0)
|
|
i915_gem_object_unpin(obj);
|
|
|
|
if (obj_priv->phys_obj)
|
|
i915_gem_detach_phys_object(dev, obj);
|
|
|
|
i915_gem_object_unbind(obj);
|
|
|
|
i915_gem_free_mmap_offset(obj);
|
|
|
|
kfree(obj_priv->page_cpu_valid);
|
|
kfree(obj_priv->bit_17);
|
|
kfree(obj->driver_private);
|
|
}
|
|
|
|
/** Unbinds all objects that are on the given buffer list. */
|
|
static int
|
|
i915_gem_evict_from_list(struct drm_device *dev, struct list_head *head)
|
|
{
|
|
struct drm_gem_object *obj;
|
|
struct drm_i915_gem_object *obj_priv;
|
|
int ret;
|
|
|
|
while (!list_empty(head)) {
|
|
obj_priv = list_first_entry(head,
|
|
struct drm_i915_gem_object,
|
|
list);
|
|
obj = obj_priv->obj;
|
|
|
|
if (obj_priv->pin_count != 0) {
|
|
DRM_ERROR("Pinned object in unbind list\n");
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret = i915_gem_object_unbind(obj);
|
|
if (ret != 0) {
|
|
DRM_ERROR("Error unbinding object in LeaveVT: %d\n",
|
|
ret);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
i915_gem_idle(struct drm_device *dev)
|
|
{
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
uint32_t seqno, cur_seqno, last_seqno;
|
|
int stuck, ret;
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
|
|
if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return 0;
|
|
}
|
|
|
|
/* Hack! Don't let anybody do execbuf while we don't control the chip.
|
|
* We need to replace this with a semaphore, or something.
|
|
*/
|
|
dev_priv->mm.suspended = 1;
|
|
|
|
/* Cancel the retire work handler, wait for it to finish if running
|
|
*/
|
|
mutex_unlock(&dev->struct_mutex);
|
|
cancel_delayed_work_sync(&dev_priv->mm.retire_work);
|
|
mutex_lock(&dev->struct_mutex);
|
|
|
|
i915_kernel_lost_context(dev);
|
|
|
|
/* Flush the GPU along with all non-CPU write domains
|
|
*/
|
|
i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
|
|
seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
|
|
|
|
if (seqno == 0) {
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
dev_priv->mm.waiting_gem_seqno = seqno;
|
|
last_seqno = 0;
|
|
stuck = 0;
|
|
for (;;) {
|
|
cur_seqno = i915_get_gem_seqno(dev);
|
|
if (i915_seqno_passed(cur_seqno, seqno))
|
|
break;
|
|
if (last_seqno == cur_seqno) {
|
|
if (stuck++ > 100) {
|
|
DRM_ERROR("hardware wedged\n");
|
|
dev_priv->mm.wedged = 1;
|
|
DRM_WAKEUP(&dev_priv->irq_queue);
|
|
break;
|
|
}
|
|
}
|
|
msleep(10);
|
|
last_seqno = cur_seqno;
|
|
}
|
|
dev_priv->mm.waiting_gem_seqno = 0;
|
|
|
|
i915_gem_retire_requests(dev);
|
|
|
|
spin_lock(&dev_priv->mm.active_list_lock);
|
|
if (!dev_priv->mm.wedged) {
|
|
/* Active and flushing should now be empty as we've
|
|
* waited for a sequence higher than any pending execbuffer
|
|
*/
|
|
WARN_ON(!list_empty(&dev_priv->mm.active_list));
|
|
WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
|
|
/* Request should now be empty as we've also waited
|
|
* for the last request in the list
|
|
*/
|
|
WARN_ON(!list_empty(&dev_priv->mm.request_list));
|
|
}
|
|
|
|
/* Empty the active and flushing lists to inactive. If there's
|
|
* anything left at this point, it means that we're wedged and
|
|
* nothing good's going to happen by leaving them there. So strip
|
|
* the GPU domains and just stuff them onto inactive.
|
|
*/
|
|
while (!list_empty(&dev_priv->mm.active_list)) {
|
|
struct drm_i915_gem_object *obj_priv;
|
|
|
|
obj_priv = list_first_entry(&dev_priv->mm.active_list,
|
|
struct drm_i915_gem_object,
|
|
list);
|
|
obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
|
|
i915_gem_object_move_to_inactive(obj_priv->obj);
|
|
}
|
|
spin_unlock(&dev_priv->mm.active_list_lock);
|
|
|
|
while (!list_empty(&dev_priv->mm.flushing_list)) {
|
|
struct drm_i915_gem_object *obj_priv;
|
|
|
|
obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
|
|
struct drm_i915_gem_object,
|
|
list);
|
|
obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
|
|
i915_gem_object_move_to_inactive(obj_priv->obj);
|
|
}
|
|
|
|
|
|
/* Move all inactive buffers out of the GTT. */
|
|
ret = i915_gem_evict_from_list(dev, &dev_priv->mm.inactive_list);
|
|
WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
|
|
if (ret) {
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return ret;
|
|
}
|
|
|
|
i915_gem_cleanup_ringbuffer(dev);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
i915_gem_init_hws(struct drm_device *dev)
|
|
{
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
struct drm_gem_object *obj;
|
|
struct drm_i915_gem_object *obj_priv;
|
|
int ret;
|
|
|
|
/* If we need a physical address for the status page, it's already
|
|
* initialized at driver load time.
|
|
*/
|
|
if (!I915_NEED_GFX_HWS(dev))
|
|
return 0;
|
|
|
|
obj = drm_gem_object_alloc(dev, 4096);
|
|
if (obj == NULL) {
|
|
DRM_ERROR("Failed to allocate status page\n");
|
|
return -ENOMEM;
|
|
}
|
|
obj_priv = obj->driver_private;
|
|
obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
|
|
|
|
ret = i915_gem_object_pin(obj, 4096);
|
|
if (ret != 0) {
|
|
drm_gem_object_unreference(obj);
|
|
return ret;
|
|
}
|
|
|
|
dev_priv->status_gfx_addr = obj_priv->gtt_offset;
|
|
|
|
dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
|
|
if (dev_priv->hw_status_page == NULL) {
|
|
DRM_ERROR("Failed to map status page.\n");
|
|
memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
|
|
i915_gem_object_unpin(obj);
|
|
drm_gem_object_unreference(obj);
|
|
return -EINVAL;
|
|
}
|
|
dev_priv->hws_obj = obj;
|
|
memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
|
|
I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
|
|
I915_READ(HWS_PGA); /* posting read */
|
|
DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
i915_gem_cleanup_hws(struct drm_device *dev)
|
|
{
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
struct drm_gem_object *obj;
|
|
struct drm_i915_gem_object *obj_priv;
|
|
|
|
if (dev_priv->hws_obj == NULL)
|
|
return;
|
|
|
|
obj = dev_priv->hws_obj;
|
|
obj_priv = obj->driver_private;
|
|
|
|
kunmap(obj_priv->pages[0]);
|
|
i915_gem_object_unpin(obj);
|
|
drm_gem_object_unreference(obj);
|
|
dev_priv->hws_obj = NULL;
|
|
|
|
memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
|
|
dev_priv->hw_status_page = NULL;
|
|
|
|
/* Write high address into HWS_PGA when disabling. */
|
|
I915_WRITE(HWS_PGA, 0x1ffff000);
|
|
}
|
|
|
|
int
|
|
i915_gem_init_ringbuffer(struct drm_device *dev)
|
|
{
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
struct drm_gem_object *obj;
|
|
struct drm_i915_gem_object *obj_priv;
|
|
drm_i915_ring_buffer_t *ring = &dev_priv->ring;
|
|
int ret;
|
|
u32 head;
|
|
|
|
ret = i915_gem_init_hws(dev);
|
|
if (ret != 0)
|
|
return ret;
|
|
|
|
obj = drm_gem_object_alloc(dev, 128 * 1024);
|
|
if (obj == NULL) {
|
|
DRM_ERROR("Failed to allocate ringbuffer\n");
|
|
i915_gem_cleanup_hws(dev);
|
|
return -ENOMEM;
|
|
}
|
|
obj_priv = obj->driver_private;
|
|
|
|
ret = i915_gem_object_pin(obj, 4096);
|
|
if (ret != 0) {
|
|
drm_gem_object_unreference(obj);
|
|
i915_gem_cleanup_hws(dev);
|
|
return ret;
|
|
}
|
|
|
|
/* Set up the kernel mapping for the ring. */
|
|
ring->Size = obj->size;
|
|
ring->tail_mask = obj->size - 1;
|
|
|
|
ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
|
|
ring->map.size = obj->size;
|
|
ring->map.type = 0;
|
|
ring->map.flags = 0;
|
|
ring->map.mtrr = 0;
|
|
|
|
drm_core_ioremap_wc(&ring->map, dev);
|
|
if (ring->map.handle == NULL) {
|
|
DRM_ERROR("Failed to map ringbuffer.\n");
|
|
memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
|
|
i915_gem_object_unpin(obj);
|
|
drm_gem_object_unreference(obj);
|
|
i915_gem_cleanup_hws(dev);
|
|
return -EINVAL;
|
|
}
|
|
ring->ring_obj = obj;
|
|
ring->virtual_start = ring->map.handle;
|
|
|
|
/* Stop the ring if it's running. */
|
|
I915_WRITE(PRB0_CTL, 0);
|
|
I915_WRITE(PRB0_TAIL, 0);
|
|
I915_WRITE(PRB0_HEAD, 0);
|
|
|
|
/* Initialize the ring. */
|
|
I915_WRITE(PRB0_START, obj_priv->gtt_offset);
|
|
head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
|
|
|
|
/* G45 ring initialization fails to reset head to zero */
|
|
if (head != 0) {
|
|
DRM_ERROR("Ring head not reset to zero "
|
|
"ctl %08x head %08x tail %08x start %08x\n",
|
|
I915_READ(PRB0_CTL),
|
|
I915_READ(PRB0_HEAD),
|
|
I915_READ(PRB0_TAIL),
|
|
I915_READ(PRB0_START));
|
|
I915_WRITE(PRB0_HEAD, 0);
|
|
|
|
DRM_ERROR("Ring head forced to zero "
|
|
"ctl %08x head %08x tail %08x start %08x\n",
|
|
I915_READ(PRB0_CTL),
|
|
I915_READ(PRB0_HEAD),
|
|
I915_READ(PRB0_TAIL),
|
|
I915_READ(PRB0_START));
|
|
}
|
|
|
|
I915_WRITE(PRB0_CTL,
|
|
((obj->size - 4096) & RING_NR_PAGES) |
|
|
RING_NO_REPORT |
|
|
RING_VALID);
|
|
|
|
head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
|
|
|
|
/* If the head is still not zero, the ring is dead */
|
|
if (head != 0) {
|
|
DRM_ERROR("Ring initialization failed "
|
|
"ctl %08x head %08x tail %08x start %08x\n",
|
|
I915_READ(PRB0_CTL),
|
|
I915_READ(PRB0_HEAD),
|
|
I915_READ(PRB0_TAIL),
|
|
I915_READ(PRB0_START));
|
|
return -EIO;
|
|
}
|
|
|
|
/* Update our cache of the ring state */
|
|
if (!drm_core_check_feature(dev, DRIVER_MODESET))
|
|
i915_kernel_lost_context(dev);
|
|
else {
|
|
ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
|
|
ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
|
|
ring->space = ring->head - (ring->tail + 8);
|
|
if (ring->space < 0)
|
|
ring->space += ring->Size;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
|
|
{
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
|
|
if (dev_priv->ring.ring_obj == NULL)
|
|
return;
|
|
|
|
drm_core_ioremapfree(&dev_priv->ring.map, dev);
|
|
|
|
i915_gem_object_unpin(dev_priv->ring.ring_obj);
|
|
drm_gem_object_unreference(dev_priv->ring.ring_obj);
|
|
dev_priv->ring.ring_obj = NULL;
|
|
memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
|
|
|
|
i915_gem_cleanup_hws(dev);
|
|
}
|
|
|
|
int
|
|
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file_priv)
|
|
{
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
int ret;
|
|
|
|
if (drm_core_check_feature(dev, DRIVER_MODESET))
|
|
return 0;
|
|
|
|
if (dev_priv->mm.wedged) {
|
|
DRM_ERROR("Reenabling wedged hardware, good luck\n");
|
|
dev_priv->mm.wedged = 0;
|
|
}
|
|
|
|
mutex_lock(&dev->struct_mutex);
|
|
dev_priv->mm.suspended = 0;
|
|
|
|
ret = i915_gem_init_ringbuffer(dev);
|
|
if (ret != 0) {
|
|
mutex_unlock(&dev->struct_mutex);
|
|
return ret;
|
|
}
|
|
|
|
spin_lock(&dev_priv->mm.active_list_lock);
|
|
BUG_ON(!list_empty(&dev_priv->mm.active_list));
|
|
spin_unlock(&dev_priv->mm.active_list_lock);
|
|
|
|
BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
|
|
BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
|
|
BUG_ON(!list_empty(&dev_priv->mm.request_list));
|
|
mutex_unlock(&dev->struct_mutex);
|
|
|
|
drm_irq_install(dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file_priv)
|
|
{
|
|
int ret;
|
|
|
|
if (drm_core_check_feature(dev, DRIVER_MODESET))
|
|
return 0;
|
|
|
|
ret = i915_gem_idle(dev);
|
|
drm_irq_uninstall(dev);
|
|
|
|
return ret;
|
|
}
|
|
|
|
void
|
|
i915_gem_lastclose(struct drm_device *dev)
|
|
{
|
|
int ret;
|
|
|
|
if (drm_core_check_feature(dev, DRIVER_MODESET))
|
|
return;
|
|
|
|
ret = i915_gem_idle(dev);
|
|
if (ret)
|
|
DRM_ERROR("failed to idle hardware: %d\n", ret);
|
|
}
|
|
|
|
void
|
|
i915_gem_load(struct drm_device *dev)
|
|
{
|
|
int i;
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
|
|
spin_lock_init(&dev_priv->mm.active_list_lock);
|
|
INIT_LIST_HEAD(&dev_priv->mm.active_list);
|
|
INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
|
|
INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
|
|
INIT_LIST_HEAD(&dev_priv->mm.request_list);
|
|
INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
|
|
i915_gem_retire_work_handler);
|
|
dev_priv->mm.next_gem_seqno = 1;
|
|
|
|
/* Old X drivers will take 0-2 for front, back, depth buffers */
|
|
dev_priv->fence_reg_start = 3;
|
|
|
|
if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
|
|
dev_priv->num_fence_regs = 16;
|
|
else
|
|
dev_priv->num_fence_regs = 8;
|
|
|
|
/* Initialize fence registers to zero */
|
|
if (IS_I965G(dev)) {
|
|
for (i = 0; i < 16; i++)
|
|
I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
|
|
} else {
|
|
for (i = 0; i < 8; i++)
|
|
I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
|
|
if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
|
|
for (i = 0; i < 8; i++)
|
|
I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
|
|
}
|
|
|
|
i915_gem_detect_bit_6_swizzle(dev);
|
|
}
|
|
|
|
/*
|
|
* Create a physically contiguous memory object for this object
|
|
* e.g. for cursor + overlay regs
|
|
*/
|
|
int i915_gem_init_phys_object(struct drm_device *dev,
|
|
int id, int size)
|
|
{
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
struct drm_i915_gem_phys_object *phys_obj;
|
|
int ret;
|
|
|
|
if (dev_priv->mm.phys_objs[id - 1] || !size)
|
|
return 0;
|
|
|
|
phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
|
|
if (!phys_obj)
|
|
return -ENOMEM;
|
|
|
|
phys_obj->id = id;
|
|
|
|
phys_obj->handle = drm_pci_alloc(dev, size, 0, 0xffffffff);
|
|
if (!phys_obj->handle) {
|
|
ret = -ENOMEM;
|
|
goto kfree_obj;
|
|
}
|
|
#ifdef CONFIG_X86
|
|
set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
|
|
#endif
|
|
|
|
dev_priv->mm.phys_objs[id - 1] = phys_obj;
|
|
|
|
return 0;
|
|
kfree_obj:
|
|
kfree(phys_obj);
|
|
return ret;
|
|
}
|
|
|
|
void i915_gem_free_phys_object(struct drm_device *dev, int id)
|
|
{
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
struct drm_i915_gem_phys_object *phys_obj;
|
|
|
|
if (!dev_priv->mm.phys_objs[id - 1])
|
|
return;
|
|
|
|
phys_obj = dev_priv->mm.phys_objs[id - 1];
|
|
if (phys_obj->cur_obj) {
|
|
i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
|
|
}
|
|
|
|
#ifdef CONFIG_X86
|
|
set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
|
|
#endif
|
|
drm_pci_free(dev, phys_obj->handle);
|
|
kfree(phys_obj);
|
|
dev_priv->mm.phys_objs[id - 1] = NULL;
|
|
}
|
|
|
|
void i915_gem_free_all_phys_object(struct drm_device *dev)
|
|
{
|
|
int i;
|
|
|
|
for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
|
|
i915_gem_free_phys_object(dev, i);
|
|
}
|
|
|
|
void i915_gem_detach_phys_object(struct drm_device *dev,
|
|
struct drm_gem_object *obj)
|
|
{
|
|
struct drm_i915_gem_object *obj_priv;
|
|
int i;
|
|
int ret;
|
|
int page_count;
|
|
|
|
obj_priv = obj->driver_private;
|
|
if (!obj_priv->phys_obj)
|
|
return;
|
|
|
|
ret = i915_gem_object_get_pages(obj);
|
|
if (ret)
|
|
goto out;
|
|
|
|
page_count = obj->size / PAGE_SIZE;
|
|
|
|
for (i = 0; i < page_count; i++) {
|
|
char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
|
|
char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
|
|
|
|
memcpy(dst, src, PAGE_SIZE);
|
|
kunmap_atomic(dst, KM_USER0);
|
|
}
|
|
drm_clflush_pages(obj_priv->pages, page_count);
|
|
drm_agp_chipset_flush(dev);
|
|
|
|
i915_gem_object_put_pages(obj);
|
|
out:
|
|
obj_priv->phys_obj->cur_obj = NULL;
|
|
obj_priv->phys_obj = NULL;
|
|
}
|
|
|
|
int
|
|
i915_gem_attach_phys_object(struct drm_device *dev,
|
|
struct drm_gem_object *obj, int id)
|
|
{
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
struct drm_i915_gem_object *obj_priv;
|
|
int ret = 0;
|
|
int page_count;
|
|
int i;
|
|
|
|
if (id > I915_MAX_PHYS_OBJECT)
|
|
return -EINVAL;
|
|
|
|
obj_priv = obj->driver_private;
|
|
|
|
if (obj_priv->phys_obj) {
|
|
if (obj_priv->phys_obj->id == id)
|
|
return 0;
|
|
i915_gem_detach_phys_object(dev, obj);
|
|
}
|
|
|
|
|
|
/* create a new object */
|
|
if (!dev_priv->mm.phys_objs[id - 1]) {
|
|
ret = i915_gem_init_phys_object(dev, id,
|
|
obj->size);
|
|
if (ret) {
|
|
DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/* bind to the object */
|
|
obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
|
|
obj_priv->phys_obj->cur_obj = obj;
|
|
|
|
ret = i915_gem_object_get_pages(obj);
|
|
if (ret) {
|
|
DRM_ERROR("failed to get page list\n");
|
|
goto out;
|
|
}
|
|
|
|
page_count = obj->size / PAGE_SIZE;
|
|
|
|
for (i = 0; i < page_count; i++) {
|
|
char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
|
|
char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
|
|
|
|
memcpy(dst, src, PAGE_SIZE);
|
|
kunmap_atomic(src, KM_USER0);
|
|
}
|
|
|
|
i915_gem_object_put_pages(obj);
|
|
|
|
return 0;
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
|
|
struct drm_i915_gem_pwrite *args,
|
|
struct drm_file *file_priv)
|
|
{
|
|
struct drm_i915_gem_object *obj_priv = obj->driver_private;
|
|
void *obj_addr;
|
|
int ret;
|
|
char __user *user_data;
|
|
|
|
user_data = (char __user *) (uintptr_t) args->data_ptr;
|
|
obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
|
|
|
|
DRM_DEBUG("obj_addr %p, %lld\n", obj_addr, args->size);
|
|
ret = copy_from_user(obj_addr, user_data, args->size);
|
|
if (ret)
|
|
return -EFAULT;
|
|
|
|
drm_agp_chipset_flush(dev);
|
|
return 0;
|
|
}
|
|
|
|
void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
|
|
{
|
|
struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
|
|
|
|
/* Clean up our request list when the client is going away, so that
|
|
* later retire_requests won't dereference our soon-to-be-gone
|
|
* file_priv.
|
|
*/
|
|
mutex_lock(&dev->struct_mutex);
|
|
while (!list_empty(&i915_file_priv->mm.request_list))
|
|
list_del_init(i915_file_priv->mm.request_list.next);
|
|
mutex_unlock(&dev->struct_mutex);
|
|
}
|