8260b9820f
INS/OUTS are not supported in TDX guests and cause #UD. Kernel has to avoid them when running in TDX guest. To support existing usage, string I/O operations are unrolled using IN/OUT instructions. AMD SEV platform implements this support by adding unroll logic in ins#bwl()/outs#bwl() macros with SEV-specific checks. Since TDX VM guests will also need similar support, use CC_ATTR_GUEST_UNROLL_STRING_IO and generic cc_platform_has() API to implement it. String I/O helpers were the last users of sev_key_active() interface and sev_enable_key static key. Remove them. [ bp: Move comment too and do not delete it. ] Suggested-by: Tom Lendacky <thomas.lendacky@amd.com> Signed-off-by: Kuppuswamy Sathyanarayanan <sathyanarayanan.kuppuswamy@linux.intel.com> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Tony Luck <tony.luck@intel.com> Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com> Tested-by: Tom Lendacky <thomas.lendacky@amd.com> Link: https://lkml.kernel.org/r/20211206135505.75045-2-kirill.shutemov@linux.intel.com
78 lines
1.9 KiB
C
78 lines
1.9 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Confidential Computing Platform Capability checks
|
|
*
|
|
* Copyright (C) 2021 Advanced Micro Devices, Inc.
|
|
*
|
|
* Author: Tom Lendacky <thomas.lendacky@amd.com>
|
|
*/
|
|
|
|
#include <linux/export.h>
|
|
#include <linux/cc_platform.h>
|
|
#include <linux/mem_encrypt.h>
|
|
|
|
#include <asm/processor.h>
|
|
|
|
static bool __maybe_unused intel_cc_platform_has(enum cc_attr attr)
|
|
{
|
|
#ifdef CONFIG_INTEL_TDX_GUEST
|
|
return false;
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* SME and SEV are very similar but they are not the same, so there are
|
|
* times that the kernel will need to distinguish between SME and SEV. The
|
|
* cc_platform_has() function is used for this. When a distinction isn't
|
|
* needed, the CC_ATTR_MEM_ENCRYPT attribute can be used.
|
|
*
|
|
* The trampoline code is a good example for this requirement. Before
|
|
* paging is activated, SME will access all memory as decrypted, but SEV
|
|
* will access all memory as encrypted. So, when APs are being brought
|
|
* up under SME the trampoline area cannot be encrypted, whereas under SEV
|
|
* the trampoline area must be encrypted.
|
|
*/
|
|
static bool amd_cc_platform_has(enum cc_attr attr)
|
|
{
|
|
#ifdef CONFIG_AMD_MEM_ENCRYPT
|
|
switch (attr) {
|
|
case CC_ATTR_MEM_ENCRYPT:
|
|
return sme_me_mask;
|
|
|
|
case CC_ATTR_HOST_MEM_ENCRYPT:
|
|
return sme_me_mask && !(sev_status & MSR_AMD64_SEV_ENABLED);
|
|
|
|
case CC_ATTR_GUEST_MEM_ENCRYPT:
|
|
return sev_status & MSR_AMD64_SEV_ENABLED;
|
|
|
|
case CC_ATTR_GUEST_STATE_ENCRYPT:
|
|
return sev_status & MSR_AMD64_SEV_ES_ENABLED;
|
|
|
|
/*
|
|
* With SEV, the rep string I/O instructions need to be unrolled
|
|
* but SEV-ES supports them through the #VC handler.
|
|
*/
|
|
case CC_ATTR_GUEST_UNROLL_STRING_IO:
|
|
return (sev_status & MSR_AMD64_SEV_ENABLED) &&
|
|
!(sev_status & MSR_AMD64_SEV_ES_ENABLED);
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
|
|
bool cc_platform_has(enum cc_attr attr)
|
|
{
|
|
if (sme_me_mask)
|
|
return amd_cc_platform_has(attr);
|
|
|
|
return false;
|
|
}
|
|
EXPORT_SYMBOL_GPL(cc_platform_has);
|