linux/arch/x86/kernel/smp.c
Linus Torvalds 902861e34c - Sumanth Korikkar has taught s390 to allocate hotplug-time page frames
from hotplugged memory rather than only from main memory.  Series
   "implement "memmap on memory" feature on s390".
 
 - More folio conversions from Matthew Wilcox in the series
 
 	"Convert memcontrol charge moving to use folios"
 	"mm: convert mm counter to take a folio"
 
 - Chengming Zhou has optimized zswap's rbtree locking, providing
   significant reductions in system time and modest but measurable
   reductions in overall runtimes.  The series is "mm/zswap: optimize the
   scalability of zswap rb-tree".
 
 - Chengming Zhou has also provided the series "mm/zswap: optimize zswap
   lru list" which provides measurable runtime benefits in some
   swap-intensive situations.
 
 - And Chengming Zhou further optimizes zswap in the series "mm/zswap:
   optimize for dynamic zswap_pools".  Measured improvements are modest.
 
 - zswap cleanups and simplifications from Yosry Ahmed in the series "mm:
   zswap: simplify zswap_swapoff()".
 
 - In the series "Add DAX ABI for memmap_on_memory", Vishal Verma has
   contributed several DAX cleanups as well as adding a sysfs tunable to
   control the memmap_on_memory setting when the dax device is hotplugged
   as system memory.
 
 - Johannes Weiner has added the large series "mm: zswap: cleanups",
   which does that.
 
 - More DAMON work from SeongJae Park in the series
 
 	"mm/damon: make DAMON debugfs interface deprecation unignorable"
 	"selftests/damon: add more tests for core functionalities and corner cases"
 	"Docs/mm/damon: misc readability improvements"
 	"mm/damon: let DAMOS feeds and tame/auto-tune itself"
 
 - In the series "mm/mempolicy: weighted interleave mempolicy and sysfs
   extension" Rakie Kim has developed a new mempolicy interleaving policy
   wherein we allocate memory across nodes in a weighted fashion rather
   than uniformly.  This is beneficial in heterogeneous memory environments
   appearing with CXL.
 
 - Christophe Leroy has contributed some cleanup and consolidation work
   against the ARM pagetable dumping code in the series "mm: ptdump:
   Refactor CONFIG_DEBUG_WX and check_wx_pages debugfs attribute".
 
 - Luis Chamberlain has added some additional xarray selftesting in the
   series "test_xarray: advanced API multi-index tests".
 
 - Muhammad Usama Anjum has reworked the selftest code to make its
   human-readable output conform to the TAP ("Test Anything Protocol")
   format.  Amongst other things, this opens up the use of third-party
   tools to parse and process out selftesting results.
 
 - Ryan Roberts has added fork()-time PTE batching of THP ptes in the
   series "mm/memory: optimize fork() with PTE-mapped THP".  Mainly
   targeted at arm64, this significantly speeds up fork() when the process
   has a large number of pte-mapped folios.
 
 - David Hildenbrand also gets in on the THP pte batching game in his
   series "mm/memory: optimize unmap/zap with PTE-mapped THP".  It
   implements batching during munmap() and other pte teardown situations.
   The microbenchmark improvements are nice.
 
 - And in the series "Transparent Contiguous PTEs for User Mappings" Ryan
   Roberts further utilizes arm's pte's contiguous bit ("contpte
   mappings").  Kernel build times on arm64 improved nicely.  Ryan's series
   "Address some contpte nits" provides some followup work.
 
 - In the series "mm/hugetlb: Restore the reservation" Breno Leitao has
   fixed an obscure hugetlb race which was causing unnecessary page faults.
   He has also added a reproducer under the selftest code.
 
 - In the series "selftests/mm: Output cleanups for the compaction test",
   Mark Brown did what the title claims.
 
 - Kinsey Ho has added the series "mm/mglru: code cleanup and refactoring".
 
 - Even more zswap material from Nhat Pham.  The series "fix and extend
   zswap kselftests" does as claimed.
 
 - In the series "Introduce cpu_dcache_is_aliasing() to fix DAX
   regression" Mathieu Desnoyers has cleaned up and fixed rather a mess in
   our handling of DAX on archiecctures which have virtually aliasing data
   caches.  The arm architecture is the main beneficiary.
 
 - Lokesh Gidra's series "per-vma locks in userfaultfd" provides dramatic
   improvements in worst-case mmap_lock hold times during certain
   userfaultfd operations.
 
 - Some page_owner enhancements and maintenance work from Oscar Salvador
   in his series
 
 	"page_owner: print stacks and their outstanding allocations"
 	"page_owner: Fixup and cleanup"
 
 - Uladzislau Rezki has contributed some vmalloc scalability improvements
   in his series "Mitigate a vmap lock contention".  It realizes a 12x
   improvement for a certain microbenchmark.
 
 - Some kexec/crash cleanup work from Baoquan He in the series "Split
   crash out from kexec and clean up related config items".
 
 - Some zsmalloc maintenance work from Chengming Zhou in the series
 
 	"mm/zsmalloc: fix and optimize objects/page migration"
 	"mm/zsmalloc: some cleanup for get/set_zspage_mapping()"
 
 - Zi Yan has taught the MM to perform compaction on folios larger than
   order=0.  This a step along the path to implementaton of the merging of
   large anonymous folios.  The series is named "Enable >0 order folio
   memory compaction".
 
 - Christoph Hellwig has done quite a lot of cleanup work in the
   pagecache writeback code in his series "convert write_cache_pages() to
   an iterator".
 
 - Some modest hugetlb cleanups and speedups in Vishal Moola's series
   "Handle hugetlb faults under the VMA lock".
 
 - Zi Yan has changed the page splitting code so we can split huge pages
   into sizes other than order-0 to better utilize large folios.  The
   series is named "Split a folio to any lower order folios".
 
 - David Hildenbrand has contributed the series "mm: remove
   total_mapcount()", a cleanup.
 
 - Matthew Wilcox has sought to improve the performance of bulk memory
   freeing in his series "Rearrange batched folio freeing".
 
 - Gang Li's series "hugetlb: parallelize hugetlb page init on boot"
   provides large improvements in bootup times on large machines which are
   configured to use large numbers of hugetlb pages.
 
 - Matthew Wilcox's series "PageFlags cleanups" does that.
 
 - Qi Zheng's series "minor fixes and supplement for ptdesc" does that
   also.  S390 is affected.
 
 - Cleanups to our pagemap utility functions from Peter Xu in his series
   "mm/treewide: Replace pXd_large() with pXd_leaf()".
 
 - Nico Pache has fixed a few things with our hugepage selftests in his
   series "selftests/mm: Improve Hugepage Test Handling in MM Selftests".
 
 - Also, of course, many singleton patches to many things.  Please see
   the individual changelogs for details.
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZfJpPQAKCRDdBJ7gKXxA
 joxeAP9TrcMEuHnLmBlhIXkWbIR4+ki+pA3v+gNTlJiBhnfVSgD9G55t1aBaRplx
 TMNhHfyiHYDTx/GAV9NXW84tasJSDgA=
 =TG55
 -----END PGP SIGNATURE-----

Merge tag 'mm-stable-2024-03-13-20-04' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm

Pull MM updates from Andrew Morton:

 - Sumanth Korikkar has taught s390 to allocate hotplug-time page frames
   from hotplugged memory rather than only from main memory. Series
   "implement "memmap on memory" feature on s390".

 - More folio conversions from Matthew Wilcox in the series

	"Convert memcontrol charge moving to use folios"
	"mm: convert mm counter to take a folio"

 - Chengming Zhou has optimized zswap's rbtree locking, providing
   significant reductions in system time and modest but measurable
   reductions in overall runtimes. The series is "mm/zswap: optimize the
   scalability of zswap rb-tree".

 - Chengming Zhou has also provided the series "mm/zswap: optimize zswap
   lru list" which provides measurable runtime benefits in some
   swap-intensive situations.

 - And Chengming Zhou further optimizes zswap in the series "mm/zswap:
   optimize for dynamic zswap_pools". Measured improvements are modest.

 - zswap cleanups and simplifications from Yosry Ahmed in the series
   "mm: zswap: simplify zswap_swapoff()".

 - In the series "Add DAX ABI for memmap_on_memory", Vishal Verma has
   contributed several DAX cleanups as well as adding a sysfs tunable to
   control the memmap_on_memory setting when the dax device is
   hotplugged as system memory.

 - Johannes Weiner has added the large series "mm: zswap: cleanups",
   which does that.

 - More DAMON work from SeongJae Park in the series

	"mm/damon: make DAMON debugfs interface deprecation unignorable"
	"selftests/damon: add more tests for core functionalities and corner cases"
	"Docs/mm/damon: misc readability improvements"
	"mm/damon: let DAMOS feeds and tame/auto-tune itself"

 - In the series "mm/mempolicy: weighted interleave mempolicy and sysfs
   extension" Rakie Kim has developed a new mempolicy interleaving
   policy wherein we allocate memory across nodes in a weighted fashion
   rather than uniformly. This is beneficial in heterogeneous memory
   environments appearing with CXL.

 - Christophe Leroy has contributed some cleanup and consolidation work
   against the ARM pagetable dumping code in the series "mm: ptdump:
   Refactor CONFIG_DEBUG_WX and check_wx_pages debugfs attribute".

 - Luis Chamberlain has added some additional xarray selftesting in the
   series "test_xarray: advanced API multi-index tests".

 - Muhammad Usama Anjum has reworked the selftest code to make its
   human-readable output conform to the TAP ("Test Anything Protocol")
   format. Amongst other things, this opens up the use of third-party
   tools to parse and process out selftesting results.

 - Ryan Roberts has added fork()-time PTE batching of THP ptes in the
   series "mm/memory: optimize fork() with PTE-mapped THP". Mainly
   targeted at arm64, this significantly speeds up fork() when the
   process has a large number of pte-mapped folios.

 - David Hildenbrand also gets in on the THP pte batching game in his
   series "mm/memory: optimize unmap/zap with PTE-mapped THP". It
   implements batching during munmap() and other pte teardown
   situations. The microbenchmark improvements are nice.

 - And in the series "Transparent Contiguous PTEs for User Mappings"
   Ryan Roberts further utilizes arm's pte's contiguous bit ("contpte
   mappings"). Kernel build times on arm64 improved nicely. Ryan's
   series "Address some contpte nits" provides some followup work.

 - In the series "mm/hugetlb: Restore the reservation" Breno Leitao has
   fixed an obscure hugetlb race which was causing unnecessary page
   faults. He has also added a reproducer under the selftest code.

 - In the series "selftests/mm: Output cleanups for the compaction
   test", Mark Brown did what the title claims.

 - Kinsey Ho has added the series "mm/mglru: code cleanup and
   refactoring".

 - Even more zswap material from Nhat Pham. The series "fix and extend
   zswap kselftests" does as claimed.

 - In the series "Introduce cpu_dcache_is_aliasing() to fix DAX
   regression" Mathieu Desnoyers has cleaned up and fixed rather a mess
   in our handling of DAX on archiecctures which have virtually aliasing
   data caches. The arm architecture is the main beneficiary.

 - Lokesh Gidra's series "per-vma locks in userfaultfd" provides
   dramatic improvements in worst-case mmap_lock hold times during
   certain userfaultfd operations.

 - Some page_owner enhancements and maintenance work from Oscar Salvador
   in his series

	"page_owner: print stacks and their outstanding allocations"
	"page_owner: Fixup and cleanup"

 - Uladzislau Rezki has contributed some vmalloc scalability
   improvements in his series "Mitigate a vmap lock contention". It
   realizes a 12x improvement for a certain microbenchmark.

 - Some kexec/crash cleanup work from Baoquan He in the series "Split
   crash out from kexec and clean up related config items".

 - Some zsmalloc maintenance work from Chengming Zhou in the series

	"mm/zsmalloc: fix and optimize objects/page migration"
	"mm/zsmalloc: some cleanup for get/set_zspage_mapping()"

 - Zi Yan has taught the MM to perform compaction on folios larger than
   order=0. This a step along the path to implementaton of the merging
   of large anonymous folios. The series is named "Enable >0 order folio
   memory compaction".

 - Christoph Hellwig has done quite a lot of cleanup work in the
   pagecache writeback code in his series "convert write_cache_pages()
   to an iterator".

 - Some modest hugetlb cleanups and speedups in Vishal Moola's series
   "Handle hugetlb faults under the VMA lock".

 - Zi Yan has changed the page splitting code so we can split huge pages
   into sizes other than order-0 to better utilize large folios. The
   series is named "Split a folio to any lower order folios".

 - David Hildenbrand has contributed the series "mm: remove
   total_mapcount()", a cleanup.

 - Matthew Wilcox has sought to improve the performance of bulk memory
   freeing in his series "Rearrange batched folio freeing".

 - Gang Li's series "hugetlb: parallelize hugetlb page init on boot"
   provides large improvements in bootup times on large machines which
   are configured to use large numbers of hugetlb pages.

 - Matthew Wilcox's series "PageFlags cleanups" does that.

 - Qi Zheng's series "minor fixes and supplement for ptdesc" does that
   also. S390 is affected.

 - Cleanups to our pagemap utility functions from Peter Xu in his series
   "mm/treewide: Replace pXd_large() with pXd_leaf()".

 - Nico Pache has fixed a few things with our hugepage selftests in his
   series "selftests/mm: Improve Hugepage Test Handling in MM
   Selftests".

 - Also, of course, many singleton patches to many things. Please see
   the individual changelogs for details.

* tag 'mm-stable-2024-03-13-20-04' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (435 commits)
  mm/zswap: remove the memcpy if acomp is not sleepable
  crypto: introduce: acomp_is_async to expose if comp drivers might sleep
  memtest: use {READ,WRITE}_ONCE in memory scanning
  mm: prohibit the last subpage from reusing the entire large folio
  mm: recover pud_leaf() definitions in nopmd case
  selftests/mm: skip the hugetlb-madvise tests on unmet hugepage requirements
  selftests/mm: skip uffd hugetlb tests with insufficient hugepages
  selftests/mm: dont fail testsuite due to a lack of hugepages
  mm/huge_memory: skip invalid debugfs new_order input for folio split
  mm/huge_memory: check new folio order when split a folio
  mm, vmscan: retry kswapd's priority loop with cache_trim_mode off on failure
  mm: add an explicit smp_wmb() to UFFDIO_CONTINUE
  mm: fix list corruption in put_pages_list
  mm: remove folio from deferred split list before uncharging it
  filemap: avoid unnecessary major faults in filemap_fault()
  mm,page_owner: drop unnecessary check
  mm,page_owner: check for null stack_record before bumping its refcount
  mm: swap: fix race between free_swap_and_cache() and swapoff()
  mm/treewide: align up pXd_leaf() retval across archs
  mm/treewide: drop pXd_large()
  ...
2024-03-14 17:43:30 -07:00

302 lines
9.0 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Intel SMP support routines.
*
* (c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
* (c) 1998-99, 2000, 2009 Ingo Molnar <mingo@redhat.com>
* (c) 2002,2003 Andi Kleen, SuSE Labs.
*
* i386 and x86_64 integration by Glauber Costa <gcosta@redhat.com>
*/
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/delay.h>
#include <linux/spinlock.h>
#include <linux/export.h>
#include <linux/kernel_stat.h>
#include <linux/mc146818rtc.h>
#include <linux/cache.h>
#include <linux/interrupt.h>
#include <linux/cpu.h>
#include <linux/gfp.h>
#include <linux/kexec.h>
#include <asm/mtrr.h>
#include <asm/tlbflush.h>
#include <asm/mmu_context.h>
#include <asm/proto.h>
#include <asm/apic.h>
#include <asm/cpu.h>
#include <asm/idtentry.h>
#include <asm/nmi.h>
#include <asm/mce.h>
#include <asm/trace/irq_vectors.h>
#include <asm/kexec.h>
#include <asm/reboot.h>
/*
* Some notes on x86 processor bugs affecting SMP operation:
*
* Pentium, Pentium Pro, II, III (and all CPUs) have bugs.
* The Linux implications for SMP are handled as follows:
*
* Pentium III / [Xeon]
* None of the E1AP-E3AP errata are visible to the user.
*
* E1AP. see PII A1AP
* E2AP. see PII A2AP
* E3AP. see PII A3AP
*
* Pentium II / [Xeon]
* None of the A1AP-A3AP errata are visible to the user.
*
* A1AP. see PPro 1AP
* A2AP. see PPro 2AP
* A3AP. see PPro 7AP
*
* Pentium Pro
* None of 1AP-9AP errata are visible to the normal user,
* except occasional delivery of 'spurious interrupt' as trap #15.
* This is very rare and a non-problem.
*
* 1AP. Linux maps APIC as non-cacheable
* 2AP. worked around in hardware
* 3AP. fixed in C0 and above steppings microcode update.
* Linux does not use excessive STARTUP_IPIs.
* 4AP. worked around in hardware
* 5AP. symmetric IO mode (normal Linux operation) not affected.
* 'noapic' mode has vector 0xf filled out properly.
* 6AP. 'noapic' mode might be affected - fixed in later steppings
* 7AP. We do not assume writes to the LVT deasserting IRQs
* 8AP. We do not enable low power mode (deep sleep) during MP bootup
* 9AP. We do not use mixed mode
*
* Pentium
* There is a marginal case where REP MOVS on 100MHz SMP
* machines with B stepping processors can fail. XXX should provide
* an L1cache=Writethrough or L1cache=off option.
*
* B stepping CPUs may hang. There are hardware work arounds
* for this. We warn about it in case your board doesn't have the work
* arounds. Basically that's so I can tell anyone with a B stepping
* CPU and SMP problems "tough".
*
* Specific items [From Pentium Processor Specification Update]
*
* 1AP. Linux doesn't use remote read
* 2AP. Linux doesn't trust APIC errors
* 3AP. We work around this
* 4AP. Linux never generated 3 interrupts of the same priority
* to cause a lost local interrupt.
* 5AP. Remote read is never used
* 6AP. not affected - worked around in hardware
* 7AP. not affected - worked around in hardware
* 8AP. worked around in hardware - we get explicit CS errors if not
* 9AP. only 'noapic' mode affected. Might generate spurious
* interrupts, we log only the first one and count the
* rest silently.
* 10AP. not affected - worked around in hardware
* 11AP. Linux reads the APIC between writes to avoid this, as per
* the documentation. Make sure you preserve this as it affects
* the C stepping chips too.
* 12AP. not affected - worked around in hardware
* 13AP. not affected - worked around in hardware
* 14AP. we always deassert INIT during bootup
* 15AP. not affected - worked around in hardware
* 16AP. not affected - worked around in hardware
* 17AP. not affected - worked around in hardware
* 18AP. not affected - worked around in hardware
* 19AP. not affected - worked around in BIOS
*
* If this sounds worrying believe me these bugs are either ___RARE___,
* or are signal timing bugs worked around in hardware and there's
* about nothing of note with C stepping upwards.
*/
static atomic_t stopping_cpu = ATOMIC_INIT(-1);
static bool smp_no_nmi_ipi = false;
static int smp_stop_nmi_callback(unsigned int val, struct pt_regs *regs)
{
/* We are registered on stopping cpu too, avoid spurious NMI */
if (raw_smp_processor_id() == atomic_read(&stopping_cpu))
return NMI_HANDLED;
cpu_emergency_disable_virtualization();
stop_this_cpu(NULL);
return NMI_HANDLED;
}
/*
* this function calls the 'stop' function on all other CPUs in the system.
*/
DEFINE_IDTENTRY_SYSVEC(sysvec_reboot)
{
apic_eoi();
cpu_emergency_disable_virtualization();
stop_this_cpu(NULL);
}
static int register_stop_handler(void)
{
return register_nmi_handler(NMI_LOCAL, smp_stop_nmi_callback,
NMI_FLAG_FIRST, "smp_stop");
}
static void native_stop_other_cpus(int wait)
{
unsigned int old_cpu, this_cpu;
unsigned long flags, timeout;
if (reboot_force)
return;
/* Only proceed if this is the first CPU to reach this code */
old_cpu = -1;
this_cpu = smp_processor_id();
if (!atomic_try_cmpxchg(&stopping_cpu, &old_cpu, this_cpu))
return;
/* For kexec, ensure that offline CPUs are out of MWAIT and in HLT */
if (kexec_in_progress)
smp_kick_mwait_play_dead();
/*
* 1) Send an IPI on the reboot vector to all other CPUs.
*
* The other CPUs should react on it after leaving critical
* sections and re-enabling interrupts. They might still hold
* locks, but there is nothing which can be done about that.
*
* 2) Wait for all other CPUs to report that they reached the
* HLT loop in stop_this_cpu()
*
* 3) If #2 timed out send an NMI to the CPUs which did not
* yet report
*
* 4) Wait for all other CPUs to report that they reached the
* HLT loop in stop_this_cpu()
*
* #3 can obviously race against a CPU reaching the HLT loop late.
* That CPU will have reported already and the "have all CPUs
* reached HLT" condition will be true despite the fact that the
* other CPU is still handling the NMI. Again, there is no
* protection against that as "disabled" APICs still respond to
* NMIs.
*/
cpumask_copy(&cpus_stop_mask, cpu_online_mask);
cpumask_clear_cpu(this_cpu, &cpus_stop_mask);
if (!cpumask_empty(&cpus_stop_mask)) {
apic_send_IPI_allbutself(REBOOT_VECTOR);
/*
* Don't wait longer than a second for IPI completion. The
* wait request is not checked here because that would
* prevent an NMI shutdown attempt in case that not all
* CPUs reach shutdown state.
*/
timeout = USEC_PER_SEC;
while (!cpumask_empty(&cpus_stop_mask) && timeout--)
udelay(1);
}
/* if the REBOOT_VECTOR didn't work, try with the NMI */
if (!cpumask_empty(&cpus_stop_mask)) {
/*
* If NMI IPI is enabled, try to register the stop handler
* and send the IPI. In any case try to wait for the other
* CPUs to stop.
*/
if (!smp_no_nmi_ipi && !register_stop_handler()) {
unsigned int cpu;
pr_emerg("Shutting down cpus with NMI\n");
for_each_cpu(cpu, &cpus_stop_mask)
__apic_send_IPI(cpu, NMI_VECTOR);
}
/*
* Don't wait longer than 10 ms if the caller didn't
* request it. If wait is true, the machine hangs here if
* one or more CPUs do not reach shutdown state.
*/
timeout = USEC_PER_MSEC * 10;
while (!cpumask_empty(&cpus_stop_mask) && (wait || timeout--))
udelay(1);
}
local_irq_save(flags);
disable_local_APIC();
mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
local_irq_restore(flags);
/*
* Ensure that the cpus_stop_mask cache lines are invalidated on
* the other CPUs. See comment vs. SME in stop_this_cpu().
*/
cpumask_clear(&cpus_stop_mask);
}
/*
* Reschedule call back. KVM uses this interrupt to force a cpu out of
* guest mode.
*/
DEFINE_IDTENTRY_SYSVEC_SIMPLE(sysvec_reschedule_ipi)
{
apic_eoi();
trace_reschedule_entry(RESCHEDULE_VECTOR);
inc_irq_stat(irq_resched_count);
scheduler_ipi();
trace_reschedule_exit(RESCHEDULE_VECTOR);
}
DEFINE_IDTENTRY_SYSVEC(sysvec_call_function)
{
apic_eoi();
trace_call_function_entry(CALL_FUNCTION_VECTOR);
inc_irq_stat(irq_call_count);
generic_smp_call_function_interrupt();
trace_call_function_exit(CALL_FUNCTION_VECTOR);
}
DEFINE_IDTENTRY_SYSVEC(sysvec_call_function_single)
{
apic_eoi();
trace_call_function_single_entry(CALL_FUNCTION_SINGLE_VECTOR);
inc_irq_stat(irq_call_count);
generic_smp_call_function_single_interrupt();
trace_call_function_single_exit(CALL_FUNCTION_SINGLE_VECTOR);
}
static int __init nonmi_ipi_setup(char *str)
{
smp_no_nmi_ipi = true;
return 1;
}
__setup("nonmi_ipi", nonmi_ipi_setup);
struct smp_ops smp_ops = {
.smp_prepare_boot_cpu = native_smp_prepare_boot_cpu,
.smp_prepare_cpus = native_smp_prepare_cpus,
.smp_cpus_done = native_smp_cpus_done,
.stop_other_cpus = native_stop_other_cpus,
#if defined(CONFIG_CRASH_DUMP)
.crash_stop_other_cpus = kdump_nmi_shootdown_cpus,
#endif
.smp_send_reschedule = native_smp_send_reschedule,
.kick_ap_alive = native_kick_ap,
.cpu_disable = native_cpu_disable,
.play_dead = native_play_dead,
.send_call_func_ipi = native_send_call_func_ipi,
.send_call_func_single_ipi = native_send_call_func_single_ipi,
};
EXPORT_SYMBOL_GPL(smp_ops);