aa6f8dcbab
Unfortunately, we ended up merging an old version of the patch "fix info leak with DMA_FROM_DEVICE" instead of merging the latest one. Christoph (the swiotlb maintainer), he asked me to create an incremental fix (after I have pointed this out the mix up, and asked him for guidance). So here we go. The main differences between what we got and what was agreed are: * swiotlb_sync_single_for_device is also required to do an extra bounce * We decided not to introduce DMA_ATTR_OVERWRITE until we have exploiters * The implantation of DMA_ATTR_OVERWRITE is flawed: DMA_ATTR_OVERWRITE must take precedence over DMA_ATTR_SKIP_CPU_SYNC Thus this patch removes DMA_ATTR_OVERWRITE, and makes swiotlb_sync_single_for_device() bounce unconditionally (that is, also when dir == DMA_TO_DEVICE) in order do avoid synchronising back stale data from the swiotlb buffer. Let me note, that if the size used with dma_sync_* API is less than the size used with dma_[un]map_*, under certain circumstances we may still end up with swiotlb not being transparent. In that sense, this is no perfect fix either. To get this bullet proof, we would have to bounce the entire mapping/bounce buffer. For that we would have to figure out the starting address, and the size of the mapping in swiotlb_sync_single_for_device(). While this does seem possible, there seems to be no firm consensus on how things are supposed to work. Signed-off-by: Halil Pasic <pasic@linux.ibm.com> Fixes: ddbd89deb7d3 ("swiotlb: fix info leak with DMA_FROM_DEVICE") Cc: stable@vger.kernel.org Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
913 lines
24 KiB
C
913 lines
24 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Dynamic DMA mapping support.
|
|
*
|
|
* This implementation is a fallback for platforms that do not support
|
|
* I/O TLBs (aka DMA address translation hardware).
|
|
* Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
|
|
* Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
|
|
* Copyright (C) 2000, 2003 Hewlett-Packard Co
|
|
* David Mosberger-Tang <davidm@hpl.hp.com>
|
|
*
|
|
* 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
|
|
* 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
|
|
* unnecessary i-cache flushing.
|
|
* 04/07/.. ak Better overflow handling. Assorted fixes.
|
|
* 05/09/10 linville Add support for syncing ranges, support syncing for
|
|
* DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
|
|
* 08/12/11 beckyb Add highmem support
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "software IO TLB: " fmt
|
|
|
|
#include <linux/cache.h>
|
|
#include <linux/dma-direct.h>
|
|
#include <linux/dma-map-ops.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/export.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/string.h>
|
|
#include <linux/swiotlb.h>
|
|
#include <linux/pfn.h>
|
|
#include <linux/types.h>
|
|
#include <linux/ctype.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/scatterlist.h>
|
|
#include <linux/cc_platform.h>
|
|
#include <linux/set_memory.h>
|
|
#ifdef CONFIG_DEBUG_FS
|
|
#include <linux/debugfs.h>
|
|
#endif
|
|
#ifdef CONFIG_DMA_RESTRICTED_POOL
|
|
#include <linux/io.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_fdt.h>
|
|
#include <linux/of_reserved_mem.h>
|
|
#include <linux/slab.h>
|
|
#endif
|
|
|
|
#include <asm/io.h>
|
|
#include <asm/dma.h>
|
|
|
|
#include <linux/io.h>
|
|
#include <linux/init.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/iommu-helper.h>
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
#include <trace/events/swiotlb.h>
|
|
|
|
#define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
|
|
|
|
/*
|
|
* Minimum IO TLB size to bother booting with. Systems with mainly
|
|
* 64bit capable cards will only lightly use the swiotlb. If we can't
|
|
* allocate a contiguous 1MB, we're probably in trouble anyway.
|
|
*/
|
|
#define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
|
|
|
|
#define INVALID_PHYS_ADDR (~(phys_addr_t)0)
|
|
|
|
enum swiotlb_force swiotlb_force;
|
|
|
|
struct io_tlb_mem io_tlb_default_mem;
|
|
|
|
phys_addr_t swiotlb_unencrypted_base;
|
|
|
|
/*
|
|
* Max segment that we can provide which (if pages are contingous) will
|
|
* not be bounced (unless SWIOTLB_FORCE is set).
|
|
*/
|
|
static unsigned int max_segment;
|
|
|
|
static unsigned long default_nslabs = IO_TLB_DEFAULT_SIZE >> IO_TLB_SHIFT;
|
|
|
|
static int __init
|
|
setup_io_tlb_npages(char *str)
|
|
{
|
|
if (isdigit(*str)) {
|
|
/* avoid tail segment of size < IO_TLB_SEGSIZE */
|
|
default_nslabs =
|
|
ALIGN(simple_strtoul(str, &str, 0), IO_TLB_SEGSIZE);
|
|
}
|
|
if (*str == ',')
|
|
++str;
|
|
if (!strcmp(str, "force"))
|
|
swiotlb_force = SWIOTLB_FORCE;
|
|
else if (!strcmp(str, "noforce"))
|
|
swiotlb_force = SWIOTLB_NO_FORCE;
|
|
|
|
return 0;
|
|
}
|
|
early_param("swiotlb", setup_io_tlb_npages);
|
|
|
|
unsigned int swiotlb_max_segment(void)
|
|
{
|
|
return io_tlb_default_mem.nslabs ? max_segment : 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(swiotlb_max_segment);
|
|
|
|
void swiotlb_set_max_segment(unsigned int val)
|
|
{
|
|
if (swiotlb_force == SWIOTLB_FORCE)
|
|
max_segment = 1;
|
|
else
|
|
max_segment = rounddown(val, PAGE_SIZE);
|
|
}
|
|
|
|
unsigned long swiotlb_size_or_default(void)
|
|
{
|
|
return default_nslabs << IO_TLB_SHIFT;
|
|
}
|
|
|
|
void __init swiotlb_adjust_size(unsigned long size)
|
|
{
|
|
/*
|
|
* If swiotlb parameter has not been specified, give a chance to
|
|
* architectures such as those supporting memory encryption to
|
|
* adjust/expand SWIOTLB size for their use.
|
|
*/
|
|
if (default_nslabs != IO_TLB_DEFAULT_SIZE >> IO_TLB_SHIFT)
|
|
return;
|
|
size = ALIGN(size, IO_TLB_SIZE);
|
|
default_nslabs = ALIGN(size >> IO_TLB_SHIFT, IO_TLB_SEGSIZE);
|
|
pr_info("SWIOTLB bounce buffer size adjusted to %luMB", size >> 20);
|
|
}
|
|
|
|
void swiotlb_print_info(void)
|
|
{
|
|
struct io_tlb_mem *mem = &io_tlb_default_mem;
|
|
|
|
if (!mem->nslabs) {
|
|
pr_warn("No low mem\n");
|
|
return;
|
|
}
|
|
|
|
pr_info("mapped [mem %pa-%pa] (%luMB)\n", &mem->start, &mem->end,
|
|
(mem->nslabs << IO_TLB_SHIFT) >> 20);
|
|
}
|
|
|
|
static inline unsigned long io_tlb_offset(unsigned long val)
|
|
{
|
|
return val & (IO_TLB_SEGSIZE - 1);
|
|
}
|
|
|
|
static inline unsigned long nr_slots(u64 val)
|
|
{
|
|
return DIV_ROUND_UP(val, IO_TLB_SIZE);
|
|
}
|
|
|
|
/*
|
|
* Remap swioltb memory in the unencrypted physical address space
|
|
* when swiotlb_unencrypted_base is set. (e.g. for Hyper-V AMD SEV-SNP
|
|
* Isolation VMs).
|
|
*/
|
|
#ifdef CONFIG_HAS_IOMEM
|
|
static void *swiotlb_mem_remap(struct io_tlb_mem *mem, unsigned long bytes)
|
|
{
|
|
void *vaddr = NULL;
|
|
|
|
if (swiotlb_unencrypted_base) {
|
|
phys_addr_t paddr = mem->start + swiotlb_unencrypted_base;
|
|
|
|
vaddr = memremap(paddr, bytes, MEMREMAP_WB);
|
|
if (!vaddr)
|
|
pr_err("Failed to map the unencrypted memory %pa size %lx.\n",
|
|
&paddr, bytes);
|
|
}
|
|
|
|
return vaddr;
|
|
}
|
|
#else
|
|
static void *swiotlb_mem_remap(struct io_tlb_mem *mem, unsigned long bytes)
|
|
{
|
|
return NULL;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Early SWIOTLB allocation may be too early to allow an architecture to
|
|
* perform the desired operations. This function allows the architecture to
|
|
* call SWIOTLB when the operations are possible. It needs to be called
|
|
* before the SWIOTLB memory is used.
|
|
*/
|
|
void __init swiotlb_update_mem_attributes(void)
|
|
{
|
|
struct io_tlb_mem *mem = &io_tlb_default_mem;
|
|
void *vaddr;
|
|
unsigned long bytes;
|
|
|
|
if (!mem->nslabs || mem->late_alloc)
|
|
return;
|
|
vaddr = phys_to_virt(mem->start);
|
|
bytes = PAGE_ALIGN(mem->nslabs << IO_TLB_SHIFT);
|
|
set_memory_decrypted((unsigned long)vaddr, bytes >> PAGE_SHIFT);
|
|
|
|
mem->vaddr = swiotlb_mem_remap(mem, bytes);
|
|
if (!mem->vaddr)
|
|
mem->vaddr = vaddr;
|
|
|
|
memset(mem->vaddr, 0, bytes);
|
|
}
|
|
|
|
static void swiotlb_init_io_tlb_mem(struct io_tlb_mem *mem, phys_addr_t start,
|
|
unsigned long nslabs, bool late_alloc)
|
|
{
|
|
void *vaddr = phys_to_virt(start);
|
|
unsigned long bytes = nslabs << IO_TLB_SHIFT, i;
|
|
|
|
mem->nslabs = nslabs;
|
|
mem->start = start;
|
|
mem->end = mem->start + bytes;
|
|
mem->index = 0;
|
|
mem->late_alloc = late_alloc;
|
|
|
|
if (swiotlb_force == SWIOTLB_FORCE)
|
|
mem->force_bounce = true;
|
|
|
|
spin_lock_init(&mem->lock);
|
|
for (i = 0; i < mem->nslabs; i++) {
|
|
mem->slots[i].list = IO_TLB_SEGSIZE - io_tlb_offset(i);
|
|
mem->slots[i].orig_addr = INVALID_PHYS_ADDR;
|
|
mem->slots[i].alloc_size = 0;
|
|
}
|
|
|
|
/*
|
|
* If swiotlb_unencrypted_base is set, the bounce buffer memory will
|
|
* be remapped and cleared in swiotlb_update_mem_attributes.
|
|
*/
|
|
if (swiotlb_unencrypted_base)
|
|
return;
|
|
|
|
memset(vaddr, 0, bytes);
|
|
mem->vaddr = vaddr;
|
|
return;
|
|
}
|
|
|
|
int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
|
|
{
|
|
struct io_tlb_mem *mem = &io_tlb_default_mem;
|
|
size_t alloc_size;
|
|
|
|
if (swiotlb_force == SWIOTLB_NO_FORCE)
|
|
return 0;
|
|
|
|
/* protect against double initialization */
|
|
if (WARN_ON_ONCE(mem->nslabs))
|
|
return -ENOMEM;
|
|
|
|
alloc_size = PAGE_ALIGN(array_size(sizeof(*mem->slots), nslabs));
|
|
mem->slots = memblock_alloc(alloc_size, PAGE_SIZE);
|
|
if (!mem->slots)
|
|
panic("%s: Failed to allocate %zu bytes align=0x%lx\n",
|
|
__func__, alloc_size, PAGE_SIZE);
|
|
|
|
swiotlb_init_io_tlb_mem(mem, __pa(tlb), nslabs, false);
|
|
|
|
if (verbose)
|
|
swiotlb_print_info();
|
|
swiotlb_set_max_segment(mem->nslabs << IO_TLB_SHIFT);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Statically reserve bounce buffer space and initialize bounce buffer data
|
|
* structures for the software IO TLB used to implement the DMA API.
|
|
*/
|
|
void __init
|
|
swiotlb_init(int verbose)
|
|
{
|
|
size_t bytes = PAGE_ALIGN(default_nslabs << IO_TLB_SHIFT);
|
|
void *tlb;
|
|
|
|
if (swiotlb_force == SWIOTLB_NO_FORCE)
|
|
return;
|
|
|
|
/* Get IO TLB memory from the low pages */
|
|
tlb = memblock_alloc_low(bytes, PAGE_SIZE);
|
|
if (!tlb)
|
|
goto fail;
|
|
if (swiotlb_init_with_tbl(tlb, default_nslabs, verbose))
|
|
goto fail_free_mem;
|
|
return;
|
|
|
|
fail_free_mem:
|
|
memblock_free(tlb, bytes);
|
|
fail:
|
|
pr_warn("Cannot allocate buffer");
|
|
}
|
|
|
|
/*
|
|
* Systems with larger DMA zones (those that don't support ISA) can
|
|
* initialize the swiotlb later using the slab allocator if needed.
|
|
* This should be just like above, but with some error catching.
|
|
*/
|
|
int
|
|
swiotlb_late_init_with_default_size(size_t default_size)
|
|
{
|
|
unsigned long nslabs =
|
|
ALIGN(default_size >> IO_TLB_SHIFT, IO_TLB_SEGSIZE);
|
|
unsigned long bytes;
|
|
unsigned char *vstart = NULL;
|
|
unsigned int order;
|
|
int rc = 0;
|
|
|
|
if (swiotlb_force == SWIOTLB_NO_FORCE)
|
|
return 0;
|
|
|
|
/*
|
|
* Get IO TLB memory from the low pages
|
|
*/
|
|
order = get_order(nslabs << IO_TLB_SHIFT);
|
|
nslabs = SLABS_PER_PAGE << order;
|
|
bytes = nslabs << IO_TLB_SHIFT;
|
|
|
|
while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
|
|
vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
|
|
order);
|
|
if (vstart)
|
|
break;
|
|
order--;
|
|
}
|
|
|
|
if (!vstart)
|
|
return -ENOMEM;
|
|
|
|
if (order != get_order(bytes)) {
|
|
pr_warn("only able to allocate %ld MB\n",
|
|
(PAGE_SIZE << order) >> 20);
|
|
nslabs = SLABS_PER_PAGE << order;
|
|
}
|
|
rc = swiotlb_late_init_with_tbl(vstart, nslabs);
|
|
if (rc)
|
|
free_pages((unsigned long)vstart, order);
|
|
|
|
return rc;
|
|
}
|
|
|
|
int
|
|
swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs)
|
|
{
|
|
struct io_tlb_mem *mem = &io_tlb_default_mem;
|
|
unsigned long bytes = nslabs << IO_TLB_SHIFT;
|
|
|
|
if (swiotlb_force == SWIOTLB_NO_FORCE)
|
|
return 0;
|
|
|
|
/* protect against double initialization */
|
|
if (WARN_ON_ONCE(mem->nslabs))
|
|
return -ENOMEM;
|
|
|
|
mem->slots = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
|
|
get_order(array_size(sizeof(*mem->slots), nslabs)));
|
|
if (!mem->slots)
|
|
return -ENOMEM;
|
|
|
|
set_memory_decrypted((unsigned long)tlb, bytes >> PAGE_SHIFT);
|
|
swiotlb_init_io_tlb_mem(mem, virt_to_phys(tlb), nslabs, true);
|
|
|
|
swiotlb_print_info();
|
|
swiotlb_set_max_segment(mem->nslabs << IO_TLB_SHIFT);
|
|
return 0;
|
|
}
|
|
|
|
void __init swiotlb_exit(void)
|
|
{
|
|
struct io_tlb_mem *mem = &io_tlb_default_mem;
|
|
unsigned long tbl_vaddr;
|
|
size_t tbl_size, slots_size;
|
|
|
|
if (!mem->nslabs)
|
|
return;
|
|
|
|
pr_info("tearing down default memory pool\n");
|
|
tbl_vaddr = (unsigned long)phys_to_virt(mem->start);
|
|
tbl_size = PAGE_ALIGN(mem->end - mem->start);
|
|
slots_size = PAGE_ALIGN(array_size(sizeof(*mem->slots), mem->nslabs));
|
|
|
|
set_memory_encrypted(tbl_vaddr, tbl_size >> PAGE_SHIFT);
|
|
if (mem->late_alloc) {
|
|
free_pages(tbl_vaddr, get_order(tbl_size));
|
|
free_pages((unsigned long)mem->slots, get_order(slots_size));
|
|
} else {
|
|
memblock_free_late(mem->start, tbl_size);
|
|
memblock_free_late(__pa(mem->slots), slots_size);
|
|
}
|
|
|
|
memset(mem, 0, sizeof(*mem));
|
|
}
|
|
|
|
/*
|
|
* Return the offset into a iotlb slot required to keep the device happy.
|
|
*/
|
|
static unsigned int swiotlb_align_offset(struct device *dev, u64 addr)
|
|
{
|
|
return addr & dma_get_min_align_mask(dev) & (IO_TLB_SIZE - 1);
|
|
}
|
|
|
|
/*
|
|
* Bounce: copy the swiotlb buffer from or back to the original dma location
|
|
*/
|
|
static void swiotlb_bounce(struct device *dev, phys_addr_t tlb_addr, size_t size,
|
|
enum dma_data_direction dir)
|
|
{
|
|
struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
|
|
int index = (tlb_addr - mem->start) >> IO_TLB_SHIFT;
|
|
phys_addr_t orig_addr = mem->slots[index].orig_addr;
|
|
size_t alloc_size = mem->slots[index].alloc_size;
|
|
unsigned long pfn = PFN_DOWN(orig_addr);
|
|
unsigned char *vaddr = mem->vaddr + tlb_addr - mem->start;
|
|
unsigned int tlb_offset, orig_addr_offset;
|
|
|
|
if (orig_addr == INVALID_PHYS_ADDR)
|
|
return;
|
|
|
|
tlb_offset = tlb_addr & (IO_TLB_SIZE - 1);
|
|
orig_addr_offset = swiotlb_align_offset(dev, orig_addr);
|
|
if (tlb_offset < orig_addr_offset) {
|
|
dev_WARN_ONCE(dev, 1,
|
|
"Access before mapping start detected. orig offset %u, requested offset %u.\n",
|
|
orig_addr_offset, tlb_offset);
|
|
return;
|
|
}
|
|
|
|
tlb_offset -= orig_addr_offset;
|
|
if (tlb_offset > alloc_size) {
|
|
dev_WARN_ONCE(dev, 1,
|
|
"Buffer overflow detected. Allocation size: %zu. Mapping size: %zu+%u.\n",
|
|
alloc_size, size, tlb_offset);
|
|
return;
|
|
}
|
|
|
|
orig_addr += tlb_offset;
|
|
alloc_size -= tlb_offset;
|
|
|
|
if (size > alloc_size) {
|
|
dev_WARN_ONCE(dev, 1,
|
|
"Buffer overflow detected. Allocation size: %zu. Mapping size: %zu.\n",
|
|
alloc_size, size);
|
|
size = alloc_size;
|
|
}
|
|
|
|
if (PageHighMem(pfn_to_page(pfn))) {
|
|
/* The buffer does not have a mapping. Map it in and copy */
|
|
unsigned int offset = orig_addr & ~PAGE_MASK;
|
|
char *buffer;
|
|
unsigned int sz = 0;
|
|
unsigned long flags;
|
|
|
|
while (size) {
|
|
sz = min_t(size_t, PAGE_SIZE - offset, size);
|
|
|
|
local_irq_save(flags);
|
|
buffer = kmap_atomic(pfn_to_page(pfn));
|
|
if (dir == DMA_TO_DEVICE)
|
|
memcpy(vaddr, buffer + offset, sz);
|
|
else
|
|
memcpy(buffer + offset, vaddr, sz);
|
|
kunmap_atomic(buffer);
|
|
local_irq_restore(flags);
|
|
|
|
size -= sz;
|
|
pfn++;
|
|
vaddr += sz;
|
|
offset = 0;
|
|
}
|
|
} else if (dir == DMA_TO_DEVICE) {
|
|
memcpy(vaddr, phys_to_virt(orig_addr), size);
|
|
} else {
|
|
memcpy(phys_to_virt(orig_addr), vaddr, size);
|
|
}
|
|
}
|
|
|
|
#define slot_addr(start, idx) ((start) + ((idx) << IO_TLB_SHIFT))
|
|
|
|
/*
|
|
* Carefully handle integer overflow which can occur when boundary_mask == ~0UL.
|
|
*/
|
|
static inline unsigned long get_max_slots(unsigned long boundary_mask)
|
|
{
|
|
if (boundary_mask == ~0UL)
|
|
return 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
|
|
return nr_slots(boundary_mask + 1);
|
|
}
|
|
|
|
static unsigned int wrap_index(struct io_tlb_mem *mem, unsigned int index)
|
|
{
|
|
if (index >= mem->nslabs)
|
|
return 0;
|
|
return index;
|
|
}
|
|
|
|
/*
|
|
* Find a suitable number of IO TLB entries size that will fit this request and
|
|
* allocate a buffer from that IO TLB pool.
|
|
*/
|
|
static int swiotlb_find_slots(struct device *dev, phys_addr_t orig_addr,
|
|
size_t alloc_size, unsigned int alloc_align_mask)
|
|
{
|
|
struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
|
|
unsigned long boundary_mask = dma_get_seg_boundary(dev);
|
|
dma_addr_t tbl_dma_addr =
|
|
phys_to_dma_unencrypted(dev, mem->start) & boundary_mask;
|
|
unsigned long max_slots = get_max_slots(boundary_mask);
|
|
unsigned int iotlb_align_mask =
|
|
dma_get_min_align_mask(dev) & ~(IO_TLB_SIZE - 1);
|
|
unsigned int nslots = nr_slots(alloc_size), stride;
|
|
unsigned int index, wrap, count = 0, i;
|
|
unsigned int offset = swiotlb_align_offset(dev, orig_addr);
|
|
unsigned long flags;
|
|
|
|
BUG_ON(!nslots);
|
|
|
|
/*
|
|
* For mappings with an alignment requirement don't bother looping to
|
|
* unaligned slots once we found an aligned one. For allocations of
|
|
* PAGE_SIZE or larger only look for page aligned allocations.
|
|
*/
|
|
stride = (iotlb_align_mask >> IO_TLB_SHIFT) + 1;
|
|
if (alloc_size >= PAGE_SIZE)
|
|
stride = max(stride, stride << (PAGE_SHIFT - IO_TLB_SHIFT));
|
|
stride = max(stride, (alloc_align_mask >> IO_TLB_SHIFT) + 1);
|
|
|
|
spin_lock_irqsave(&mem->lock, flags);
|
|
if (unlikely(nslots > mem->nslabs - mem->used))
|
|
goto not_found;
|
|
|
|
index = wrap = wrap_index(mem, ALIGN(mem->index, stride));
|
|
do {
|
|
if (orig_addr &&
|
|
(slot_addr(tbl_dma_addr, index) & iotlb_align_mask) !=
|
|
(orig_addr & iotlb_align_mask)) {
|
|
index = wrap_index(mem, index + 1);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* If we find a slot that indicates we have 'nslots' number of
|
|
* contiguous buffers, we allocate the buffers from that slot
|
|
* and mark the entries as '0' indicating unavailable.
|
|
*/
|
|
if (!iommu_is_span_boundary(index, nslots,
|
|
nr_slots(tbl_dma_addr),
|
|
max_slots)) {
|
|
if (mem->slots[index].list >= nslots)
|
|
goto found;
|
|
}
|
|
index = wrap_index(mem, index + stride);
|
|
} while (index != wrap);
|
|
|
|
not_found:
|
|
spin_unlock_irqrestore(&mem->lock, flags);
|
|
return -1;
|
|
|
|
found:
|
|
for (i = index; i < index + nslots; i++) {
|
|
mem->slots[i].list = 0;
|
|
mem->slots[i].alloc_size =
|
|
alloc_size - (offset + ((i - index) << IO_TLB_SHIFT));
|
|
}
|
|
for (i = index - 1;
|
|
io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 &&
|
|
mem->slots[i].list; i--)
|
|
mem->slots[i].list = ++count;
|
|
|
|
/*
|
|
* Update the indices to avoid searching in the next round.
|
|
*/
|
|
if (index + nslots < mem->nslabs)
|
|
mem->index = index + nslots;
|
|
else
|
|
mem->index = 0;
|
|
mem->used += nslots;
|
|
|
|
spin_unlock_irqrestore(&mem->lock, flags);
|
|
return index;
|
|
}
|
|
|
|
phys_addr_t swiotlb_tbl_map_single(struct device *dev, phys_addr_t orig_addr,
|
|
size_t mapping_size, size_t alloc_size,
|
|
unsigned int alloc_align_mask, enum dma_data_direction dir,
|
|
unsigned long attrs)
|
|
{
|
|
struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
|
|
unsigned int offset = swiotlb_align_offset(dev, orig_addr);
|
|
unsigned int i;
|
|
int index;
|
|
phys_addr_t tlb_addr;
|
|
|
|
if (!mem)
|
|
panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
|
|
|
|
if (cc_platform_has(CC_ATTR_MEM_ENCRYPT))
|
|
pr_warn_once("Memory encryption is active and system is using DMA bounce buffers\n");
|
|
|
|
if (mapping_size > alloc_size) {
|
|
dev_warn_once(dev, "Invalid sizes (mapping: %zd bytes, alloc: %zd bytes)",
|
|
mapping_size, alloc_size);
|
|
return (phys_addr_t)DMA_MAPPING_ERROR;
|
|
}
|
|
|
|
index = swiotlb_find_slots(dev, orig_addr,
|
|
alloc_size + offset, alloc_align_mask);
|
|
if (index == -1) {
|
|
if (!(attrs & DMA_ATTR_NO_WARN))
|
|
dev_warn_ratelimited(dev,
|
|
"swiotlb buffer is full (sz: %zd bytes), total %lu (slots), used %lu (slots)\n",
|
|
alloc_size, mem->nslabs, mem->used);
|
|
return (phys_addr_t)DMA_MAPPING_ERROR;
|
|
}
|
|
|
|
/*
|
|
* Save away the mapping from the original address to the DMA address.
|
|
* This is needed when we sync the memory. Then we sync the buffer if
|
|
* needed.
|
|
*/
|
|
for (i = 0; i < nr_slots(alloc_size + offset); i++)
|
|
mem->slots[index + i].orig_addr = slot_addr(orig_addr, i);
|
|
tlb_addr = slot_addr(mem->start, index) + offset;
|
|
/*
|
|
* When dir == DMA_FROM_DEVICE we could omit the copy from the orig
|
|
* to the tlb buffer, if we knew for sure the device will
|
|
* overwirte the entire current content. But we don't. Thus
|
|
* unconditional bounce may prevent leaking swiotlb content (i.e.
|
|
* kernel memory) to user-space.
|
|
*/
|
|
swiotlb_bounce(dev, tlb_addr, mapping_size, DMA_TO_DEVICE);
|
|
return tlb_addr;
|
|
}
|
|
|
|
static void swiotlb_release_slots(struct device *dev, phys_addr_t tlb_addr)
|
|
{
|
|
struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
|
|
unsigned long flags;
|
|
unsigned int offset = swiotlb_align_offset(dev, tlb_addr);
|
|
int index = (tlb_addr - offset - mem->start) >> IO_TLB_SHIFT;
|
|
int nslots = nr_slots(mem->slots[index].alloc_size + offset);
|
|
int count, i;
|
|
|
|
/*
|
|
* Return the buffer to the free list by setting the corresponding
|
|
* entries to indicate the number of contiguous entries available.
|
|
* While returning the entries to the free list, we merge the entries
|
|
* with slots below and above the pool being returned.
|
|
*/
|
|
spin_lock_irqsave(&mem->lock, flags);
|
|
if (index + nslots < ALIGN(index + 1, IO_TLB_SEGSIZE))
|
|
count = mem->slots[index + nslots].list;
|
|
else
|
|
count = 0;
|
|
|
|
/*
|
|
* Step 1: return the slots to the free list, merging the slots with
|
|
* superceeding slots
|
|
*/
|
|
for (i = index + nslots - 1; i >= index; i--) {
|
|
mem->slots[i].list = ++count;
|
|
mem->slots[i].orig_addr = INVALID_PHYS_ADDR;
|
|
mem->slots[i].alloc_size = 0;
|
|
}
|
|
|
|
/*
|
|
* Step 2: merge the returned slots with the preceding slots, if
|
|
* available (non zero)
|
|
*/
|
|
for (i = index - 1;
|
|
io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 && mem->slots[i].list;
|
|
i--)
|
|
mem->slots[i].list = ++count;
|
|
mem->used -= nslots;
|
|
spin_unlock_irqrestore(&mem->lock, flags);
|
|
}
|
|
|
|
/*
|
|
* tlb_addr is the physical address of the bounce buffer to unmap.
|
|
*/
|
|
void swiotlb_tbl_unmap_single(struct device *dev, phys_addr_t tlb_addr,
|
|
size_t mapping_size, enum dma_data_direction dir,
|
|
unsigned long attrs)
|
|
{
|
|
/*
|
|
* First, sync the memory before unmapping the entry
|
|
*/
|
|
if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
|
|
(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
|
|
swiotlb_bounce(dev, tlb_addr, mapping_size, DMA_FROM_DEVICE);
|
|
|
|
swiotlb_release_slots(dev, tlb_addr);
|
|
}
|
|
|
|
void swiotlb_sync_single_for_device(struct device *dev, phys_addr_t tlb_addr,
|
|
size_t size, enum dma_data_direction dir)
|
|
{
|
|
/*
|
|
* Unconditional bounce is necessary to avoid corruption on
|
|
* sync_*_for_cpu or dma_ummap_* when the device didn't overwrite
|
|
* the whole lengt of the bounce buffer.
|
|
*/
|
|
swiotlb_bounce(dev, tlb_addr, size, DMA_TO_DEVICE);
|
|
BUG_ON(!valid_dma_direction(dir));
|
|
}
|
|
|
|
void swiotlb_sync_single_for_cpu(struct device *dev, phys_addr_t tlb_addr,
|
|
size_t size, enum dma_data_direction dir)
|
|
{
|
|
if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
|
|
swiotlb_bounce(dev, tlb_addr, size, DMA_FROM_DEVICE);
|
|
else
|
|
BUG_ON(dir != DMA_TO_DEVICE);
|
|
}
|
|
|
|
/*
|
|
* Create a swiotlb mapping for the buffer at @paddr, and in case of DMAing
|
|
* to the device copy the data into it as well.
|
|
*/
|
|
dma_addr_t swiotlb_map(struct device *dev, phys_addr_t paddr, size_t size,
|
|
enum dma_data_direction dir, unsigned long attrs)
|
|
{
|
|
phys_addr_t swiotlb_addr;
|
|
dma_addr_t dma_addr;
|
|
|
|
trace_swiotlb_bounced(dev, phys_to_dma(dev, paddr), size,
|
|
swiotlb_force);
|
|
|
|
swiotlb_addr = swiotlb_tbl_map_single(dev, paddr, size, size, 0, dir,
|
|
attrs);
|
|
if (swiotlb_addr == (phys_addr_t)DMA_MAPPING_ERROR)
|
|
return DMA_MAPPING_ERROR;
|
|
|
|
/* Ensure that the address returned is DMA'ble */
|
|
dma_addr = phys_to_dma_unencrypted(dev, swiotlb_addr);
|
|
if (unlikely(!dma_capable(dev, dma_addr, size, true))) {
|
|
swiotlb_tbl_unmap_single(dev, swiotlb_addr, size, dir,
|
|
attrs | DMA_ATTR_SKIP_CPU_SYNC);
|
|
dev_WARN_ONCE(dev, 1,
|
|
"swiotlb addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
|
|
&dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
|
|
return DMA_MAPPING_ERROR;
|
|
}
|
|
|
|
if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
|
|
arch_sync_dma_for_device(swiotlb_addr, size, dir);
|
|
return dma_addr;
|
|
}
|
|
|
|
size_t swiotlb_max_mapping_size(struct device *dev)
|
|
{
|
|
return ((size_t)IO_TLB_SIZE) * IO_TLB_SEGSIZE;
|
|
}
|
|
|
|
bool is_swiotlb_active(struct device *dev)
|
|
{
|
|
struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
|
|
|
|
return mem && mem->nslabs;
|
|
}
|
|
EXPORT_SYMBOL_GPL(is_swiotlb_active);
|
|
|
|
#ifdef CONFIG_DEBUG_FS
|
|
static struct dentry *debugfs_dir;
|
|
|
|
static void swiotlb_create_debugfs_files(struct io_tlb_mem *mem)
|
|
{
|
|
debugfs_create_ulong("io_tlb_nslabs", 0400, mem->debugfs, &mem->nslabs);
|
|
debugfs_create_ulong("io_tlb_used", 0400, mem->debugfs, &mem->used);
|
|
}
|
|
|
|
static int __init swiotlb_create_default_debugfs(void)
|
|
{
|
|
struct io_tlb_mem *mem = &io_tlb_default_mem;
|
|
|
|
debugfs_dir = debugfs_create_dir("swiotlb", NULL);
|
|
if (mem->nslabs) {
|
|
mem->debugfs = debugfs_dir;
|
|
swiotlb_create_debugfs_files(mem);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
late_initcall(swiotlb_create_default_debugfs);
|
|
|
|
#endif
|
|
|
|
#ifdef CONFIG_DMA_RESTRICTED_POOL
|
|
|
|
#ifdef CONFIG_DEBUG_FS
|
|
static void rmem_swiotlb_debugfs_init(struct reserved_mem *rmem)
|
|
{
|
|
struct io_tlb_mem *mem = rmem->priv;
|
|
|
|
mem->debugfs = debugfs_create_dir(rmem->name, debugfs_dir);
|
|
swiotlb_create_debugfs_files(mem);
|
|
}
|
|
#else
|
|
static void rmem_swiotlb_debugfs_init(struct reserved_mem *rmem)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
struct page *swiotlb_alloc(struct device *dev, size_t size)
|
|
{
|
|
struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
|
|
phys_addr_t tlb_addr;
|
|
int index;
|
|
|
|
if (!mem)
|
|
return NULL;
|
|
|
|
index = swiotlb_find_slots(dev, 0, size, 0);
|
|
if (index == -1)
|
|
return NULL;
|
|
|
|
tlb_addr = slot_addr(mem->start, index);
|
|
|
|
return pfn_to_page(PFN_DOWN(tlb_addr));
|
|
}
|
|
|
|
bool swiotlb_free(struct device *dev, struct page *page, size_t size)
|
|
{
|
|
phys_addr_t tlb_addr = page_to_phys(page);
|
|
|
|
if (!is_swiotlb_buffer(dev, tlb_addr))
|
|
return false;
|
|
|
|
swiotlb_release_slots(dev, tlb_addr);
|
|
|
|
return true;
|
|
}
|
|
|
|
static int rmem_swiotlb_device_init(struct reserved_mem *rmem,
|
|
struct device *dev)
|
|
{
|
|
struct io_tlb_mem *mem = rmem->priv;
|
|
unsigned long nslabs = rmem->size >> IO_TLB_SHIFT;
|
|
|
|
/*
|
|
* Since multiple devices can share the same pool, the private data,
|
|
* io_tlb_mem struct, will be initialized by the first device attached
|
|
* to it.
|
|
*/
|
|
if (!mem) {
|
|
mem = kzalloc(sizeof(*mem), GFP_KERNEL);
|
|
if (!mem)
|
|
return -ENOMEM;
|
|
|
|
mem->slots = kzalloc(array_size(sizeof(*mem->slots), nslabs),
|
|
GFP_KERNEL);
|
|
if (!mem->slots) {
|
|
kfree(mem);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
set_memory_decrypted((unsigned long)phys_to_virt(rmem->base),
|
|
rmem->size >> PAGE_SHIFT);
|
|
swiotlb_init_io_tlb_mem(mem, rmem->base, nslabs, false);
|
|
mem->force_bounce = true;
|
|
mem->for_alloc = true;
|
|
|
|
rmem->priv = mem;
|
|
|
|
rmem_swiotlb_debugfs_init(rmem);
|
|
}
|
|
|
|
dev->dma_io_tlb_mem = mem;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void rmem_swiotlb_device_release(struct reserved_mem *rmem,
|
|
struct device *dev)
|
|
{
|
|
dev->dma_io_tlb_mem = &io_tlb_default_mem;
|
|
}
|
|
|
|
static const struct reserved_mem_ops rmem_swiotlb_ops = {
|
|
.device_init = rmem_swiotlb_device_init,
|
|
.device_release = rmem_swiotlb_device_release,
|
|
};
|
|
|
|
static int __init rmem_swiotlb_setup(struct reserved_mem *rmem)
|
|
{
|
|
unsigned long node = rmem->fdt_node;
|
|
|
|
if (of_get_flat_dt_prop(node, "reusable", NULL) ||
|
|
of_get_flat_dt_prop(node, "linux,cma-default", NULL) ||
|
|
of_get_flat_dt_prop(node, "linux,dma-default", NULL) ||
|
|
of_get_flat_dt_prop(node, "no-map", NULL))
|
|
return -EINVAL;
|
|
|
|
if (PageHighMem(pfn_to_page(PHYS_PFN(rmem->base)))) {
|
|
pr_err("Restricted DMA pool must be accessible within the linear mapping.");
|
|
return -EINVAL;
|
|
}
|
|
|
|
rmem->ops = &rmem_swiotlb_ops;
|
|
pr_info("Reserved memory: created restricted DMA pool at %pa, size %ld MiB\n",
|
|
&rmem->base, (unsigned long)rmem->size / SZ_1M);
|
|
return 0;
|
|
}
|
|
|
|
RESERVEDMEM_OF_DECLARE(dma, "restricted-dma-pool", rmem_swiotlb_setup);
|
|
#endif /* CONFIG_DMA_RESTRICTED_POOL */
|