Gavin Shan 3780444c4f powerpc/eeh: pseries platform config space access in EEH
With the original EEH implementation, the access to config space of
the corresponding PCI device is done by RTAS sensitive function. That
depends on pci_dn heavily. That would limit EEH extension to other
platforms like powernv because other platforms might have different
ways to access PCI config space.

The patch splits those functions used to access PCI config space
and implement them in platform related EEH component. It would be
helpful to support EEH on multiple platforms simutaneously in future.

Signed-off-by: Gavin Shan <shangw@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2012-03-09 11:39:51 +11:00

566 lines
16 KiB
C

/*
* The file intends to implement the platform dependent EEH operations on pseries.
* Actually, the pseries platform is built based on RTAS heavily. That means the
* pseries platform dependent EEH operations will be built on RTAS calls. The functions
* are devired from arch/powerpc/platforms/pseries/eeh.c and necessary cleanup has
* been done.
*
* Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2011.
* Copyright IBM Corporation 2001, 2005, 2006
* Copyright Dave Engebretsen & Todd Inglett 2001
* Copyright Linas Vepstas 2005, 2006
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/atomic.h>
#include <linux/delay.h>
#include <linux/export.h>
#include <linux/init.h>
#include <linux/list.h>
#include <linux/of.h>
#include <linux/pci.h>
#include <linux/proc_fs.h>
#include <linux/rbtree.h>
#include <linux/sched.h>
#include <linux/seq_file.h>
#include <linux/spinlock.h>
#include <asm/eeh.h>
#include <asm/eeh_event.h>
#include <asm/io.h>
#include <asm/machdep.h>
#include <asm/ppc-pci.h>
#include <asm/rtas.h>
/* RTAS tokens */
static int ibm_set_eeh_option;
static int ibm_set_slot_reset;
static int ibm_read_slot_reset_state;
static int ibm_read_slot_reset_state2;
static int ibm_slot_error_detail;
static int ibm_get_config_addr_info;
static int ibm_get_config_addr_info2;
static int ibm_configure_bridge;
static int ibm_configure_pe;
/*
* Buffer for reporting slot-error-detail rtas calls. Its here
* in BSS, and not dynamically alloced, so that it ends up in
* RMO where RTAS can access it.
*/
static unsigned char slot_errbuf[RTAS_ERROR_LOG_MAX];
static DEFINE_SPINLOCK(slot_errbuf_lock);
static int eeh_error_buf_size;
/**
* pseries_eeh_init - EEH platform dependent initialization
*
* EEH platform dependent initialization on pseries.
*/
static int pseries_eeh_init(void)
{
/* figure out EEH RTAS function call tokens */
ibm_set_eeh_option = rtas_token("ibm,set-eeh-option");
ibm_set_slot_reset = rtas_token("ibm,set-slot-reset");
ibm_read_slot_reset_state2 = rtas_token("ibm,read-slot-reset-state2");
ibm_read_slot_reset_state = rtas_token("ibm,read-slot-reset-state");
ibm_slot_error_detail = rtas_token("ibm,slot-error-detail");
ibm_get_config_addr_info2 = rtas_token("ibm,get-config-addr-info2");
ibm_get_config_addr_info = rtas_token("ibm,get-config-addr-info");
ibm_configure_pe = rtas_token("ibm,configure-pe");
ibm_configure_bridge = rtas_token ("ibm,configure-bridge");
/* necessary sanity check */
if (ibm_set_eeh_option == RTAS_UNKNOWN_SERVICE) {
pr_warning("%s: RTAS service <ibm,set-eeh-option> invalid\n",
__func__);
return -EINVAL;
} else if (ibm_set_slot_reset == RTAS_UNKNOWN_SERVICE) {
pr_warning("%s: RTAS service <ibm, set-slot-reset> invalid\n",
__func__);
return -EINVAL;
} else if (ibm_read_slot_reset_state2 == RTAS_UNKNOWN_SERVICE &&
ibm_read_slot_reset_state == RTAS_UNKNOWN_SERVICE) {
pr_warning("%s: RTAS service <ibm,read-slot-reset-state2> and "
"<ibm,read-slot-reset-state> invalid\n",
__func__);
return -EINVAL;
} else if (ibm_slot_error_detail == RTAS_UNKNOWN_SERVICE) {
pr_warning("%s: RTAS service <ibm,slot-error-detail> invalid\n",
__func__);
return -EINVAL;
} else if (ibm_get_config_addr_info2 == RTAS_UNKNOWN_SERVICE &&
ibm_get_config_addr_info == RTAS_UNKNOWN_SERVICE) {
pr_warning("%s: RTAS service <ibm,get-config-addr-info2> and "
"<ibm,get-config-addr-info> invalid\n",
__func__);
return -EINVAL;
} else if (ibm_configure_pe == RTAS_UNKNOWN_SERVICE &&
ibm_configure_bridge == RTAS_UNKNOWN_SERVICE) {
pr_warning("%s: RTAS service <ibm,configure-pe> and "
"<ibm,configure-bridge> invalid\n",
__func__);
return -EINVAL;
}
/* Initialize error log lock and size */
spin_lock_init(&slot_errbuf_lock);
eeh_error_buf_size = rtas_token("rtas-error-log-max");
if (eeh_error_buf_size == RTAS_UNKNOWN_SERVICE) {
pr_warning("%s: unknown EEH error log size\n",
__func__);
eeh_error_buf_size = 1024;
} else if (eeh_error_buf_size > RTAS_ERROR_LOG_MAX) {
pr_warning("%s: EEH error log size %d exceeds the maximal %d\n",
__func__, eeh_error_buf_size, RTAS_ERROR_LOG_MAX);
eeh_error_buf_size = RTAS_ERROR_LOG_MAX;
}
return 0;
}
/**
* pseries_eeh_set_option - Initialize EEH or MMIO/DMA reenable
* @dn: device node
* @option: operation to be issued
*
* The function is used to control the EEH functionality globally.
* Currently, following options are support according to PAPR:
* Enable EEH, Disable EEH, Enable MMIO and Enable DMA
*/
static int pseries_eeh_set_option(struct device_node *dn, int option)
{
int ret = 0;
struct eeh_dev *edev;
const u32 *reg;
int config_addr;
edev = of_node_to_eeh_dev(dn);
/*
* When we're enabling or disabling EEH functioality on
* the particular PE, the PE config address is possibly
* unavailable. Therefore, we have to figure it out from
* the FDT node.
*/
switch (option) {
case EEH_OPT_DISABLE:
case EEH_OPT_ENABLE:
reg = of_get_property(dn, "reg", NULL);
config_addr = reg[0];
break;
case EEH_OPT_THAW_MMIO:
case EEH_OPT_THAW_DMA:
config_addr = edev->config_addr;
if (edev->pe_config_addr)
config_addr = edev->pe_config_addr;
break;
default:
pr_err("%s: Invalid option %d\n",
__func__, option);
return -EINVAL;
}
ret = rtas_call(ibm_set_eeh_option, 4, 1, NULL,
config_addr, BUID_HI(edev->phb->buid),
BUID_LO(edev->phb->buid), option);
return ret;
}
/**
* pseries_eeh_get_pe_addr - Retrieve PE address
* @dn: device node
*
* Retrieve the assocated PE address. Actually, there're 2 RTAS
* function calls dedicated for the purpose. We need implement
* it through the new function and then the old one. Besides,
* you should make sure the config address is figured out from
* FDT node before calling the function.
*
* It's notable that zero'ed return value means invalid PE config
* address.
*/
static int pseries_eeh_get_pe_addr(struct device_node *dn)
{
struct eeh_dev *edev;
int ret = 0;
int rets[3];
edev = of_node_to_eeh_dev(dn);
if (ibm_get_config_addr_info2 != RTAS_UNKNOWN_SERVICE) {
/*
* First of all, we need to make sure there has one PE
* associated with the device. Otherwise, PE address is
* meaningless.
*/
ret = rtas_call(ibm_get_config_addr_info2, 4, 2, rets,
edev->config_addr, BUID_HI(edev->phb->buid),
BUID_LO(edev->phb->buid), 1);
if (ret || (rets[0] == 0))
return 0;
/* Retrieve the associated PE config address */
ret = rtas_call(ibm_get_config_addr_info2, 4, 2, rets,
edev->config_addr, BUID_HI(edev->phb->buid),
BUID_LO(edev->phb->buid), 0);
if (ret) {
pr_warning("%s: Failed to get PE address for %s\n",
__func__, dn->full_name);
return 0;
}
return rets[0];
}
if (ibm_get_config_addr_info != RTAS_UNKNOWN_SERVICE) {
ret = rtas_call(ibm_get_config_addr_info, 4, 2, rets,
edev->config_addr, BUID_HI(edev->phb->buid),
BUID_LO(edev->phb->buid), 0);
if (ret) {
pr_warning("%s: Failed to get PE address for %s\n",
__func__, dn->full_name);
return 0;
}
return rets[0];
}
return ret;
}
/**
* pseries_eeh_get_state - Retrieve PE state
* @dn: PE associated device node
* @state: return value
*
* Retrieve the state of the specified PE. On RTAS compliant
* pseries platform, there already has one dedicated RTAS function
* for the purpose. It's notable that the associated PE config address
* might be ready when calling the function. Therefore, endeavour to
* use the PE config address if possible. Further more, there're 2
* RTAS calls for the purpose, we need to try the new one and back
* to the old one if the new one couldn't work properly.
*/
static int pseries_eeh_get_state(struct device_node *dn, int *state)
{
struct eeh_dev *edev;
int config_addr;
int ret;
int rets[4];
int result;
/* Figure out PE config address if possible */
edev = of_node_to_eeh_dev(dn);
config_addr = edev->config_addr;
if (edev->pe_config_addr)
config_addr = edev->pe_config_addr;
if (ibm_read_slot_reset_state2 != RTAS_UNKNOWN_SERVICE) {
ret = rtas_call(ibm_read_slot_reset_state2, 3, 4, rets,
config_addr, BUID_HI(edev->phb->buid),
BUID_LO(edev->phb->buid));
} else if (ibm_read_slot_reset_state != RTAS_UNKNOWN_SERVICE) {
/* Fake PE unavailable info */
rets[2] = 0;
ret = rtas_call(ibm_read_slot_reset_state, 3, 3, rets,
config_addr, BUID_HI(edev->phb->buid),
BUID_LO(edev->phb->buid));
} else {
return EEH_STATE_NOT_SUPPORT;
}
if (ret)
return ret;
/* Parse the result out */
result = 0;
if (rets[1]) {
switch(rets[0]) {
case 0:
result &= ~EEH_STATE_RESET_ACTIVE;
result |= EEH_STATE_MMIO_ACTIVE;
result |= EEH_STATE_DMA_ACTIVE;
break;
case 1:
result |= EEH_STATE_RESET_ACTIVE;
result |= EEH_STATE_MMIO_ACTIVE;
result |= EEH_STATE_DMA_ACTIVE;
break;
case 2:
result &= ~EEH_STATE_RESET_ACTIVE;
result &= ~EEH_STATE_MMIO_ACTIVE;
result &= ~EEH_STATE_DMA_ACTIVE;
break;
case 4:
result &= ~EEH_STATE_RESET_ACTIVE;
result &= ~EEH_STATE_MMIO_ACTIVE;
result &= ~EEH_STATE_DMA_ACTIVE;
result |= EEH_STATE_MMIO_ENABLED;
break;
case 5:
if (rets[2]) {
if (state) *state = rets[2];
result = EEH_STATE_UNAVAILABLE;
} else {
result = EEH_STATE_NOT_SUPPORT;
}
default:
result = EEH_STATE_NOT_SUPPORT;
}
} else {
result = EEH_STATE_NOT_SUPPORT;
}
return result;
}
/**
* pseries_eeh_reset - Reset the specified PE
* @dn: PE associated device node
* @option: reset option
*
* Reset the specified PE
*/
static int pseries_eeh_reset(struct device_node *dn, int option)
{
struct eeh_dev *edev;
int config_addr;
int ret;
/* Figure out PE address */
edev = of_node_to_eeh_dev(dn);
config_addr = edev->config_addr;
if (edev->pe_config_addr)
config_addr = edev->pe_config_addr;
/* Reset PE through RTAS call */
ret = rtas_call(ibm_set_slot_reset, 4, 1, NULL,
config_addr, BUID_HI(edev->phb->buid),
BUID_LO(edev->phb->buid), option);
/* If fundamental-reset not supported, try hot-reset */
if (option == EEH_RESET_FUNDAMENTAL &&
ret == -8) {
ret = rtas_call(ibm_set_slot_reset, 4, 1, NULL,
config_addr, BUID_HI(edev->phb->buid),
BUID_LO(edev->phb->buid), EEH_RESET_HOT);
}
return ret;
}
/**
* pseries_eeh_wait_state - Wait for PE state
* @dn: PE associated device node
* @max_wait: maximal period in microsecond
*
* Wait for the state of associated PE. It might take some time
* to retrieve the PE's state.
*/
static int pseries_eeh_wait_state(struct device_node *dn, int max_wait)
{
int ret;
int mwait;
/*
* According to PAPR, the state of PE might be temporarily
* unavailable. Under the circumstance, we have to wait
* for indicated time determined by firmware. The maximal
* wait time is 5 minutes, which is acquired from the original
* EEH implementation. Also, the original implementation
* also defined the minimal wait time as 1 second.
*/
#define EEH_STATE_MIN_WAIT_TIME (1000)
#define EEH_STATE_MAX_WAIT_TIME (300 * 1000)
while (1) {
ret = pseries_eeh_get_state(dn, &mwait);
/*
* If the PE's state is temporarily unavailable,
* we have to wait for the specified time. Otherwise,
* the PE's state will be returned immediately.
*/
if (ret != EEH_STATE_UNAVAILABLE)
return ret;
if (max_wait <= 0) {
pr_warning("%s: Timeout when getting PE's state (%d)\n",
__func__, max_wait);
return EEH_STATE_NOT_SUPPORT;
}
if (mwait <= 0) {
pr_warning("%s: Firmware returned bad wait value %d\n",
__func__, mwait);
mwait = EEH_STATE_MIN_WAIT_TIME;
} else if (mwait > EEH_STATE_MAX_WAIT_TIME) {
pr_warning("%s: Firmware returned too long wait value %d\n",
__func__, mwait);
mwait = EEH_STATE_MAX_WAIT_TIME;
}
max_wait -= mwait;
msleep(mwait);
}
return EEH_STATE_NOT_SUPPORT;
}
/**
* pseries_eeh_get_log - Retrieve error log
* @dn: device node
* @severity: temporary or permanent error log
* @drv_log: driver log to be combined with retrieved error log
* @len: length of driver log
*
* Retrieve the temporary or permanent error from the PE.
* Actually, the error will be retrieved through the dedicated
* RTAS call.
*/
static int pseries_eeh_get_log(struct device_node *dn, int severity, char *drv_log, unsigned long len)
{
struct eeh_dev *edev;
int config_addr;
unsigned long flags;
int ret;
edev = of_node_to_eeh_dev(dn);
spin_lock_irqsave(&slot_errbuf_lock, flags);
memset(slot_errbuf, 0, eeh_error_buf_size);
/* Figure out the PE address */
config_addr = edev->config_addr;
if (edev->pe_config_addr)
config_addr = edev->pe_config_addr;
ret = rtas_call(ibm_slot_error_detail, 8, 1, NULL, config_addr,
BUID_HI(edev->phb->buid), BUID_LO(edev->phb->buid),
virt_to_phys(drv_log), len,
virt_to_phys(slot_errbuf), eeh_error_buf_size,
severity);
if (!ret)
log_error(slot_errbuf, ERR_TYPE_RTAS_LOG, 0);
spin_unlock_irqrestore(&slot_errbuf_lock, flags);
return ret;
}
/**
* pseries_eeh_configure_bridge - Configure PCI bridges in the indicated PE
* @dn: PE associated device node
*
* The function will be called to reconfigure the bridges included
* in the specified PE so that the mulfunctional PE would be recovered
* again.
*/
static int pseries_eeh_configure_bridge(struct device_node *dn)
{
struct eeh_dev *edev;
int config_addr;
int ret;
/* Figure out the PE address */
edev = of_node_to_eeh_dev(dn);
config_addr = edev->config_addr;
if (edev->pe_config_addr)
config_addr = edev->pe_config_addr;
/* Use new configure-pe function, if supported */
if (ibm_configure_pe != RTAS_UNKNOWN_SERVICE) {
ret = rtas_call(ibm_configure_pe, 3, 1, NULL,
config_addr, BUID_HI(edev->phb->buid),
BUID_LO(edev->phb->buid));
} else if (ibm_configure_bridge != RTAS_UNKNOWN_SERVICE) {
ret = rtas_call(ibm_configure_bridge, 3, 1, NULL,
config_addr, BUID_HI(edev->phb->buid),
BUID_LO(edev->phb->buid));
} else {
return -EFAULT;
}
if (ret)
pr_warning("%s: Unable to configure bridge %d for %s\n",
__func__, ret, dn->full_name);
return ret;
}
/**
* pseries_eeh_read_config - Read PCI config space
* @dn: device node
* @where: PCI address
* @size: size to read
* @val: return value
*
* Read config space from the speicifed device
*/
static int pseries_eeh_read_config(struct device_node *dn, int where, int size, u32 *val)
{
struct pci_dn *pdn;
pdn = PCI_DN(dn);
return rtas_read_config(pdn, where, size, val);
}
/**
* pseries_eeh_write_config - Write PCI config space
* @dn: device node
* @where: PCI address
* @size: size to write
* @val: value to be written
*
* Write config space to the specified device
*/
static int pseries_eeh_write_config(struct device_node *dn, int where, int size, u32 val)
{
struct pci_dn *pdn;
pdn = PCI_DN(dn);
return rtas_write_config(pdn, where, size, val);
}
static struct eeh_ops pseries_eeh_ops = {
.name = "pseries",
.init = pseries_eeh_init,
.set_option = pseries_eeh_set_option,
.get_pe_addr = pseries_eeh_get_pe_addr,
.get_state = pseries_eeh_get_state,
.reset = pseries_eeh_reset,
.wait_state = pseries_eeh_wait_state,
.get_log = pseries_eeh_get_log,
.configure_bridge = pseries_eeh_configure_bridge,
.read_config = pseries_eeh_read_config,
.write_config = pseries_eeh_write_config
};
/**
* eeh_pseries_init - Register platform dependent EEH operations
*
* EEH initialization on pseries platform. This function should be
* called before any EEH related functions.
*/
int __init eeh_pseries_init(void)
{
return eeh_ops_register(&pseries_eeh_ops);
}