linux/fs/fat/misc.c
Chung-Chiang Cheng 0f9d148167 fat: ignore ctime updates, and keep ctime identical to mtime in memory
FAT supports creation time but not change time, and there was no
corresponding timestamp for creation time in previous VFS.  The original
implementation took the compromise of saving the in-memory change time
into the on-disk creation time field, but this would lead to compatibility
issues with non-linux systems.

To address this issue, this patch changes the behavior of ctime.  It will
no longer be loaded and stored from the creation time on disk.  Instead of
that, it'll be consistent with the in-memory mtime and share the same
on-disk field.  All updates to mtime will also be applied to ctime in
memory, while all updates to ctime will be ignored.

Link: https://lkml.kernel.org/r/20220503152536.2503003-2-cccheng@synology.com
Signed-off-by: Chung-Chiang Cheng <cccheng@synology.com>
Acked-by: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-05-19 14:10:31 -07:00

399 lines
10 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* linux/fs/fat/misc.c
*
* Written 1992,1993 by Werner Almesberger
* 22/11/2000 - Fixed fat_date_unix2dos for dates earlier than 01/01/1980
* and date_dos2unix for date==0 by Igor Zhbanov(bsg@uniyar.ac.ru)
*/
#include "fat.h"
#include <linux/iversion.h>
/*
* fat_fs_error reports a file system problem that might indicate fa data
* corruption/inconsistency. Depending on 'errors' mount option the
* panic() is called, or error message is printed FAT and nothing is done,
* or filesystem is remounted read-only (default behavior).
* In case the file system is remounted read-only, it can be made writable
* again by remounting it.
*/
void __fat_fs_error(struct super_block *sb, int report, const char *fmt, ...)
{
struct fat_mount_options *opts = &MSDOS_SB(sb)->options;
va_list args;
struct va_format vaf;
if (report) {
va_start(args, fmt);
vaf.fmt = fmt;
vaf.va = &args;
fat_msg(sb, KERN_ERR, "error, %pV", &vaf);
va_end(args);
}
if (opts->errors == FAT_ERRORS_PANIC)
panic("FAT-fs (%s): fs panic from previous error\n", sb->s_id);
else if (opts->errors == FAT_ERRORS_RO && !sb_rdonly(sb)) {
sb->s_flags |= SB_RDONLY;
fat_msg(sb, KERN_ERR, "Filesystem has been set read-only");
}
}
EXPORT_SYMBOL_GPL(__fat_fs_error);
/**
* _fat_msg() - Print a preformatted FAT message based on a superblock.
* @sb: A pointer to a &struct super_block
* @level: A Kernel printk level constant
* @fmt: The printf-style format string to print.
*
* Everything that is not fat_fs_error() should be fat_msg().
*
* fat_msg() wraps _fat_msg() for printk indexing.
*/
void _fat_msg(struct super_block *sb, const char *level, const char *fmt, ...)
{
struct va_format vaf;
va_list args;
va_start(args, fmt);
vaf.fmt = fmt;
vaf.va = &args;
_printk(FAT_PRINTK_PREFIX "%pV\n", level, sb->s_id, &vaf);
va_end(args);
}
/* Flushes the number of free clusters on FAT32 */
/* XXX: Need to write one per FSINFO block. Currently only writes 1 */
int fat_clusters_flush(struct super_block *sb)
{
struct msdos_sb_info *sbi = MSDOS_SB(sb);
struct buffer_head *bh;
struct fat_boot_fsinfo *fsinfo;
if (!is_fat32(sbi))
return 0;
bh = sb_bread(sb, sbi->fsinfo_sector);
if (bh == NULL) {
fat_msg(sb, KERN_ERR, "bread failed in fat_clusters_flush");
return -EIO;
}
fsinfo = (struct fat_boot_fsinfo *)bh->b_data;
/* Sanity check */
if (!IS_FSINFO(fsinfo)) {
fat_msg(sb, KERN_ERR, "Invalid FSINFO signature: "
"0x%08x, 0x%08x (sector = %lu)",
le32_to_cpu(fsinfo->signature1),
le32_to_cpu(fsinfo->signature2),
sbi->fsinfo_sector);
} else {
if (sbi->free_clusters != -1)
fsinfo->free_clusters = cpu_to_le32(sbi->free_clusters);
if (sbi->prev_free != -1)
fsinfo->next_cluster = cpu_to_le32(sbi->prev_free);
mark_buffer_dirty(bh);
}
brelse(bh);
return 0;
}
/*
* fat_chain_add() adds a new cluster to the chain of clusters represented
* by inode.
*/
int fat_chain_add(struct inode *inode, int new_dclus, int nr_cluster)
{
struct super_block *sb = inode->i_sb;
struct msdos_sb_info *sbi = MSDOS_SB(sb);
int ret, new_fclus, last;
/*
* We must locate the last cluster of the file to add this new
* one (new_dclus) to the end of the link list (the FAT).
*/
last = new_fclus = 0;
if (MSDOS_I(inode)->i_start) {
int fclus, dclus;
ret = fat_get_cluster(inode, FAT_ENT_EOF, &fclus, &dclus);
if (ret < 0)
return ret;
new_fclus = fclus + 1;
last = dclus;
}
/* add new one to the last of the cluster chain */
if (last) {
struct fat_entry fatent;
fatent_init(&fatent);
ret = fat_ent_read(inode, &fatent, last);
if (ret >= 0) {
int wait = inode_needs_sync(inode);
ret = fat_ent_write(inode, &fatent, new_dclus, wait);
fatent_brelse(&fatent);
}
if (ret < 0)
return ret;
/*
* FIXME:Although we can add this cache, fat_cache_add() is
* assuming to be called after linear search with fat_cache_id.
*/
// fat_cache_add(inode, new_fclus, new_dclus);
} else {
MSDOS_I(inode)->i_start = new_dclus;
MSDOS_I(inode)->i_logstart = new_dclus;
/*
* Since generic_write_sync() synchronizes regular files later,
* we sync here only directories.
*/
if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) {
ret = fat_sync_inode(inode);
if (ret)
return ret;
} else
mark_inode_dirty(inode);
}
if (new_fclus != (inode->i_blocks >> (sbi->cluster_bits - 9))) {
fat_fs_error(sb, "clusters badly computed (%d != %llu)",
new_fclus,
(llu)(inode->i_blocks >> (sbi->cluster_bits - 9)));
fat_cache_inval_inode(inode);
}
inode->i_blocks += nr_cluster << (sbi->cluster_bits - 9);
return 0;
}
/*
* The epoch of FAT timestamp is 1980.
* : bits : value
* date: 0 - 4: day (1 - 31)
* date: 5 - 8: month (1 - 12)
* date: 9 - 15: year (0 - 127) from 1980
* time: 0 - 4: sec (0 - 29) 2sec counts
* time: 5 - 10: min (0 - 59)
* time: 11 - 15: hour (0 - 23)
*/
#define SECS_PER_MIN 60
#define SECS_PER_HOUR (60 * 60)
#define SECS_PER_DAY (SECS_PER_HOUR * 24)
/* days between 1.1.70 and 1.1.80 (2 leap days) */
#define DAYS_DELTA (365 * 10 + 2)
/* 120 (2100 - 1980) isn't leap year */
#define YEAR_2100 120
#define IS_LEAP_YEAR(y) (!((y) & 3) && (y) != YEAR_2100)
/* Linear day numbers of the respective 1sts in non-leap years. */
static long days_in_year[] = {
/* Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec */
0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 0, 0, 0,
};
static inline int fat_tz_offset(const struct msdos_sb_info *sbi)
{
return (sbi->options.tz_set ?
-sbi->options.time_offset :
sys_tz.tz_minuteswest) * SECS_PER_MIN;
}
/* Convert a FAT time/date pair to a UNIX date (seconds since 1 1 70). */
void fat_time_fat2unix(struct msdos_sb_info *sbi, struct timespec64 *ts,
__le16 __time, __le16 __date, u8 time_cs)
{
u16 time = le16_to_cpu(__time), date = le16_to_cpu(__date);
time64_t second;
long day, leap_day, month, year;
year = date >> 9;
month = max(1, (date >> 5) & 0xf);
day = max(1, date & 0x1f) - 1;
leap_day = (year + 3) / 4;
if (year > YEAR_2100) /* 2100 isn't leap year */
leap_day--;
if (IS_LEAP_YEAR(year) && month > 2)
leap_day++;
second = (time & 0x1f) << 1;
second += ((time >> 5) & 0x3f) * SECS_PER_MIN;
second += (time >> 11) * SECS_PER_HOUR;
second += (time64_t)(year * 365 + leap_day
+ days_in_year[month] + day
+ DAYS_DELTA) * SECS_PER_DAY;
second += fat_tz_offset(sbi);
if (time_cs) {
ts->tv_sec = second + (time_cs / 100);
ts->tv_nsec = (time_cs % 100) * 10000000;
} else {
ts->tv_sec = second;
ts->tv_nsec = 0;
}
}
/* Export fat_time_fat2unix() for the fat_test KUnit tests. */
EXPORT_SYMBOL_GPL(fat_time_fat2unix);
/* Convert linear UNIX date to a FAT time/date pair. */
void fat_time_unix2fat(struct msdos_sb_info *sbi, struct timespec64 *ts,
__le16 *time, __le16 *date, u8 *time_cs)
{
struct tm tm;
time64_to_tm(ts->tv_sec, -fat_tz_offset(sbi), &tm);
/* FAT can only support year between 1980 to 2107 */
if (tm.tm_year < 1980 - 1900) {
*time = 0;
*date = cpu_to_le16((0 << 9) | (1 << 5) | 1);
if (time_cs)
*time_cs = 0;
return;
}
if (tm.tm_year > 2107 - 1900) {
*time = cpu_to_le16((23 << 11) | (59 << 5) | 29);
*date = cpu_to_le16((127 << 9) | (12 << 5) | 31);
if (time_cs)
*time_cs = 199;
return;
}
/* from 1900 -> from 1980 */
tm.tm_year -= 80;
/* 0~11 -> 1~12 */
tm.tm_mon++;
/* 0~59 -> 0~29(2sec counts) */
tm.tm_sec >>= 1;
*time = cpu_to_le16(tm.tm_hour << 11 | tm.tm_min << 5 | tm.tm_sec);
*date = cpu_to_le16(tm.tm_year << 9 | tm.tm_mon << 5 | tm.tm_mday);
if (time_cs)
*time_cs = (ts->tv_sec & 1) * 100 + ts->tv_nsec / 10000000;
}
EXPORT_SYMBOL_GPL(fat_time_unix2fat);
static inline struct timespec64 fat_timespec64_trunc_2secs(struct timespec64 ts)
{
return (struct timespec64){ ts.tv_sec & ~1ULL, 0 };
}
static inline struct timespec64 fat_timespec64_trunc_10ms(struct timespec64 ts)
{
if (ts.tv_nsec)
ts.tv_nsec -= ts.tv_nsec % 10000000UL;
return ts;
}
/*
* truncate atime to 24 hour granularity (00:00:00 in local timezone)
*/
struct timespec64 fat_truncate_atime(const struct msdos_sb_info *sbi,
const struct timespec64 *ts)
{
/* to localtime */
time64_t seconds = ts->tv_sec - fat_tz_offset(sbi);
s32 remainder;
div_s64_rem(seconds, SECS_PER_DAY, &remainder);
/* to day boundary, and back to unix time */
seconds = seconds + fat_tz_offset(sbi) - remainder;
return (struct timespec64){ seconds, 0 };
}
/*
* truncate creation time with appropriate granularity:
* msdos - 2 seconds
* vfat - 10 milliseconds
*/
struct timespec64 fat_truncate_crtime(const struct msdos_sb_info *sbi,
const struct timespec64 *ts)
{
if (sbi->options.isvfat)
return fat_timespec64_trunc_10ms(*ts);
else
return fat_timespec64_trunc_2secs(*ts);
}
/*
* truncate mtime to 2 second granularity
*/
struct timespec64 fat_truncate_mtime(const struct msdos_sb_info *sbi,
const struct timespec64 *ts)
{
return fat_timespec64_trunc_2secs(*ts);
}
/*
* truncate the various times with appropriate granularity:
* all times in root node are always 0
*/
int fat_truncate_time(struct inode *inode, struct timespec64 *now, int flags)
{
struct msdos_sb_info *sbi = MSDOS_SB(inode->i_sb);
struct timespec64 ts;
if (inode->i_ino == MSDOS_ROOT_INO)
return 0;
if (now == NULL) {
now = &ts;
ts = current_time(inode);
}
if (flags & S_ATIME)
inode->i_atime = fat_truncate_atime(sbi, now);
/*
* ctime and mtime share the same on-disk field, and should be
* identical in memory. all mtime updates will be applied to ctime,
* but ctime updates are ignored.
*/
if (flags & S_MTIME)
inode->i_mtime = inode->i_ctime = fat_truncate_mtime(sbi, now);
return 0;
}
EXPORT_SYMBOL_GPL(fat_truncate_time);
int fat_update_time(struct inode *inode, struct timespec64 *now, int flags)
{
int dirty_flags = 0;
if (inode->i_ino == MSDOS_ROOT_INO)
return 0;
if (flags & (S_ATIME | S_CTIME | S_MTIME)) {
fat_truncate_time(inode, now, flags);
if (inode->i_sb->s_flags & SB_LAZYTIME)
dirty_flags |= I_DIRTY_TIME;
else
dirty_flags |= I_DIRTY_SYNC;
}
if ((flags & S_VERSION) && inode_maybe_inc_iversion(inode, false))
dirty_flags |= I_DIRTY_SYNC;
__mark_inode_dirty(inode, dirty_flags);
return 0;
}
EXPORT_SYMBOL_GPL(fat_update_time);
int fat_sync_bhs(struct buffer_head **bhs, int nr_bhs)
{
int i, err = 0;
for (i = 0; i < nr_bhs; i++)
write_dirty_buffer(bhs[i], 0);
for (i = 0; i < nr_bhs; i++) {
wait_on_buffer(bhs[i]);
if (!err && !buffer_uptodate(bhs[i]))
err = -EIO;
}
return err;
}