* Changes to FPU handling came in via the main s390 pull request * Only deliver to the guest the SCLP events that userspace has requested. * More virtual vs physical address fixes (only a cleanup since virtual and physical address spaces are currently the same). * Fix selftests undefined behavior. x86: * Fix a restriction that the guest can't program a PMU event whose encoding matches an architectural event that isn't included in the guest CPUID. The enumeration of an architectural event only says that if a CPU supports an architectural event, then the event can be programmed *using the architectural encoding*. The enumeration does NOT say anything about the encoding when the CPU doesn't report support the event *in general*. It might support it, and it might support it using the same encoding that made it into the architectural PMU spec. * Fix a variety of bugs in KVM's emulation of RDPMC (more details on individual commits) and add a selftest to verify KVM correctly emulates RDMPC, counter availability, and a variety of other PMC-related behaviors that depend on guest CPUID and therefore are easier to validate with selftests than with custom guests (aka kvm-unit-tests). * Zero out PMU state on AMD if the virtual PMU is disabled, it does not cause any bug but it wastes time in various cases where KVM would check if a PMC event needs to be synthesized. * Optimize triggering of emulated events, with a nice ~10% performance improvement in VM-Exit microbenchmarks when a vPMU is exposed to the guest. * Tighten the check for "PMI in guest" to reduce false positives if an NMI arrives in the host while KVM is handling an IRQ VM-Exit. * Fix a bug where KVM would report stale/bogus exit qualification information when exiting to userspace with an internal error exit code. * Add a VMX flag in /proc/cpuinfo to report 5-level EPT support. * Rework TDP MMU root unload, free, and alloc to run with mmu_lock held for read, e.g. to avoid serializing vCPUs when userspace deletes a memslot. * Tear down TDP MMU page tables at 4KiB granularity (used to be 1GiB). KVM doesn't support yielding in the middle of processing a zap, and 1GiB granularity resulted in multi-millisecond lags that are quite impolite for CONFIG_PREEMPT kernels. * Allocate write-tracking metadata on-demand to avoid the memory overhead when a kernel is built with i915 virtualization support but the workloads use neither shadow paging nor i915 virtualization. * Explicitly initialize a variety of on-stack variables in the emulator that triggered KMSAN false positives. * Fix the debugregs ABI for 32-bit KVM. * Rework the "force immediate exit" code so that vendor code ultimately decides how and when to force the exit, which allowed some optimization for both Intel and AMD. * Fix a long-standing bug where kvm_has_noapic_vcpu could be left elevated if vCPU creation ultimately failed, causing extra unnecessary work. * Cleanup the logic for checking if the currently loaded vCPU is in-kernel. * Harden against underflowing the active mmu_notifier invalidation count, so that "bad" invalidations (usually due to bugs elsehwere in the kernel) are detected earlier and are less likely to hang the kernel. x86 Xen emulation: * Overlay pages can now be cached based on host virtual address, instead of guest physical addresses. This removes the need to reconfigure and invalidate the cache if the guest changes the gpa but the underlying host virtual address remains the same. * When possible, use a single host TSC value when computing the deadline for Xen timers in order to improve the accuracy of the timer emulation. * Inject pending upcall events when the vCPU software-enables its APIC to fix a bug where an upcall can be lost (and to follow Xen's behavior). * Fall back to the slow path instead of warning if "fast" IRQ delivery of Xen events fails, e.g. if the guest has aliased xAPIC IDs. RISC-V: * Support exception and interrupt handling in selftests * New self test for RISC-V architectural timer (Sstc extension) * New extension support (Ztso, Zacas) * Support userspace emulation of random number seed CSRs. ARM: * Infrastructure for building KVM's trap configuration based on the architectural features (or lack thereof) advertised in the VM's ID registers * Support for mapping vfio-pci BARs as Normal-NC (vaguely similar to x86's WC) at stage-2, improving the performance of interacting with assigned devices that can tolerate it * Conversion of KVM's representation of LPIs to an xarray, utilized to address serialization some of the serialization on the LPI injection path * Support for _architectural_ VHE-only systems, advertised through the absence of FEAT_E2H0 in the CPU's ID register * Miscellaneous cleanups, fixes, and spelling corrections to KVM and selftests LoongArch: * Set reserved bits as zero in CPUCFG. * Start SW timer only when vcpu is blocking. * Do not restart SW timer when it is expired. * Remove unnecessary CSR register saving during enter guest. * Misc cleanups and fixes as usual. Generic: * cleanup Kconfig by removing CONFIG_HAVE_KVM, which was basically always true on all architectures except MIPS (where Kconfig determines the available depending on CPU capabilities). It is replaced either by an architecture-dependent symbol for MIPS, and IS_ENABLED(CONFIG_KVM) everywhere else. * Factor common "select" statements in common code instead of requiring each architecture to specify it * Remove thoroughly obsolete APIs from the uapi headers. * Move architecture-dependent stuff to uapi/asm/kvm.h * Always flush the async page fault workqueue when a work item is being removed, especially during vCPU destruction, to ensure that there are no workers running in KVM code when all references to KVM-the-module are gone, i.e. to prevent a very unlikely use-after-free if kvm.ko is unloaded. * Grab a reference to the VM's mm_struct in the async #PF worker itself instead of gifting the worker a reference, so that there's no need to remember to *conditionally* clean up after the worker. Selftests: * Reduce boilerplate especially when utilize selftest TAP infrastructure. * Add basic smoke tests for SEV and SEV-ES, along with a pile of library support for handling private/encrypted/protected memory. * Fix benign bugs where tests neglect to close() guest_memfd files. -----BEGIN PGP SIGNATURE----- iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmX0iP8UHHBib256aW5p QHJlZGhhdC5jb20ACgkQv/vSX3jHroND7wf+JZoNvwZ+bmwWe/4jn/YwNoYi/C5z eypn8M1gsWEccpCpqPBwznVm9T29rF4uOlcMvqLEkHfTpaL1EKUUjP1lXPz/ileP 6a2RdOGxAhyTiFC9fjy+wkkjtLbn1kZf6YsS0hjphP9+w0chNbdn0w81dFVnXryd j7XYI8R/bFAthNsJOuZXSEjCfIHxvTTG74OrTf1B1FEBB+arPmrgUeJftMVhffQK Sowgg8L/Ii/x6fgV5NZQVSIyVf1rp8z7c6UaHT4Fwb0+RAMW8p9pYv9Qp1YkKp8y 5j0V9UzOHP7FRaYimZ5BtwQoqiZXYylQ+VuU/Y2f4X85cvlLzSqxaEMAPA== =mqOV -----END PGP SIGNATURE----- Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm Pull kvm updates from Paolo Bonzini: "S390: - Changes to FPU handling came in via the main s390 pull request - Only deliver to the guest the SCLP events that userspace has requested - More virtual vs physical address fixes (only a cleanup since virtual and physical address spaces are currently the same) - Fix selftests undefined behavior x86: - Fix a restriction that the guest can't program a PMU event whose encoding matches an architectural event that isn't included in the guest CPUID. The enumeration of an architectural event only says that if a CPU supports an architectural event, then the event can be programmed *using the architectural encoding*. The enumeration does NOT say anything about the encoding when the CPU doesn't report support the event *in general*. It might support it, and it might support it using the same encoding that made it into the architectural PMU spec - Fix a variety of bugs in KVM's emulation of RDPMC (more details on individual commits) and add a selftest to verify KVM correctly emulates RDMPC, counter availability, and a variety of other PMC-related behaviors that depend on guest CPUID and therefore are easier to validate with selftests than with custom guests (aka kvm-unit-tests) - Zero out PMU state on AMD if the virtual PMU is disabled, it does not cause any bug but it wastes time in various cases where KVM would check if a PMC event needs to be synthesized - Optimize triggering of emulated events, with a nice ~10% performance improvement in VM-Exit microbenchmarks when a vPMU is exposed to the guest - Tighten the check for "PMI in guest" to reduce false positives if an NMI arrives in the host while KVM is handling an IRQ VM-Exit - Fix a bug where KVM would report stale/bogus exit qualification information when exiting to userspace with an internal error exit code - Add a VMX flag in /proc/cpuinfo to report 5-level EPT support - Rework TDP MMU root unload, free, and alloc to run with mmu_lock held for read, e.g. to avoid serializing vCPUs when userspace deletes a memslot - Tear down TDP MMU page tables at 4KiB granularity (used to be 1GiB). KVM doesn't support yielding in the middle of processing a zap, and 1GiB granularity resulted in multi-millisecond lags that are quite impolite for CONFIG_PREEMPT kernels - Allocate write-tracking metadata on-demand to avoid the memory overhead when a kernel is built with i915 virtualization support but the workloads use neither shadow paging nor i915 virtualization - Explicitly initialize a variety of on-stack variables in the emulator that triggered KMSAN false positives - Fix the debugregs ABI for 32-bit KVM - Rework the "force immediate exit" code so that vendor code ultimately decides how and when to force the exit, which allowed some optimization for both Intel and AMD - Fix a long-standing bug where kvm_has_noapic_vcpu could be left elevated if vCPU creation ultimately failed, causing extra unnecessary work - Cleanup the logic for checking if the currently loaded vCPU is in-kernel - Harden against underflowing the active mmu_notifier invalidation count, so that "bad" invalidations (usually due to bugs elsehwere in the kernel) are detected earlier and are less likely to hang the kernel x86 Xen emulation: - Overlay pages can now be cached based on host virtual address, instead of guest physical addresses. This removes the need to reconfigure and invalidate the cache if the guest changes the gpa but the underlying host virtual address remains the same - When possible, use a single host TSC value when computing the deadline for Xen timers in order to improve the accuracy of the timer emulation - Inject pending upcall events when the vCPU software-enables its APIC to fix a bug where an upcall can be lost (and to follow Xen's behavior) - Fall back to the slow path instead of warning if "fast" IRQ delivery of Xen events fails, e.g. if the guest has aliased xAPIC IDs RISC-V: - Support exception and interrupt handling in selftests - New self test for RISC-V architectural timer (Sstc extension) - New extension support (Ztso, Zacas) - Support userspace emulation of random number seed CSRs ARM: - Infrastructure for building KVM's trap configuration based on the architectural features (or lack thereof) advertised in the VM's ID registers - Support for mapping vfio-pci BARs as Normal-NC (vaguely similar to x86's WC) at stage-2, improving the performance of interacting with assigned devices that can tolerate it - Conversion of KVM's representation of LPIs to an xarray, utilized to address serialization some of the serialization on the LPI injection path - Support for _architectural_ VHE-only systems, advertised through the absence of FEAT_E2H0 in the CPU's ID register - Miscellaneous cleanups, fixes, and spelling corrections to KVM and selftests LoongArch: - Set reserved bits as zero in CPUCFG - Start SW timer only when vcpu is blocking - Do not restart SW timer when it is expired - Remove unnecessary CSR register saving during enter guest - Misc cleanups and fixes as usual Generic: - Clean up Kconfig by removing CONFIG_HAVE_KVM, which was basically always true on all architectures except MIPS (where Kconfig determines the available depending on CPU capabilities). It is replaced either by an architecture-dependent symbol for MIPS, and IS_ENABLED(CONFIG_KVM) everywhere else - Factor common "select" statements in common code instead of requiring each architecture to specify it - Remove thoroughly obsolete APIs from the uapi headers - Move architecture-dependent stuff to uapi/asm/kvm.h - Always flush the async page fault workqueue when a work item is being removed, especially during vCPU destruction, to ensure that there are no workers running in KVM code when all references to KVM-the-module are gone, i.e. to prevent a very unlikely use-after-free if kvm.ko is unloaded - Grab a reference to the VM's mm_struct in the async #PF worker itself instead of gifting the worker a reference, so that there's no need to remember to *conditionally* clean up after the worker Selftests: - Reduce boilerplate especially when utilize selftest TAP infrastructure - Add basic smoke tests for SEV and SEV-ES, along with a pile of library support for handling private/encrypted/protected memory - Fix benign bugs where tests neglect to close() guest_memfd files" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (246 commits) selftests: kvm: remove meaningless assignments in Makefiles KVM: riscv: selftests: Add Zacas extension to get-reg-list test RISC-V: KVM: Allow Zacas extension for Guest/VM KVM: riscv: selftests: Add Ztso extension to get-reg-list test RISC-V: KVM: Allow Ztso extension for Guest/VM RISC-V: KVM: Forward SEED CSR access to user space KVM: riscv: selftests: Add sstc timer test KVM: riscv: selftests: Change vcpu_has_ext to a common function KVM: riscv: selftests: Add guest helper to get vcpu id KVM: riscv: selftests: Add exception handling support LoongArch: KVM: Remove unnecessary CSR register saving during enter guest LoongArch: KVM: Do not restart SW timer when it is expired LoongArch: KVM: Start SW timer only when vcpu is blocking LoongArch: KVM: Set reserved bits as zero in CPUCFG KVM: selftests: Explicitly close guest_memfd files in some gmem tests KVM: x86/xen: fix recursive deadlock in timer injection KVM: pfncache: simplify locking and make more self-contained KVM: x86/xen: remove WARN_ON_ONCE() with false positives in evtchn delivery KVM: x86/xen: inject vCPU upcall vector when local APIC is enabled KVM: x86/xen: improve accuracy of Xen timers ...
1616 lines
44 KiB
C
1616 lines
44 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* guest access functions
|
|
*
|
|
* Copyright IBM Corp. 2014
|
|
*
|
|
*/
|
|
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/mm_types.h>
|
|
#include <linux/err.h>
|
|
#include <linux/pgtable.h>
|
|
#include <linux/bitfield.h>
|
|
#include <asm/access-regs.h>
|
|
#include <asm/fault.h>
|
|
#include <asm/gmap.h>
|
|
#include "kvm-s390.h"
|
|
#include "gaccess.h"
|
|
|
|
union asce {
|
|
unsigned long val;
|
|
struct {
|
|
unsigned long origin : 52; /* Region- or Segment-Table Origin */
|
|
unsigned long : 2;
|
|
unsigned long g : 1; /* Subspace Group Control */
|
|
unsigned long p : 1; /* Private Space Control */
|
|
unsigned long s : 1; /* Storage-Alteration-Event Control */
|
|
unsigned long x : 1; /* Space-Switch-Event Control */
|
|
unsigned long r : 1; /* Real-Space Control */
|
|
unsigned long : 1;
|
|
unsigned long dt : 2; /* Designation-Type Control */
|
|
unsigned long tl : 2; /* Region- or Segment-Table Length */
|
|
};
|
|
};
|
|
|
|
enum {
|
|
ASCE_TYPE_SEGMENT = 0,
|
|
ASCE_TYPE_REGION3 = 1,
|
|
ASCE_TYPE_REGION2 = 2,
|
|
ASCE_TYPE_REGION1 = 3
|
|
};
|
|
|
|
union region1_table_entry {
|
|
unsigned long val;
|
|
struct {
|
|
unsigned long rto: 52;/* Region-Table Origin */
|
|
unsigned long : 2;
|
|
unsigned long p : 1; /* DAT-Protection Bit */
|
|
unsigned long : 1;
|
|
unsigned long tf : 2; /* Region-Second-Table Offset */
|
|
unsigned long i : 1; /* Region-Invalid Bit */
|
|
unsigned long : 1;
|
|
unsigned long tt : 2; /* Table-Type Bits */
|
|
unsigned long tl : 2; /* Region-Second-Table Length */
|
|
};
|
|
};
|
|
|
|
union region2_table_entry {
|
|
unsigned long val;
|
|
struct {
|
|
unsigned long rto: 52;/* Region-Table Origin */
|
|
unsigned long : 2;
|
|
unsigned long p : 1; /* DAT-Protection Bit */
|
|
unsigned long : 1;
|
|
unsigned long tf : 2; /* Region-Third-Table Offset */
|
|
unsigned long i : 1; /* Region-Invalid Bit */
|
|
unsigned long : 1;
|
|
unsigned long tt : 2; /* Table-Type Bits */
|
|
unsigned long tl : 2; /* Region-Third-Table Length */
|
|
};
|
|
};
|
|
|
|
struct region3_table_entry_fc0 {
|
|
unsigned long sto: 52;/* Segment-Table Origin */
|
|
unsigned long : 1;
|
|
unsigned long fc : 1; /* Format-Control */
|
|
unsigned long p : 1; /* DAT-Protection Bit */
|
|
unsigned long : 1;
|
|
unsigned long tf : 2; /* Segment-Table Offset */
|
|
unsigned long i : 1; /* Region-Invalid Bit */
|
|
unsigned long cr : 1; /* Common-Region Bit */
|
|
unsigned long tt : 2; /* Table-Type Bits */
|
|
unsigned long tl : 2; /* Segment-Table Length */
|
|
};
|
|
|
|
struct region3_table_entry_fc1 {
|
|
unsigned long rfaa : 33; /* Region-Frame Absolute Address */
|
|
unsigned long : 14;
|
|
unsigned long av : 1; /* ACCF-Validity Control */
|
|
unsigned long acc: 4; /* Access-Control Bits */
|
|
unsigned long f : 1; /* Fetch-Protection Bit */
|
|
unsigned long fc : 1; /* Format-Control */
|
|
unsigned long p : 1; /* DAT-Protection Bit */
|
|
unsigned long iep: 1; /* Instruction-Execution-Protection */
|
|
unsigned long : 2;
|
|
unsigned long i : 1; /* Region-Invalid Bit */
|
|
unsigned long cr : 1; /* Common-Region Bit */
|
|
unsigned long tt : 2; /* Table-Type Bits */
|
|
unsigned long : 2;
|
|
};
|
|
|
|
union region3_table_entry {
|
|
unsigned long val;
|
|
struct region3_table_entry_fc0 fc0;
|
|
struct region3_table_entry_fc1 fc1;
|
|
struct {
|
|
unsigned long : 53;
|
|
unsigned long fc : 1; /* Format-Control */
|
|
unsigned long : 4;
|
|
unsigned long i : 1; /* Region-Invalid Bit */
|
|
unsigned long cr : 1; /* Common-Region Bit */
|
|
unsigned long tt : 2; /* Table-Type Bits */
|
|
unsigned long : 2;
|
|
};
|
|
};
|
|
|
|
struct segment_entry_fc0 {
|
|
unsigned long pto: 53;/* Page-Table Origin */
|
|
unsigned long fc : 1; /* Format-Control */
|
|
unsigned long p : 1; /* DAT-Protection Bit */
|
|
unsigned long : 3;
|
|
unsigned long i : 1; /* Segment-Invalid Bit */
|
|
unsigned long cs : 1; /* Common-Segment Bit */
|
|
unsigned long tt : 2; /* Table-Type Bits */
|
|
unsigned long : 2;
|
|
};
|
|
|
|
struct segment_entry_fc1 {
|
|
unsigned long sfaa : 44; /* Segment-Frame Absolute Address */
|
|
unsigned long : 3;
|
|
unsigned long av : 1; /* ACCF-Validity Control */
|
|
unsigned long acc: 4; /* Access-Control Bits */
|
|
unsigned long f : 1; /* Fetch-Protection Bit */
|
|
unsigned long fc : 1; /* Format-Control */
|
|
unsigned long p : 1; /* DAT-Protection Bit */
|
|
unsigned long iep: 1; /* Instruction-Execution-Protection */
|
|
unsigned long : 2;
|
|
unsigned long i : 1; /* Segment-Invalid Bit */
|
|
unsigned long cs : 1; /* Common-Segment Bit */
|
|
unsigned long tt : 2; /* Table-Type Bits */
|
|
unsigned long : 2;
|
|
};
|
|
|
|
union segment_table_entry {
|
|
unsigned long val;
|
|
struct segment_entry_fc0 fc0;
|
|
struct segment_entry_fc1 fc1;
|
|
struct {
|
|
unsigned long : 53;
|
|
unsigned long fc : 1; /* Format-Control */
|
|
unsigned long : 4;
|
|
unsigned long i : 1; /* Segment-Invalid Bit */
|
|
unsigned long cs : 1; /* Common-Segment Bit */
|
|
unsigned long tt : 2; /* Table-Type Bits */
|
|
unsigned long : 2;
|
|
};
|
|
};
|
|
|
|
enum {
|
|
TABLE_TYPE_SEGMENT = 0,
|
|
TABLE_TYPE_REGION3 = 1,
|
|
TABLE_TYPE_REGION2 = 2,
|
|
TABLE_TYPE_REGION1 = 3
|
|
};
|
|
|
|
union page_table_entry {
|
|
unsigned long val;
|
|
struct {
|
|
unsigned long pfra : 52; /* Page-Frame Real Address */
|
|
unsigned long z : 1; /* Zero Bit */
|
|
unsigned long i : 1; /* Page-Invalid Bit */
|
|
unsigned long p : 1; /* DAT-Protection Bit */
|
|
unsigned long iep: 1; /* Instruction-Execution-Protection */
|
|
unsigned long : 8;
|
|
};
|
|
};
|
|
|
|
/*
|
|
* vaddress union in order to easily decode a virtual address into its
|
|
* region first index, region second index etc. parts.
|
|
*/
|
|
union vaddress {
|
|
unsigned long addr;
|
|
struct {
|
|
unsigned long rfx : 11;
|
|
unsigned long rsx : 11;
|
|
unsigned long rtx : 11;
|
|
unsigned long sx : 11;
|
|
unsigned long px : 8;
|
|
unsigned long bx : 12;
|
|
};
|
|
struct {
|
|
unsigned long rfx01 : 2;
|
|
unsigned long : 9;
|
|
unsigned long rsx01 : 2;
|
|
unsigned long : 9;
|
|
unsigned long rtx01 : 2;
|
|
unsigned long : 9;
|
|
unsigned long sx01 : 2;
|
|
unsigned long : 29;
|
|
};
|
|
};
|
|
|
|
/*
|
|
* raddress union which will contain the result (real or absolute address)
|
|
* after a page table walk. The rfaa, sfaa and pfra members are used to
|
|
* simply assign them the value of a region, segment or page table entry.
|
|
*/
|
|
union raddress {
|
|
unsigned long addr;
|
|
unsigned long rfaa : 33; /* Region-Frame Absolute Address */
|
|
unsigned long sfaa : 44; /* Segment-Frame Absolute Address */
|
|
unsigned long pfra : 52; /* Page-Frame Real Address */
|
|
};
|
|
|
|
union alet {
|
|
u32 val;
|
|
struct {
|
|
u32 reserved : 7;
|
|
u32 p : 1;
|
|
u32 alesn : 8;
|
|
u32 alen : 16;
|
|
};
|
|
};
|
|
|
|
union ald {
|
|
u32 val;
|
|
struct {
|
|
u32 : 1;
|
|
u32 alo : 24;
|
|
u32 all : 7;
|
|
};
|
|
};
|
|
|
|
struct ale {
|
|
unsigned long i : 1; /* ALEN-Invalid Bit */
|
|
unsigned long : 5;
|
|
unsigned long fo : 1; /* Fetch-Only Bit */
|
|
unsigned long p : 1; /* Private Bit */
|
|
unsigned long alesn : 8; /* Access-List-Entry Sequence Number */
|
|
unsigned long aleax : 16; /* Access-List-Entry Authorization Index */
|
|
unsigned long : 32;
|
|
unsigned long : 1;
|
|
unsigned long asteo : 25; /* ASN-Second-Table-Entry Origin */
|
|
unsigned long : 6;
|
|
unsigned long astesn : 32; /* ASTE Sequence Number */
|
|
};
|
|
|
|
struct aste {
|
|
unsigned long i : 1; /* ASX-Invalid Bit */
|
|
unsigned long ato : 29; /* Authority-Table Origin */
|
|
unsigned long : 1;
|
|
unsigned long b : 1; /* Base-Space Bit */
|
|
unsigned long ax : 16; /* Authorization Index */
|
|
unsigned long atl : 12; /* Authority-Table Length */
|
|
unsigned long : 2;
|
|
unsigned long ca : 1; /* Controlled-ASN Bit */
|
|
unsigned long ra : 1; /* Reusable-ASN Bit */
|
|
unsigned long asce : 64; /* Address-Space-Control Element */
|
|
unsigned long ald : 32;
|
|
unsigned long astesn : 32;
|
|
/* .. more fields there */
|
|
};
|
|
|
|
int ipte_lock_held(struct kvm *kvm)
|
|
{
|
|
if (sclp.has_siif) {
|
|
int rc;
|
|
|
|
read_lock(&kvm->arch.sca_lock);
|
|
rc = kvm_s390_get_ipte_control(kvm)->kh != 0;
|
|
read_unlock(&kvm->arch.sca_lock);
|
|
return rc;
|
|
}
|
|
return kvm->arch.ipte_lock_count != 0;
|
|
}
|
|
|
|
static void ipte_lock_simple(struct kvm *kvm)
|
|
{
|
|
union ipte_control old, new, *ic;
|
|
|
|
mutex_lock(&kvm->arch.ipte_mutex);
|
|
kvm->arch.ipte_lock_count++;
|
|
if (kvm->arch.ipte_lock_count > 1)
|
|
goto out;
|
|
retry:
|
|
read_lock(&kvm->arch.sca_lock);
|
|
ic = kvm_s390_get_ipte_control(kvm);
|
|
do {
|
|
old = READ_ONCE(*ic);
|
|
if (old.k) {
|
|
read_unlock(&kvm->arch.sca_lock);
|
|
cond_resched();
|
|
goto retry;
|
|
}
|
|
new = old;
|
|
new.k = 1;
|
|
} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
|
|
read_unlock(&kvm->arch.sca_lock);
|
|
out:
|
|
mutex_unlock(&kvm->arch.ipte_mutex);
|
|
}
|
|
|
|
static void ipte_unlock_simple(struct kvm *kvm)
|
|
{
|
|
union ipte_control old, new, *ic;
|
|
|
|
mutex_lock(&kvm->arch.ipte_mutex);
|
|
kvm->arch.ipte_lock_count--;
|
|
if (kvm->arch.ipte_lock_count)
|
|
goto out;
|
|
read_lock(&kvm->arch.sca_lock);
|
|
ic = kvm_s390_get_ipte_control(kvm);
|
|
do {
|
|
old = READ_ONCE(*ic);
|
|
new = old;
|
|
new.k = 0;
|
|
} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
|
|
read_unlock(&kvm->arch.sca_lock);
|
|
wake_up(&kvm->arch.ipte_wq);
|
|
out:
|
|
mutex_unlock(&kvm->arch.ipte_mutex);
|
|
}
|
|
|
|
static void ipte_lock_siif(struct kvm *kvm)
|
|
{
|
|
union ipte_control old, new, *ic;
|
|
|
|
retry:
|
|
read_lock(&kvm->arch.sca_lock);
|
|
ic = kvm_s390_get_ipte_control(kvm);
|
|
do {
|
|
old = READ_ONCE(*ic);
|
|
if (old.kg) {
|
|
read_unlock(&kvm->arch.sca_lock);
|
|
cond_resched();
|
|
goto retry;
|
|
}
|
|
new = old;
|
|
new.k = 1;
|
|
new.kh++;
|
|
} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
|
|
read_unlock(&kvm->arch.sca_lock);
|
|
}
|
|
|
|
static void ipte_unlock_siif(struct kvm *kvm)
|
|
{
|
|
union ipte_control old, new, *ic;
|
|
|
|
read_lock(&kvm->arch.sca_lock);
|
|
ic = kvm_s390_get_ipte_control(kvm);
|
|
do {
|
|
old = READ_ONCE(*ic);
|
|
new = old;
|
|
new.kh--;
|
|
if (!new.kh)
|
|
new.k = 0;
|
|
} while (cmpxchg(&ic->val, old.val, new.val) != old.val);
|
|
read_unlock(&kvm->arch.sca_lock);
|
|
if (!new.kh)
|
|
wake_up(&kvm->arch.ipte_wq);
|
|
}
|
|
|
|
void ipte_lock(struct kvm *kvm)
|
|
{
|
|
if (sclp.has_siif)
|
|
ipte_lock_siif(kvm);
|
|
else
|
|
ipte_lock_simple(kvm);
|
|
}
|
|
|
|
void ipte_unlock(struct kvm *kvm)
|
|
{
|
|
if (sclp.has_siif)
|
|
ipte_unlock_siif(kvm);
|
|
else
|
|
ipte_unlock_simple(kvm);
|
|
}
|
|
|
|
static int ar_translation(struct kvm_vcpu *vcpu, union asce *asce, u8 ar,
|
|
enum gacc_mode mode)
|
|
{
|
|
union alet alet;
|
|
struct ale ale;
|
|
struct aste aste;
|
|
unsigned long ald_addr, authority_table_addr;
|
|
union ald ald;
|
|
int eax, rc;
|
|
u8 authority_table;
|
|
|
|
if (ar >= NUM_ACRS)
|
|
return -EINVAL;
|
|
|
|
if (vcpu->arch.acrs_loaded)
|
|
save_access_regs(vcpu->run->s.regs.acrs);
|
|
alet.val = vcpu->run->s.regs.acrs[ar];
|
|
|
|
if (ar == 0 || alet.val == 0) {
|
|
asce->val = vcpu->arch.sie_block->gcr[1];
|
|
return 0;
|
|
} else if (alet.val == 1) {
|
|
asce->val = vcpu->arch.sie_block->gcr[7];
|
|
return 0;
|
|
}
|
|
|
|
if (alet.reserved)
|
|
return PGM_ALET_SPECIFICATION;
|
|
|
|
if (alet.p)
|
|
ald_addr = vcpu->arch.sie_block->gcr[5];
|
|
else
|
|
ald_addr = vcpu->arch.sie_block->gcr[2];
|
|
ald_addr &= 0x7fffffc0;
|
|
|
|
rc = read_guest_real(vcpu, ald_addr + 16, &ald.val, sizeof(union ald));
|
|
if (rc)
|
|
return rc;
|
|
|
|
if (alet.alen / 8 > ald.all)
|
|
return PGM_ALEN_TRANSLATION;
|
|
|
|
if (0x7fffffff - ald.alo * 128 < alet.alen * 16)
|
|
return PGM_ADDRESSING;
|
|
|
|
rc = read_guest_real(vcpu, ald.alo * 128 + alet.alen * 16, &ale,
|
|
sizeof(struct ale));
|
|
if (rc)
|
|
return rc;
|
|
|
|
if (ale.i == 1)
|
|
return PGM_ALEN_TRANSLATION;
|
|
if (ale.alesn != alet.alesn)
|
|
return PGM_ALE_SEQUENCE;
|
|
|
|
rc = read_guest_real(vcpu, ale.asteo * 64, &aste, sizeof(struct aste));
|
|
if (rc)
|
|
return rc;
|
|
|
|
if (aste.i)
|
|
return PGM_ASTE_VALIDITY;
|
|
if (aste.astesn != ale.astesn)
|
|
return PGM_ASTE_SEQUENCE;
|
|
|
|
if (ale.p == 1) {
|
|
eax = (vcpu->arch.sie_block->gcr[8] >> 16) & 0xffff;
|
|
if (ale.aleax != eax) {
|
|
if (eax / 16 > aste.atl)
|
|
return PGM_EXTENDED_AUTHORITY;
|
|
|
|
authority_table_addr = aste.ato * 4 + eax / 4;
|
|
|
|
rc = read_guest_real(vcpu, authority_table_addr,
|
|
&authority_table,
|
|
sizeof(u8));
|
|
if (rc)
|
|
return rc;
|
|
|
|
if ((authority_table & (0x40 >> ((eax & 3) * 2))) == 0)
|
|
return PGM_EXTENDED_AUTHORITY;
|
|
}
|
|
}
|
|
|
|
if (ale.fo == 1 && mode == GACC_STORE)
|
|
return PGM_PROTECTION;
|
|
|
|
asce->val = aste.asce;
|
|
return 0;
|
|
}
|
|
|
|
enum prot_type {
|
|
PROT_TYPE_LA = 0,
|
|
PROT_TYPE_KEYC = 1,
|
|
PROT_TYPE_ALC = 2,
|
|
PROT_TYPE_DAT = 3,
|
|
PROT_TYPE_IEP = 4,
|
|
/* Dummy value for passing an initialized value when code != PGM_PROTECTION */
|
|
PROT_NONE,
|
|
};
|
|
|
|
static int trans_exc_ending(struct kvm_vcpu *vcpu, int code, unsigned long gva, u8 ar,
|
|
enum gacc_mode mode, enum prot_type prot, bool terminate)
|
|
{
|
|
struct kvm_s390_pgm_info *pgm = &vcpu->arch.pgm;
|
|
union teid *teid;
|
|
|
|
memset(pgm, 0, sizeof(*pgm));
|
|
pgm->code = code;
|
|
teid = (union teid *)&pgm->trans_exc_code;
|
|
|
|
switch (code) {
|
|
case PGM_PROTECTION:
|
|
switch (prot) {
|
|
case PROT_NONE:
|
|
/* We should never get here, acts like termination */
|
|
WARN_ON_ONCE(1);
|
|
break;
|
|
case PROT_TYPE_IEP:
|
|
teid->b61 = 1;
|
|
fallthrough;
|
|
case PROT_TYPE_LA:
|
|
teid->b56 = 1;
|
|
break;
|
|
case PROT_TYPE_KEYC:
|
|
teid->b60 = 1;
|
|
break;
|
|
case PROT_TYPE_ALC:
|
|
teid->b60 = 1;
|
|
fallthrough;
|
|
case PROT_TYPE_DAT:
|
|
teid->b61 = 1;
|
|
break;
|
|
}
|
|
if (terminate) {
|
|
teid->b56 = 0;
|
|
teid->b60 = 0;
|
|
teid->b61 = 0;
|
|
}
|
|
fallthrough;
|
|
case PGM_ASCE_TYPE:
|
|
case PGM_PAGE_TRANSLATION:
|
|
case PGM_REGION_FIRST_TRANS:
|
|
case PGM_REGION_SECOND_TRANS:
|
|
case PGM_REGION_THIRD_TRANS:
|
|
case PGM_SEGMENT_TRANSLATION:
|
|
/*
|
|
* op_access_id only applies to MOVE_PAGE -> set bit 61
|
|
* exc_access_id has to be set to 0 for some instructions. Both
|
|
* cases have to be handled by the caller.
|
|
*/
|
|
teid->addr = gva >> PAGE_SHIFT;
|
|
teid->fsi = mode == GACC_STORE ? TEID_FSI_STORE : TEID_FSI_FETCH;
|
|
teid->as = psw_bits(vcpu->arch.sie_block->gpsw).as;
|
|
fallthrough;
|
|
case PGM_ALEN_TRANSLATION:
|
|
case PGM_ALE_SEQUENCE:
|
|
case PGM_ASTE_VALIDITY:
|
|
case PGM_ASTE_SEQUENCE:
|
|
case PGM_EXTENDED_AUTHORITY:
|
|
/*
|
|
* We can always store exc_access_id, as it is
|
|
* undefined for non-ar cases. It is undefined for
|
|
* most DAT protection exceptions.
|
|
*/
|
|
pgm->exc_access_id = ar;
|
|
break;
|
|
}
|
|
return code;
|
|
}
|
|
|
|
static int trans_exc(struct kvm_vcpu *vcpu, int code, unsigned long gva, u8 ar,
|
|
enum gacc_mode mode, enum prot_type prot)
|
|
{
|
|
return trans_exc_ending(vcpu, code, gva, ar, mode, prot, false);
|
|
}
|
|
|
|
static int get_vcpu_asce(struct kvm_vcpu *vcpu, union asce *asce,
|
|
unsigned long ga, u8 ar, enum gacc_mode mode)
|
|
{
|
|
int rc;
|
|
struct psw_bits psw = psw_bits(vcpu->arch.sie_block->gpsw);
|
|
|
|
if (!psw.dat) {
|
|
asce->val = 0;
|
|
asce->r = 1;
|
|
return 0;
|
|
}
|
|
|
|
if ((mode == GACC_IFETCH) && (psw.as != PSW_BITS_AS_HOME))
|
|
psw.as = PSW_BITS_AS_PRIMARY;
|
|
|
|
switch (psw.as) {
|
|
case PSW_BITS_AS_PRIMARY:
|
|
asce->val = vcpu->arch.sie_block->gcr[1];
|
|
return 0;
|
|
case PSW_BITS_AS_SECONDARY:
|
|
asce->val = vcpu->arch.sie_block->gcr[7];
|
|
return 0;
|
|
case PSW_BITS_AS_HOME:
|
|
asce->val = vcpu->arch.sie_block->gcr[13];
|
|
return 0;
|
|
case PSW_BITS_AS_ACCREG:
|
|
rc = ar_translation(vcpu, asce, ar, mode);
|
|
if (rc > 0)
|
|
return trans_exc(vcpu, rc, ga, ar, mode, PROT_TYPE_ALC);
|
|
return rc;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int deref_table(struct kvm *kvm, unsigned long gpa, unsigned long *val)
|
|
{
|
|
return kvm_read_guest(kvm, gpa, val, sizeof(*val));
|
|
}
|
|
|
|
/**
|
|
* guest_translate - translate a guest virtual into a guest absolute address
|
|
* @vcpu: virtual cpu
|
|
* @gva: guest virtual address
|
|
* @gpa: points to where guest physical (absolute) address should be stored
|
|
* @asce: effective asce
|
|
* @mode: indicates the access mode to be used
|
|
* @prot: returns the type for protection exceptions
|
|
*
|
|
* Translate a guest virtual address into a guest absolute address by means
|
|
* of dynamic address translation as specified by the architecture.
|
|
* If the resulting absolute address is not available in the configuration
|
|
* an addressing exception is indicated and @gpa will not be changed.
|
|
*
|
|
* Returns: - zero on success; @gpa contains the resulting absolute address
|
|
* - a negative value if guest access failed due to e.g. broken
|
|
* guest mapping
|
|
* - a positive value if an access exception happened. In this case
|
|
* the returned value is the program interruption code as defined
|
|
* by the architecture
|
|
*/
|
|
static unsigned long guest_translate(struct kvm_vcpu *vcpu, unsigned long gva,
|
|
unsigned long *gpa, const union asce asce,
|
|
enum gacc_mode mode, enum prot_type *prot)
|
|
{
|
|
union vaddress vaddr = {.addr = gva};
|
|
union raddress raddr = {.addr = gva};
|
|
union page_table_entry pte;
|
|
int dat_protection = 0;
|
|
int iep_protection = 0;
|
|
union ctlreg0 ctlreg0;
|
|
unsigned long ptr;
|
|
int edat1, edat2, iep;
|
|
|
|
ctlreg0.val = vcpu->arch.sie_block->gcr[0];
|
|
edat1 = ctlreg0.edat && test_kvm_facility(vcpu->kvm, 8);
|
|
edat2 = edat1 && test_kvm_facility(vcpu->kvm, 78);
|
|
iep = ctlreg0.iep && test_kvm_facility(vcpu->kvm, 130);
|
|
if (asce.r)
|
|
goto real_address;
|
|
ptr = asce.origin * PAGE_SIZE;
|
|
switch (asce.dt) {
|
|
case ASCE_TYPE_REGION1:
|
|
if (vaddr.rfx01 > asce.tl)
|
|
return PGM_REGION_FIRST_TRANS;
|
|
ptr += vaddr.rfx * 8;
|
|
break;
|
|
case ASCE_TYPE_REGION2:
|
|
if (vaddr.rfx)
|
|
return PGM_ASCE_TYPE;
|
|
if (vaddr.rsx01 > asce.tl)
|
|
return PGM_REGION_SECOND_TRANS;
|
|
ptr += vaddr.rsx * 8;
|
|
break;
|
|
case ASCE_TYPE_REGION3:
|
|
if (vaddr.rfx || vaddr.rsx)
|
|
return PGM_ASCE_TYPE;
|
|
if (vaddr.rtx01 > asce.tl)
|
|
return PGM_REGION_THIRD_TRANS;
|
|
ptr += vaddr.rtx * 8;
|
|
break;
|
|
case ASCE_TYPE_SEGMENT:
|
|
if (vaddr.rfx || vaddr.rsx || vaddr.rtx)
|
|
return PGM_ASCE_TYPE;
|
|
if (vaddr.sx01 > asce.tl)
|
|
return PGM_SEGMENT_TRANSLATION;
|
|
ptr += vaddr.sx * 8;
|
|
break;
|
|
}
|
|
switch (asce.dt) {
|
|
case ASCE_TYPE_REGION1: {
|
|
union region1_table_entry rfte;
|
|
|
|
if (!kvm_is_gpa_in_memslot(vcpu->kvm, ptr))
|
|
return PGM_ADDRESSING;
|
|
if (deref_table(vcpu->kvm, ptr, &rfte.val))
|
|
return -EFAULT;
|
|
if (rfte.i)
|
|
return PGM_REGION_FIRST_TRANS;
|
|
if (rfte.tt != TABLE_TYPE_REGION1)
|
|
return PGM_TRANSLATION_SPEC;
|
|
if (vaddr.rsx01 < rfte.tf || vaddr.rsx01 > rfte.tl)
|
|
return PGM_REGION_SECOND_TRANS;
|
|
if (edat1)
|
|
dat_protection |= rfte.p;
|
|
ptr = rfte.rto * PAGE_SIZE + vaddr.rsx * 8;
|
|
}
|
|
fallthrough;
|
|
case ASCE_TYPE_REGION2: {
|
|
union region2_table_entry rste;
|
|
|
|
if (!kvm_is_gpa_in_memslot(vcpu->kvm, ptr))
|
|
return PGM_ADDRESSING;
|
|
if (deref_table(vcpu->kvm, ptr, &rste.val))
|
|
return -EFAULT;
|
|
if (rste.i)
|
|
return PGM_REGION_SECOND_TRANS;
|
|
if (rste.tt != TABLE_TYPE_REGION2)
|
|
return PGM_TRANSLATION_SPEC;
|
|
if (vaddr.rtx01 < rste.tf || vaddr.rtx01 > rste.tl)
|
|
return PGM_REGION_THIRD_TRANS;
|
|
if (edat1)
|
|
dat_protection |= rste.p;
|
|
ptr = rste.rto * PAGE_SIZE + vaddr.rtx * 8;
|
|
}
|
|
fallthrough;
|
|
case ASCE_TYPE_REGION3: {
|
|
union region3_table_entry rtte;
|
|
|
|
if (!kvm_is_gpa_in_memslot(vcpu->kvm, ptr))
|
|
return PGM_ADDRESSING;
|
|
if (deref_table(vcpu->kvm, ptr, &rtte.val))
|
|
return -EFAULT;
|
|
if (rtte.i)
|
|
return PGM_REGION_THIRD_TRANS;
|
|
if (rtte.tt != TABLE_TYPE_REGION3)
|
|
return PGM_TRANSLATION_SPEC;
|
|
if (rtte.cr && asce.p && edat2)
|
|
return PGM_TRANSLATION_SPEC;
|
|
if (rtte.fc && edat2) {
|
|
dat_protection |= rtte.fc1.p;
|
|
iep_protection = rtte.fc1.iep;
|
|
raddr.rfaa = rtte.fc1.rfaa;
|
|
goto absolute_address;
|
|
}
|
|
if (vaddr.sx01 < rtte.fc0.tf)
|
|
return PGM_SEGMENT_TRANSLATION;
|
|
if (vaddr.sx01 > rtte.fc0.tl)
|
|
return PGM_SEGMENT_TRANSLATION;
|
|
if (edat1)
|
|
dat_protection |= rtte.fc0.p;
|
|
ptr = rtte.fc0.sto * PAGE_SIZE + vaddr.sx * 8;
|
|
}
|
|
fallthrough;
|
|
case ASCE_TYPE_SEGMENT: {
|
|
union segment_table_entry ste;
|
|
|
|
if (!kvm_is_gpa_in_memslot(vcpu->kvm, ptr))
|
|
return PGM_ADDRESSING;
|
|
if (deref_table(vcpu->kvm, ptr, &ste.val))
|
|
return -EFAULT;
|
|
if (ste.i)
|
|
return PGM_SEGMENT_TRANSLATION;
|
|
if (ste.tt != TABLE_TYPE_SEGMENT)
|
|
return PGM_TRANSLATION_SPEC;
|
|
if (ste.cs && asce.p)
|
|
return PGM_TRANSLATION_SPEC;
|
|
if (ste.fc && edat1) {
|
|
dat_protection |= ste.fc1.p;
|
|
iep_protection = ste.fc1.iep;
|
|
raddr.sfaa = ste.fc1.sfaa;
|
|
goto absolute_address;
|
|
}
|
|
dat_protection |= ste.fc0.p;
|
|
ptr = ste.fc0.pto * (PAGE_SIZE / 2) + vaddr.px * 8;
|
|
}
|
|
}
|
|
if (!kvm_is_gpa_in_memslot(vcpu->kvm, ptr))
|
|
return PGM_ADDRESSING;
|
|
if (deref_table(vcpu->kvm, ptr, &pte.val))
|
|
return -EFAULT;
|
|
if (pte.i)
|
|
return PGM_PAGE_TRANSLATION;
|
|
if (pte.z)
|
|
return PGM_TRANSLATION_SPEC;
|
|
dat_protection |= pte.p;
|
|
iep_protection = pte.iep;
|
|
raddr.pfra = pte.pfra;
|
|
real_address:
|
|
raddr.addr = kvm_s390_real_to_abs(vcpu, raddr.addr);
|
|
absolute_address:
|
|
if (mode == GACC_STORE && dat_protection) {
|
|
*prot = PROT_TYPE_DAT;
|
|
return PGM_PROTECTION;
|
|
}
|
|
if (mode == GACC_IFETCH && iep_protection && iep) {
|
|
*prot = PROT_TYPE_IEP;
|
|
return PGM_PROTECTION;
|
|
}
|
|
if (!kvm_is_gpa_in_memslot(vcpu->kvm, raddr.addr))
|
|
return PGM_ADDRESSING;
|
|
*gpa = raddr.addr;
|
|
return 0;
|
|
}
|
|
|
|
static inline int is_low_address(unsigned long ga)
|
|
{
|
|
/* Check for address ranges 0..511 and 4096..4607 */
|
|
return (ga & ~0x11fful) == 0;
|
|
}
|
|
|
|
static int low_address_protection_enabled(struct kvm_vcpu *vcpu,
|
|
const union asce asce)
|
|
{
|
|
union ctlreg0 ctlreg0 = {.val = vcpu->arch.sie_block->gcr[0]};
|
|
psw_t *psw = &vcpu->arch.sie_block->gpsw;
|
|
|
|
if (!ctlreg0.lap)
|
|
return 0;
|
|
if (psw_bits(*psw).dat && asce.p)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
static int vm_check_access_key(struct kvm *kvm, u8 access_key,
|
|
enum gacc_mode mode, gpa_t gpa)
|
|
{
|
|
u8 storage_key, access_control;
|
|
bool fetch_protected;
|
|
unsigned long hva;
|
|
int r;
|
|
|
|
if (access_key == 0)
|
|
return 0;
|
|
|
|
hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
|
|
if (kvm_is_error_hva(hva))
|
|
return PGM_ADDRESSING;
|
|
|
|
mmap_read_lock(current->mm);
|
|
r = get_guest_storage_key(current->mm, hva, &storage_key);
|
|
mmap_read_unlock(current->mm);
|
|
if (r)
|
|
return r;
|
|
access_control = FIELD_GET(_PAGE_ACC_BITS, storage_key);
|
|
if (access_control == access_key)
|
|
return 0;
|
|
fetch_protected = storage_key & _PAGE_FP_BIT;
|
|
if ((mode == GACC_FETCH || mode == GACC_IFETCH) && !fetch_protected)
|
|
return 0;
|
|
return PGM_PROTECTION;
|
|
}
|
|
|
|
static bool fetch_prot_override_applicable(struct kvm_vcpu *vcpu, enum gacc_mode mode,
|
|
union asce asce)
|
|
{
|
|
psw_t *psw = &vcpu->arch.sie_block->gpsw;
|
|
unsigned long override;
|
|
|
|
if (mode == GACC_FETCH || mode == GACC_IFETCH) {
|
|
/* check if fetch protection override enabled */
|
|
override = vcpu->arch.sie_block->gcr[0];
|
|
override &= CR0_FETCH_PROTECTION_OVERRIDE;
|
|
/* not applicable if subject to DAT && private space */
|
|
override = override && !(psw_bits(*psw).dat && asce.p);
|
|
return override;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool fetch_prot_override_applies(unsigned long ga, unsigned int len)
|
|
{
|
|
return ga < 2048 && ga + len <= 2048;
|
|
}
|
|
|
|
static bool storage_prot_override_applicable(struct kvm_vcpu *vcpu)
|
|
{
|
|
/* check if storage protection override enabled */
|
|
return vcpu->arch.sie_block->gcr[0] & CR0_STORAGE_PROTECTION_OVERRIDE;
|
|
}
|
|
|
|
static bool storage_prot_override_applies(u8 access_control)
|
|
{
|
|
/* matches special storage protection override key (9) -> allow */
|
|
return access_control == PAGE_SPO_ACC;
|
|
}
|
|
|
|
static int vcpu_check_access_key(struct kvm_vcpu *vcpu, u8 access_key,
|
|
enum gacc_mode mode, union asce asce, gpa_t gpa,
|
|
unsigned long ga, unsigned int len)
|
|
{
|
|
u8 storage_key, access_control;
|
|
unsigned long hva;
|
|
int r;
|
|
|
|
/* access key 0 matches any storage key -> allow */
|
|
if (access_key == 0)
|
|
return 0;
|
|
/*
|
|
* caller needs to ensure that gfn is accessible, so we can
|
|
* assume that this cannot fail
|
|
*/
|
|
hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(gpa));
|
|
mmap_read_lock(current->mm);
|
|
r = get_guest_storage_key(current->mm, hva, &storage_key);
|
|
mmap_read_unlock(current->mm);
|
|
if (r)
|
|
return r;
|
|
access_control = FIELD_GET(_PAGE_ACC_BITS, storage_key);
|
|
/* access key matches storage key -> allow */
|
|
if (access_control == access_key)
|
|
return 0;
|
|
if (mode == GACC_FETCH || mode == GACC_IFETCH) {
|
|
/* it is a fetch and fetch protection is off -> allow */
|
|
if (!(storage_key & _PAGE_FP_BIT))
|
|
return 0;
|
|
if (fetch_prot_override_applicable(vcpu, mode, asce) &&
|
|
fetch_prot_override_applies(ga, len))
|
|
return 0;
|
|
}
|
|
if (storage_prot_override_applicable(vcpu) &&
|
|
storage_prot_override_applies(access_control))
|
|
return 0;
|
|
return PGM_PROTECTION;
|
|
}
|
|
|
|
/**
|
|
* guest_range_to_gpas() - Calculate guest physical addresses of page fragments
|
|
* covering a logical range
|
|
* @vcpu: virtual cpu
|
|
* @ga: guest address, start of range
|
|
* @ar: access register
|
|
* @gpas: output argument, may be NULL
|
|
* @len: length of range in bytes
|
|
* @asce: address-space-control element to use for translation
|
|
* @mode: access mode
|
|
* @access_key: access key to mach the range's storage keys against
|
|
*
|
|
* Translate a logical range to a series of guest absolute addresses,
|
|
* such that the concatenation of page fragments starting at each gpa make up
|
|
* the whole range.
|
|
* The translation is performed as if done by the cpu for the given @asce, @ar,
|
|
* @mode and state of the @vcpu.
|
|
* If the translation causes an exception, its program interruption code is
|
|
* returned and the &struct kvm_s390_pgm_info pgm member of @vcpu is modified
|
|
* such that a subsequent call to kvm_s390_inject_prog_vcpu() will inject
|
|
* a correct exception into the guest.
|
|
* The resulting gpas are stored into @gpas, unless it is NULL.
|
|
*
|
|
* Note: All fragments except the first one start at the beginning of a page.
|
|
* When deriving the boundaries of a fragment from a gpa, all but the last
|
|
* fragment end at the end of the page.
|
|
*
|
|
* Return:
|
|
* * 0 - success
|
|
* * <0 - translation could not be performed, for example if guest
|
|
* memory could not be accessed
|
|
* * >0 - an access exception occurred. In this case the returned value
|
|
* is the program interruption code and the contents of pgm may
|
|
* be used to inject an exception into the guest.
|
|
*/
|
|
static int guest_range_to_gpas(struct kvm_vcpu *vcpu, unsigned long ga, u8 ar,
|
|
unsigned long *gpas, unsigned long len,
|
|
const union asce asce, enum gacc_mode mode,
|
|
u8 access_key)
|
|
{
|
|
psw_t *psw = &vcpu->arch.sie_block->gpsw;
|
|
unsigned int offset = offset_in_page(ga);
|
|
unsigned int fragment_len;
|
|
int lap_enabled, rc = 0;
|
|
enum prot_type prot;
|
|
unsigned long gpa;
|
|
|
|
lap_enabled = low_address_protection_enabled(vcpu, asce);
|
|
while (min(PAGE_SIZE - offset, len) > 0) {
|
|
fragment_len = min(PAGE_SIZE - offset, len);
|
|
ga = kvm_s390_logical_to_effective(vcpu, ga);
|
|
if (mode == GACC_STORE && lap_enabled && is_low_address(ga))
|
|
return trans_exc(vcpu, PGM_PROTECTION, ga, ar, mode,
|
|
PROT_TYPE_LA);
|
|
if (psw_bits(*psw).dat) {
|
|
rc = guest_translate(vcpu, ga, &gpa, asce, mode, &prot);
|
|
if (rc < 0)
|
|
return rc;
|
|
} else {
|
|
gpa = kvm_s390_real_to_abs(vcpu, ga);
|
|
if (!kvm_is_gpa_in_memslot(vcpu->kvm, gpa)) {
|
|
rc = PGM_ADDRESSING;
|
|
prot = PROT_NONE;
|
|
}
|
|
}
|
|
if (rc)
|
|
return trans_exc(vcpu, rc, ga, ar, mode, prot);
|
|
rc = vcpu_check_access_key(vcpu, access_key, mode, asce, gpa, ga,
|
|
fragment_len);
|
|
if (rc)
|
|
return trans_exc(vcpu, rc, ga, ar, mode, PROT_TYPE_KEYC);
|
|
if (gpas)
|
|
*gpas++ = gpa;
|
|
offset = 0;
|
|
ga += fragment_len;
|
|
len -= fragment_len;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int access_guest_page(struct kvm *kvm, enum gacc_mode mode, gpa_t gpa,
|
|
void *data, unsigned int len)
|
|
{
|
|
const unsigned int offset = offset_in_page(gpa);
|
|
const gfn_t gfn = gpa_to_gfn(gpa);
|
|
int rc;
|
|
|
|
if (mode == GACC_STORE)
|
|
rc = kvm_write_guest_page(kvm, gfn, data, offset, len);
|
|
else
|
|
rc = kvm_read_guest_page(kvm, gfn, data, offset, len);
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
access_guest_page_with_key(struct kvm *kvm, enum gacc_mode mode, gpa_t gpa,
|
|
void *data, unsigned int len, u8 access_key)
|
|
{
|
|
struct kvm_memory_slot *slot;
|
|
bool writable;
|
|
gfn_t gfn;
|
|
hva_t hva;
|
|
int rc;
|
|
|
|
gfn = gpa >> PAGE_SHIFT;
|
|
slot = gfn_to_memslot(kvm, gfn);
|
|
hva = gfn_to_hva_memslot_prot(slot, gfn, &writable);
|
|
|
|
if (kvm_is_error_hva(hva))
|
|
return PGM_ADDRESSING;
|
|
/*
|
|
* Check if it's a ro memslot, even tho that can't occur (they're unsupported).
|
|
* Don't try to actually handle that case.
|
|
*/
|
|
if (!writable && mode == GACC_STORE)
|
|
return -EOPNOTSUPP;
|
|
hva += offset_in_page(gpa);
|
|
if (mode == GACC_STORE)
|
|
rc = copy_to_user_key((void __user *)hva, data, len, access_key);
|
|
else
|
|
rc = copy_from_user_key(data, (void __user *)hva, len, access_key);
|
|
if (rc)
|
|
return PGM_PROTECTION;
|
|
if (mode == GACC_STORE)
|
|
mark_page_dirty_in_slot(kvm, slot, gfn);
|
|
return 0;
|
|
}
|
|
|
|
int access_guest_abs_with_key(struct kvm *kvm, gpa_t gpa, void *data,
|
|
unsigned long len, enum gacc_mode mode, u8 access_key)
|
|
{
|
|
int offset = offset_in_page(gpa);
|
|
int fragment_len;
|
|
int rc;
|
|
|
|
while (min(PAGE_SIZE - offset, len) > 0) {
|
|
fragment_len = min(PAGE_SIZE - offset, len);
|
|
rc = access_guest_page_with_key(kvm, mode, gpa, data, fragment_len, access_key);
|
|
if (rc)
|
|
return rc;
|
|
offset = 0;
|
|
len -= fragment_len;
|
|
data += fragment_len;
|
|
gpa += fragment_len;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int access_guest_with_key(struct kvm_vcpu *vcpu, unsigned long ga, u8 ar,
|
|
void *data, unsigned long len, enum gacc_mode mode,
|
|
u8 access_key)
|
|
{
|
|
psw_t *psw = &vcpu->arch.sie_block->gpsw;
|
|
unsigned long nr_pages, idx;
|
|
unsigned long gpa_array[2];
|
|
unsigned int fragment_len;
|
|
unsigned long *gpas;
|
|
enum prot_type prot;
|
|
int need_ipte_lock;
|
|
union asce asce;
|
|
bool try_storage_prot_override;
|
|
bool try_fetch_prot_override;
|
|
int rc;
|
|
|
|
if (!len)
|
|
return 0;
|
|
ga = kvm_s390_logical_to_effective(vcpu, ga);
|
|
rc = get_vcpu_asce(vcpu, &asce, ga, ar, mode);
|
|
if (rc)
|
|
return rc;
|
|
nr_pages = (((ga & ~PAGE_MASK) + len - 1) >> PAGE_SHIFT) + 1;
|
|
gpas = gpa_array;
|
|
if (nr_pages > ARRAY_SIZE(gpa_array))
|
|
gpas = vmalloc(array_size(nr_pages, sizeof(unsigned long)));
|
|
if (!gpas)
|
|
return -ENOMEM;
|
|
try_fetch_prot_override = fetch_prot_override_applicable(vcpu, mode, asce);
|
|
try_storage_prot_override = storage_prot_override_applicable(vcpu);
|
|
need_ipte_lock = psw_bits(*psw).dat && !asce.r;
|
|
if (need_ipte_lock)
|
|
ipte_lock(vcpu->kvm);
|
|
/*
|
|
* Since we do the access further down ultimately via a move instruction
|
|
* that does key checking and returns an error in case of a protection
|
|
* violation, we don't need to do the check during address translation.
|
|
* Skip it by passing access key 0, which matches any storage key,
|
|
* obviating the need for any further checks. As a result the check is
|
|
* handled entirely in hardware on access, we only need to take care to
|
|
* forego key protection checking if fetch protection override applies or
|
|
* retry with the special key 9 in case of storage protection override.
|
|
*/
|
|
rc = guest_range_to_gpas(vcpu, ga, ar, gpas, len, asce, mode, 0);
|
|
if (rc)
|
|
goto out_unlock;
|
|
for (idx = 0; idx < nr_pages; idx++) {
|
|
fragment_len = min(PAGE_SIZE - offset_in_page(gpas[idx]), len);
|
|
if (try_fetch_prot_override && fetch_prot_override_applies(ga, fragment_len)) {
|
|
rc = access_guest_page(vcpu->kvm, mode, gpas[idx],
|
|
data, fragment_len);
|
|
} else {
|
|
rc = access_guest_page_with_key(vcpu->kvm, mode, gpas[idx],
|
|
data, fragment_len, access_key);
|
|
}
|
|
if (rc == PGM_PROTECTION && try_storage_prot_override)
|
|
rc = access_guest_page_with_key(vcpu->kvm, mode, gpas[idx],
|
|
data, fragment_len, PAGE_SPO_ACC);
|
|
if (rc)
|
|
break;
|
|
len -= fragment_len;
|
|
data += fragment_len;
|
|
ga = kvm_s390_logical_to_effective(vcpu, ga + fragment_len);
|
|
}
|
|
if (rc > 0) {
|
|
bool terminate = (mode == GACC_STORE) && (idx > 0);
|
|
|
|
if (rc == PGM_PROTECTION)
|
|
prot = PROT_TYPE_KEYC;
|
|
else
|
|
prot = PROT_NONE;
|
|
rc = trans_exc_ending(vcpu, rc, ga, ar, mode, prot, terminate);
|
|
}
|
|
out_unlock:
|
|
if (need_ipte_lock)
|
|
ipte_unlock(vcpu->kvm);
|
|
if (nr_pages > ARRAY_SIZE(gpa_array))
|
|
vfree(gpas);
|
|
return rc;
|
|
}
|
|
|
|
int access_guest_real(struct kvm_vcpu *vcpu, unsigned long gra,
|
|
void *data, unsigned long len, enum gacc_mode mode)
|
|
{
|
|
unsigned int fragment_len;
|
|
unsigned long gpa;
|
|
int rc = 0;
|
|
|
|
while (len && !rc) {
|
|
gpa = kvm_s390_real_to_abs(vcpu, gra);
|
|
fragment_len = min(PAGE_SIZE - offset_in_page(gpa), len);
|
|
rc = access_guest_page(vcpu->kvm, mode, gpa, data, fragment_len);
|
|
len -= fragment_len;
|
|
gra += fragment_len;
|
|
data += fragment_len;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* cmpxchg_guest_abs_with_key() - Perform cmpxchg on guest absolute address.
|
|
* @kvm: Virtual machine instance.
|
|
* @gpa: Absolute guest address of the location to be changed.
|
|
* @len: Operand length of the cmpxchg, required: 1 <= len <= 16. Providing a
|
|
* non power of two will result in failure.
|
|
* @old_addr: Pointer to old value. If the location at @gpa contains this value,
|
|
* the exchange will succeed. After calling cmpxchg_guest_abs_with_key()
|
|
* *@old_addr contains the value at @gpa before the attempt to
|
|
* exchange the value.
|
|
* @new: The value to place at @gpa.
|
|
* @access_key: The access key to use for the guest access.
|
|
* @success: output value indicating if an exchange occurred.
|
|
*
|
|
* Atomically exchange the value at @gpa by @new, if it contains *@old.
|
|
* Honors storage keys.
|
|
*
|
|
* Return: * 0: successful exchange
|
|
* * >0: a program interruption code indicating the reason cmpxchg could
|
|
* not be attempted
|
|
* * -EINVAL: address misaligned or len not power of two
|
|
* * -EAGAIN: transient failure (len 1 or 2)
|
|
* * -EOPNOTSUPP: read-only memslot (should never occur)
|
|
*/
|
|
int cmpxchg_guest_abs_with_key(struct kvm *kvm, gpa_t gpa, int len,
|
|
__uint128_t *old_addr, __uint128_t new,
|
|
u8 access_key, bool *success)
|
|
{
|
|
gfn_t gfn = gpa_to_gfn(gpa);
|
|
struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
|
|
bool writable;
|
|
hva_t hva;
|
|
int ret;
|
|
|
|
if (!IS_ALIGNED(gpa, len))
|
|
return -EINVAL;
|
|
|
|
hva = gfn_to_hva_memslot_prot(slot, gfn, &writable);
|
|
if (kvm_is_error_hva(hva))
|
|
return PGM_ADDRESSING;
|
|
/*
|
|
* Check if it's a read-only memslot, even though that cannot occur
|
|
* since those are unsupported.
|
|
* Don't try to actually handle that case.
|
|
*/
|
|
if (!writable)
|
|
return -EOPNOTSUPP;
|
|
|
|
hva += offset_in_page(gpa);
|
|
/*
|
|
* The cmpxchg_user_key macro depends on the type of "old", so we need
|
|
* a case for each valid length and get some code duplication as long
|
|
* as we don't introduce a new macro.
|
|
*/
|
|
switch (len) {
|
|
case 1: {
|
|
u8 old;
|
|
|
|
ret = cmpxchg_user_key((u8 __user *)hva, &old, *old_addr, new, access_key);
|
|
*success = !ret && old == *old_addr;
|
|
*old_addr = old;
|
|
break;
|
|
}
|
|
case 2: {
|
|
u16 old;
|
|
|
|
ret = cmpxchg_user_key((u16 __user *)hva, &old, *old_addr, new, access_key);
|
|
*success = !ret && old == *old_addr;
|
|
*old_addr = old;
|
|
break;
|
|
}
|
|
case 4: {
|
|
u32 old;
|
|
|
|
ret = cmpxchg_user_key((u32 __user *)hva, &old, *old_addr, new, access_key);
|
|
*success = !ret && old == *old_addr;
|
|
*old_addr = old;
|
|
break;
|
|
}
|
|
case 8: {
|
|
u64 old;
|
|
|
|
ret = cmpxchg_user_key((u64 __user *)hva, &old, *old_addr, new, access_key);
|
|
*success = !ret && old == *old_addr;
|
|
*old_addr = old;
|
|
break;
|
|
}
|
|
case 16: {
|
|
__uint128_t old;
|
|
|
|
ret = cmpxchg_user_key((__uint128_t __user *)hva, &old, *old_addr, new, access_key);
|
|
*success = !ret && old == *old_addr;
|
|
*old_addr = old;
|
|
break;
|
|
}
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
if (*success)
|
|
mark_page_dirty_in_slot(kvm, slot, gfn);
|
|
/*
|
|
* Assume that the fault is caused by protection, either key protection
|
|
* or user page write protection.
|
|
*/
|
|
if (ret == -EFAULT)
|
|
ret = PGM_PROTECTION;
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* guest_translate_address_with_key - translate guest logical into guest absolute address
|
|
* @vcpu: virtual cpu
|
|
* @gva: Guest virtual address
|
|
* @ar: Access register
|
|
* @gpa: Guest physical address
|
|
* @mode: Translation access mode
|
|
* @access_key: access key to mach the storage key with
|
|
*
|
|
* Parameter semantics are the same as the ones from guest_translate.
|
|
* The memory contents at the guest address are not changed.
|
|
*
|
|
* Note: The IPTE lock is not taken during this function, so the caller
|
|
* has to take care of this.
|
|
*/
|
|
int guest_translate_address_with_key(struct kvm_vcpu *vcpu, unsigned long gva, u8 ar,
|
|
unsigned long *gpa, enum gacc_mode mode,
|
|
u8 access_key)
|
|
{
|
|
union asce asce;
|
|
int rc;
|
|
|
|
gva = kvm_s390_logical_to_effective(vcpu, gva);
|
|
rc = get_vcpu_asce(vcpu, &asce, gva, ar, mode);
|
|
if (rc)
|
|
return rc;
|
|
return guest_range_to_gpas(vcpu, gva, ar, gpa, 1, asce, mode,
|
|
access_key);
|
|
}
|
|
|
|
/**
|
|
* check_gva_range - test a range of guest virtual addresses for accessibility
|
|
* @vcpu: virtual cpu
|
|
* @gva: Guest virtual address
|
|
* @ar: Access register
|
|
* @length: Length of test range
|
|
* @mode: Translation access mode
|
|
* @access_key: access key to mach the storage keys with
|
|
*/
|
|
int check_gva_range(struct kvm_vcpu *vcpu, unsigned long gva, u8 ar,
|
|
unsigned long length, enum gacc_mode mode, u8 access_key)
|
|
{
|
|
union asce asce;
|
|
int rc = 0;
|
|
|
|
rc = get_vcpu_asce(vcpu, &asce, gva, ar, mode);
|
|
if (rc)
|
|
return rc;
|
|
ipte_lock(vcpu->kvm);
|
|
rc = guest_range_to_gpas(vcpu, gva, ar, NULL, length, asce, mode,
|
|
access_key);
|
|
ipte_unlock(vcpu->kvm);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* check_gpa_range - test a range of guest physical addresses for accessibility
|
|
* @kvm: virtual machine instance
|
|
* @gpa: guest physical address
|
|
* @length: length of test range
|
|
* @mode: access mode to test, relevant for storage keys
|
|
* @access_key: access key to mach the storage keys with
|
|
*/
|
|
int check_gpa_range(struct kvm *kvm, unsigned long gpa, unsigned long length,
|
|
enum gacc_mode mode, u8 access_key)
|
|
{
|
|
unsigned int fragment_len;
|
|
int rc = 0;
|
|
|
|
while (length && !rc) {
|
|
fragment_len = min(PAGE_SIZE - offset_in_page(gpa), length);
|
|
rc = vm_check_access_key(kvm, access_key, mode, gpa);
|
|
length -= fragment_len;
|
|
gpa += fragment_len;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* kvm_s390_check_low_addr_prot_real - check for low-address protection
|
|
* @vcpu: virtual cpu
|
|
* @gra: Guest real address
|
|
*
|
|
* Checks whether an address is subject to low-address protection and set
|
|
* up vcpu->arch.pgm accordingly if necessary.
|
|
*
|
|
* Return: 0 if no protection exception, or PGM_PROTECTION if protected.
|
|
*/
|
|
int kvm_s390_check_low_addr_prot_real(struct kvm_vcpu *vcpu, unsigned long gra)
|
|
{
|
|
union ctlreg0 ctlreg0 = {.val = vcpu->arch.sie_block->gcr[0]};
|
|
|
|
if (!ctlreg0.lap || !is_low_address(gra))
|
|
return 0;
|
|
return trans_exc(vcpu, PGM_PROTECTION, gra, 0, GACC_STORE, PROT_TYPE_LA);
|
|
}
|
|
|
|
/**
|
|
* kvm_s390_shadow_tables - walk the guest page table and create shadow tables
|
|
* @sg: pointer to the shadow guest address space structure
|
|
* @saddr: faulting address in the shadow gmap
|
|
* @pgt: pointer to the beginning of the page table for the given address if
|
|
* successful (return value 0), or to the first invalid DAT entry in
|
|
* case of exceptions (return value > 0)
|
|
* @dat_protection: referenced memory is write protected
|
|
* @fake: pgt references contiguous guest memory block, not a pgtable
|
|
*/
|
|
static int kvm_s390_shadow_tables(struct gmap *sg, unsigned long saddr,
|
|
unsigned long *pgt, int *dat_protection,
|
|
int *fake)
|
|
{
|
|
struct kvm *kvm;
|
|
struct gmap *parent;
|
|
union asce asce;
|
|
union vaddress vaddr;
|
|
unsigned long ptr;
|
|
int rc;
|
|
|
|
*fake = 0;
|
|
*dat_protection = 0;
|
|
kvm = sg->private;
|
|
parent = sg->parent;
|
|
vaddr.addr = saddr;
|
|
asce.val = sg->orig_asce;
|
|
ptr = asce.origin * PAGE_SIZE;
|
|
if (asce.r) {
|
|
*fake = 1;
|
|
ptr = 0;
|
|
asce.dt = ASCE_TYPE_REGION1;
|
|
}
|
|
switch (asce.dt) {
|
|
case ASCE_TYPE_REGION1:
|
|
if (vaddr.rfx01 > asce.tl && !*fake)
|
|
return PGM_REGION_FIRST_TRANS;
|
|
break;
|
|
case ASCE_TYPE_REGION2:
|
|
if (vaddr.rfx)
|
|
return PGM_ASCE_TYPE;
|
|
if (vaddr.rsx01 > asce.tl)
|
|
return PGM_REGION_SECOND_TRANS;
|
|
break;
|
|
case ASCE_TYPE_REGION3:
|
|
if (vaddr.rfx || vaddr.rsx)
|
|
return PGM_ASCE_TYPE;
|
|
if (vaddr.rtx01 > asce.tl)
|
|
return PGM_REGION_THIRD_TRANS;
|
|
break;
|
|
case ASCE_TYPE_SEGMENT:
|
|
if (vaddr.rfx || vaddr.rsx || vaddr.rtx)
|
|
return PGM_ASCE_TYPE;
|
|
if (vaddr.sx01 > asce.tl)
|
|
return PGM_SEGMENT_TRANSLATION;
|
|
break;
|
|
}
|
|
|
|
switch (asce.dt) {
|
|
case ASCE_TYPE_REGION1: {
|
|
union region1_table_entry rfte;
|
|
|
|
if (*fake) {
|
|
ptr += vaddr.rfx * _REGION1_SIZE;
|
|
rfte.val = ptr;
|
|
goto shadow_r2t;
|
|
}
|
|
*pgt = ptr + vaddr.rfx * 8;
|
|
rc = gmap_read_table(parent, ptr + vaddr.rfx * 8, &rfte.val);
|
|
if (rc)
|
|
return rc;
|
|
if (rfte.i)
|
|
return PGM_REGION_FIRST_TRANS;
|
|
if (rfte.tt != TABLE_TYPE_REGION1)
|
|
return PGM_TRANSLATION_SPEC;
|
|
if (vaddr.rsx01 < rfte.tf || vaddr.rsx01 > rfte.tl)
|
|
return PGM_REGION_SECOND_TRANS;
|
|
if (sg->edat_level >= 1)
|
|
*dat_protection |= rfte.p;
|
|
ptr = rfte.rto * PAGE_SIZE;
|
|
shadow_r2t:
|
|
rc = gmap_shadow_r2t(sg, saddr, rfte.val, *fake);
|
|
if (rc)
|
|
return rc;
|
|
kvm->stat.gmap_shadow_r1_entry++;
|
|
}
|
|
fallthrough;
|
|
case ASCE_TYPE_REGION2: {
|
|
union region2_table_entry rste;
|
|
|
|
if (*fake) {
|
|
ptr += vaddr.rsx * _REGION2_SIZE;
|
|
rste.val = ptr;
|
|
goto shadow_r3t;
|
|
}
|
|
*pgt = ptr + vaddr.rsx * 8;
|
|
rc = gmap_read_table(parent, ptr + vaddr.rsx * 8, &rste.val);
|
|
if (rc)
|
|
return rc;
|
|
if (rste.i)
|
|
return PGM_REGION_SECOND_TRANS;
|
|
if (rste.tt != TABLE_TYPE_REGION2)
|
|
return PGM_TRANSLATION_SPEC;
|
|
if (vaddr.rtx01 < rste.tf || vaddr.rtx01 > rste.tl)
|
|
return PGM_REGION_THIRD_TRANS;
|
|
if (sg->edat_level >= 1)
|
|
*dat_protection |= rste.p;
|
|
ptr = rste.rto * PAGE_SIZE;
|
|
shadow_r3t:
|
|
rste.p |= *dat_protection;
|
|
rc = gmap_shadow_r3t(sg, saddr, rste.val, *fake);
|
|
if (rc)
|
|
return rc;
|
|
kvm->stat.gmap_shadow_r2_entry++;
|
|
}
|
|
fallthrough;
|
|
case ASCE_TYPE_REGION3: {
|
|
union region3_table_entry rtte;
|
|
|
|
if (*fake) {
|
|
ptr += vaddr.rtx * _REGION3_SIZE;
|
|
rtte.val = ptr;
|
|
goto shadow_sgt;
|
|
}
|
|
*pgt = ptr + vaddr.rtx * 8;
|
|
rc = gmap_read_table(parent, ptr + vaddr.rtx * 8, &rtte.val);
|
|
if (rc)
|
|
return rc;
|
|
if (rtte.i)
|
|
return PGM_REGION_THIRD_TRANS;
|
|
if (rtte.tt != TABLE_TYPE_REGION3)
|
|
return PGM_TRANSLATION_SPEC;
|
|
if (rtte.cr && asce.p && sg->edat_level >= 2)
|
|
return PGM_TRANSLATION_SPEC;
|
|
if (rtte.fc && sg->edat_level >= 2) {
|
|
*dat_protection |= rtte.fc0.p;
|
|
*fake = 1;
|
|
ptr = rtte.fc1.rfaa * _REGION3_SIZE;
|
|
rtte.val = ptr;
|
|
goto shadow_sgt;
|
|
}
|
|
if (vaddr.sx01 < rtte.fc0.tf || vaddr.sx01 > rtte.fc0.tl)
|
|
return PGM_SEGMENT_TRANSLATION;
|
|
if (sg->edat_level >= 1)
|
|
*dat_protection |= rtte.fc0.p;
|
|
ptr = rtte.fc0.sto * PAGE_SIZE;
|
|
shadow_sgt:
|
|
rtte.fc0.p |= *dat_protection;
|
|
rc = gmap_shadow_sgt(sg, saddr, rtte.val, *fake);
|
|
if (rc)
|
|
return rc;
|
|
kvm->stat.gmap_shadow_r3_entry++;
|
|
}
|
|
fallthrough;
|
|
case ASCE_TYPE_SEGMENT: {
|
|
union segment_table_entry ste;
|
|
|
|
if (*fake) {
|
|
ptr += vaddr.sx * _SEGMENT_SIZE;
|
|
ste.val = ptr;
|
|
goto shadow_pgt;
|
|
}
|
|
*pgt = ptr + vaddr.sx * 8;
|
|
rc = gmap_read_table(parent, ptr + vaddr.sx * 8, &ste.val);
|
|
if (rc)
|
|
return rc;
|
|
if (ste.i)
|
|
return PGM_SEGMENT_TRANSLATION;
|
|
if (ste.tt != TABLE_TYPE_SEGMENT)
|
|
return PGM_TRANSLATION_SPEC;
|
|
if (ste.cs && asce.p)
|
|
return PGM_TRANSLATION_SPEC;
|
|
*dat_protection |= ste.fc0.p;
|
|
if (ste.fc && sg->edat_level >= 1) {
|
|
*fake = 1;
|
|
ptr = ste.fc1.sfaa * _SEGMENT_SIZE;
|
|
ste.val = ptr;
|
|
goto shadow_pgt;
|
|
}
|
|
ptr = ste.fc0.pto * (PAGE_SIZE / 2);
|
|
shadow_pgt:
|
|
ste.fc0.p |= *dat_protection;
|
|
rc = gmap_shadow_pgt(sg, saddr, ste.val, *fake);
|
|
if (rc)
|
|
return rc;
|
|
kvm->stat.gmap_shadow_sg_entry++;
|
|
}
|
|
}
|
|
/* Return the parent address of the page table */
|
|
*pgt = ptr;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* kvm_s390_shadow_fault - handle fault on a shadow page table
|
|
* @vcpu: virtual cpu
|
|
* @sg: pointer to the shadow guest address space structure
|
|
* @saddr: faulting address in the shadow gmap
|
|
* @datptr: will contain the address of the faulting DAT table entry, or of
|
|
* the valid leaf, plus some flags
|
|
*
|
|
* Returns: - 0 if the shadow fault was successfully resolved
|
|
* - > 0 (pgm exception code) on exceptions while faulting
|
|
* - -EAGAIN if the caller can retry immediately
|
|
* - -EFAULT when accessing invalid guest addresses
|
|
* - -ENOMEM if out of memory
|
|
*/
|
|
int kvm_s390_shadow_fault(struct kvm_vcpu *vcpu, struct gmap *sg,
|
|
unsigned long saddr, unsigned long *datptr)
|
|
{
|
|
union vaddress vaddr;
|
|
union page_table_entry pte;
|
|
unsigned long pgt = 0;
|
|
int dat_protection, fake;
|
|
int rc;
|
|
|
|
mmap_read_lock(sg->mm);
|
|
/*
|
|
* We don't want any guest-2 tables to change - so the parent
|
|
* tables/pointers we read stay valid - unshadowing is however
|
|
* always possible - only guest_table_lock protects us.
|
|
*/
|
|
ipte_lock(vcpu->kvm);
|
|
|
|
rc = gmap_shadow_pgt_lookup(sg, saddr, &pgt, &dat_protection, &fake);
|
|
if (rc)
|
|
rc = kvm_s390_shadow_tables(sg, saddr, &pgt, &dat_protection,
|
|
&fake);
|
|
|
|
vaddr.addr = saddr;
|
|
if (fake) {
|
|
pte.val = pgt + vaddr.px * PAGE_SIZE;
|
|
goto shadow_page;
|
|
}
|
|
|
|
switch (rc) {
|
|
case PGM_SEGMENT_TRANSLATION:
|
|
case PGM_REGION_THIRD_TRANS:
|
|
case PGM_REGION_SECOND_TRANS:
|
|
case PGM_REGION_FIRST_TRANS:
|
|
pgt |= PEI_NOT_PTE;
|
|
break;
|
|
case 0:
|
|
pgt += vaddr.px * 8;
|
|
rc = gmap_read_table(sg->parent, pgt, &pte.val);
|
|
}
|
|
if (datptr)
|
|
*datptr = pgt | dat_protection * PEI_DAT_PROT;
|
|
if (!rc && pte.i)
|
|
rc = PGM_PAGE_TRANSLATION;
|
|
if (!rc && pte.z)
|
|
rc = PGM_TRANSLATION_SPEC;
|
|
shadow_page:
|
|
pte.p |= dat_protection;
|
|
if (!rc)
|
|
rc = gmap_shadow_page(sg, saddr, __pte(pte.val));
|
|
vcpu->kvm->stat.gmap_shadow_pg_entry++;
|
|
ipte_unlock(vcpu->kvm);
|
|
mmap_read_unlock(sg->mm);
|
|
return rc;
|
|
}
|