linux/arch/x86/boot/compressed/efi_mixed.S
Ard Biesheuvel d7156b986d x86/efistub: Clear BSS in EFI handover protocol entrypoint
The so-called EFI handover protocol is value-add from the distros that
permits a loader to simply copy a PE kernel image into memory and call
an alternative entrypoint that is described by an embedded boot_params
structure.

Most implementations of this protocol do not bother to check the PE
header for minimum alignment, section placement, etc, and therefore also
don't clear the image's BSS, or even allocate enough memory for it.

Allocating more memory on the fly is rather difficult, but at least
clear the BSS region explicitly when entering in this manner, so that
the EFI stub code does not get confused by global variables that were
not zero-initialized correctly.

When booting in mixed mode, this BSS clearing must occur before any
global state is created, so clear it in the 32-bit asm entry point.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230807162720.545787-7-ardb@kernel.org
2023-08-07 20:40:36 +02:00

378 lines
9.6 KiB
ArmAsm

/* SPDX-License-Identifier: GPL-2.0 */
/*
* Copyright (C) 2014, 2015 Intel Corporation; author Matt Fleming
*
* Early support for invoking 32-bit EFI services from a 64-bit kernel.
*
* Because this thunking occurs before ExitBootServices() we have to
* restore the firmware's 32-bit GDT and IDT before we make EFI service
* calls.
*
* On the plus side, we don't have to worry about mangling 64-bit
* addresses into 32-bits because we're executing with an identity
* mapped pagetable and haven't transitioned to 64-bit virtual addresses
* yet.
*/
#include <linux/linkage.h>
#include <asm/msr.h>
#include <asm/page_types.h>
#include <asm/processor-flags.h>
#include <asm/segment.h>
.code64
.text
/*
* When booting in 64-bit mode on 32-bit EFI firmware, startup_64_mixed_mode()
* is the first thing that runs after switching to long mode. Depending on
* whether the EFI handover protocol or the compat entry point was used to
* enter the kernel, it will either branch to the common 64-bit EFI stub
* entrypoint efi_stub_entry() directly, or via the 64-bit EFI PE/COFF
* entrypoint efi_pe_entry(). In the former case, the bootloader must provide a
* struct bootparams pointer as the third argument, so the presence of such a
* pointer is used to disambiguate.
*
* +--------------+
* +------------------+ +------------+ +------>| efi_pe_entry |
* | efi32_pe_entry |---->| | | +-----------+--+
* +------------------+ | | +------+----------------+ |
* | startup_32 |---->| startup_64_mixed_mode | |
* +------------------+ | | +------+----------------+ |
* | efi32_stub_entry |---->| | | |
* +------------------+ +------------+ | |
* V |
* +------------+ +----------------+ |
* | startup_64 |<----| efi_stub_entry |<--------+
* +------------+ +----------------+
*/
SYM_FUNC_START(startup_64_mixed_mode)
lea efi32_boot_args(%rip), %rdx
mov 0(%rdx), %edi
mov 4(%rdx), %esi
#ifdef CONFIG_EFI_HANDOVER_PROTOCOL
mov 8(%rdx), %edx // saved bootparams pointer
test %edx, %edx
jnz efi_stub_entry
#endif
/*
* efi_pe_entry uses MS calling convention, which requires 32 bytes of
* shadow space on the stack even if all arguments are passed in
* registers. We also need an additional 8 bytes for the space that
* would be occupied by the return address, and this also results in
* the correct stack alignment for entry.
*/
sub $40, %rsp
mov %rdi, %rcx // MS calling convention
mov %rsi, %rdx
jmp efi_pe_entry
SYM_FUNC_END(startup_64_mixed_mode)
SYM_FUNC_START(__efi64_thunk)
push %rbp
push %rbx
movl %ds, %eax
push %rax
movl %es, %eax
push %rax
movl %ss, %eax
push %rax
/* Copy args passed on stack */
movq 0x30(%rsp), %rbp
movq 0x38(%rsp), %rbx
movq 0x40(%rsp), %rax
/*
* Convert x86-64 ABI params to i386 ABI
*/
subq $64, %rsp
movl %esi, 0x0(%rsp)
movl %edx, 0x4(%rsp)
movl %ecx, 0x8(%rsp)
movl %r8d, 0xc(%rsp)
movl %r9d, 0x10(%rsp)
movl %ebp, 0x14(%rsp)
movl %ebx, 0x18(%rsp)
movl %eax, 0x1c(%rsp)
leaq 0x20(%rsp), %rbx
sgdt (%rbx)
sidt 16(%rbx)
leaq 1f(%rip), %rbp
/*
* Switch to IDT and GDT with 32-bit segments. These are the firmware
* GDT and IDT that were installed when the kernel started executing.
* The pointers were saved by the efi32_entry() routine below.
*
* Pass the saved DS selector to the 32-bit code, and use far return to
* restore the saved CS selector.
*/
lidt efi32_boot_idt(%rip)
lgdt efi32_boot_gdt(%rip)
movzwl efi32_boot_ds(%rip), %edx
movzwq efi32_boot_cs(%rip), %rax
pushq %rax
leaq efi_enter32(%rip), %rax
pushq %rax
lretq
1: addq $64, %rsp
movq %rdi, %rax
pop %rbx
movl %ebx, %ss
pop %rbx
movl %ebx, %es
pop %rbx
movl %ebx, %ds
/* Clear out 32-bit selector from FS and GS */
xorl %ebx, %ebx
movl %ebx, %fs
movl %ebx, %gs
pop %rbx
pop %rbp
RET
SYM_FUNC_END(__efi64_thunk)
.code32
#ifdef CONFIG_EFI_HANDOVER_PROTOCOL
SYM_FUNC_START(efi32_stub_entry)
call 1f
1: popl %ecx
/* Clear BSS */
xorl %eax, %eax
leal (_bss - 1b)(%ecx), %edi
leal (_ebss - 1b)(%ecx), %ecx
subl %edi, %ecx
shrl $2, %ecx
cld
rep stosl
add $0x4, %esp /* Discard return address */
popl %ecx
popl %edx
popl %esi
jmp efi32_entry
SYM_FUNC_END(efi32_stub_entry)
#endif
/*
* EFI service pointer must be in %edi.
*
* The stack should represent the 32-bit calling convention.
*/
SYM_FUNC_START_LOCAL(efi_enter32)
/* Load firmware selector into data and stack segment registers */
movl %edx, %ds
movl %edx, %es
movl %edx, %fs
movl %edx, %gs
movl %edx, %ss
/* Reload pgtables */
movl %cr3, %eax
movl %eax, %cr3
/* Disable paging */
movl %cr0, %eax
btrl $X86_CR0_PG_BIT, %eax
movl %eax, %cr0
/* Disable long mode via EFER */
movl $MSR_EFER, %ecx
rdmsr
btrl $_EFER_LME, %eax
wrmsr
call *%edi
/* We must preserve return value */
movl %eax, %edi
/*
* Some firmware will return with interrupts enabled. Be sure to
* disable them before we switch GDTs and IDTs.
*/
cli
lidtl 16(%ebx)
lgdtl (%ebx)
movl %cr4, %eax
btsl $(X86_CR4_PAE_BIT), %eax
movl %eax, %cr4
movl %cr3, %eax
movl %eax, %cr3
movl $MSR_EFER, %ecx
rdmsr
btsl $_EFER_LME, %eax
wrmsr
xorl %eax, %eax
lldt %ax
pushl $__KERNEL_CS
pushl %ebp
/* Enable paging */
movl %cr0, %eax
btsl $X86_CR0_PG_BIT, %eax
movl %eax, %cr0
lret
SYM_FUNC_END(efi_enter32)
/*
* This is the common EFI stub entry point for mixed mode.
*
* Arguments: %ecx image handle
* %edx EFI system table pointer
* %esi struct bootparams pointer (or NULL when not using
* the EFI handover protocol)
*
* Since this is the point of no return for ordinary execution, no registers
* are considered live except for the function parameters. [Note that the EFI
* stub may still exit and return to the firmware using the Exit() EFI boot
* service.]
*/
SYM_FUNC_START_LOCAL(efi32_entry)
call 1f
1: pop %ebx
/* Save firmware GDTR and code/data selectors */
sgdtl (efi32_boot_gdt - 1b)(%ebx)
movw %cs, (efi32_boot_cs - 1b)(%ebx)
movw %ds, (efi32_boot_ds - 1b)(%ebx)
/* Store firmware IDT descriptor */
sidtl (efi32_boot_idt - 1b)(%ebx)
/* Store boot arguments */
leal (efi32_boot_args - 1b)(%ebx), %ebx
movl %ecx, 0(%ebx)
movl %edx, 4(%ebx)
movl %esi, 8(%ebx)
movb $0x0, 12(%ebx) // efi_is64
/* Disable paging */
movl %cr0, %eax
btrl $X86_CR0_PG_BIT, %eax
movl %eax, %cr0
jmp startup_32
SYM_FUNC_END(efi32_entry)
#define ST32_boottime 60 // offsetof(efi_system_table_32_t, boottime)
#define BS32_handle_protocol 88 // offsetof(efi_boot_services_32_t, handle_protocol)
#define LI32_image_base 32 // offsetof(efi_loaded_image_32_t, image_base)
/*
* efi_status_t efi32_pe_entry(efi_handle_t image_handle,
* efi_system_table_32_t *sys_table)
*/
SYM_FUNC_START(efi32_pe_entry)
pushl %ebp
movl %esp, %ebp
pushl %eax // dummy push to allocate loaded_image
pushl %ebx // save callee-save registers
pushl %edi
call verify_cpu // check for long mode support
testl %eax, %eax
movl $0x80000003, %eax // EFI_UNSUPPORTED
jnz 2f
call 1f
1: pop %ebx
/* Get the loaded image protocol pointer from the image handle */
leal -4(%ebp), %eax
pushl %eax // &loaded_image
leal (loaded_image_proto - 1b)(%ebx), %eax
pushl %eax // pass the GUID address
pushl 8(%ebp) // pass the image handle
/*
* Note the alignment of the stack frame.
* sys_table
* handle <-- 16-byte aligned on entry by ABI
* return address
* frame pointer
* loaded_image <-- local variable
* saved %ebx <-- 16-byte aligned here
* saved %edi
* &loaded_image
* &loaded_image_proto
* handle <-- 16-byte aligned for call to handle_protocol
*/
movl 12(%ebp), %eax // sys_table
movl ST32_boottime(%eax), %eax // sys_table->boottime
call *BS32_handle_protocol(%eax) // sys_table->boottime->handle_protocol
addl $12, %esp // restore argument space
testl %eax, %eax
jnz 2f
movl 8(%ebp), %ecx // image_handle
movl 12(%ebp), %edx // sys_table
movl -4(%ebp), %esi // loaded_image
movl LI32_image_base(%esi), %esi // loaded_image->image_base
leal (startup_32 - 1b)(%ebx), %ebp // runtime address of startup_32
/*
* We need to set the image_offset variable here since startup_32() will
* use it before we get to the 64-bit efi_pe_entry() in C code.
*/
subl %esi, %ebp // calculate image_offset
movl %ebp, (image_offset - 1b)(%ebx) // save image_offset
xorl %esi, %esi
jmp efi32_entry // pass %ecx, %edx, %esi
// no other registers remain live
2: popl %edi // restore callee-save registers
popl %ebx
leave
RET
SYM_FUNC_END(efi32_pe_entry)
#ifdef CONFIG_EFI_HANDOVER_PROTOCOL
.org efi32_stub_entry + 0x200
.code64
SYM_FUNC_START_NOALIGN(efi64_stub_entry)
jmp efi_handover_entry
SYM_FUNC_END(efi64_stub_entry)
#endif
.section ".rodata"
/* EFI loaded image protocol GUID */
.balign 4
SYM_DATA_START_LOCAL(loaded_image_proto)
.long 0x5b1b31a1
.word 0x9562, 0x11d2
.byte 0x8e, 0x3f, 0x00, 0xa0, 0xc9, 0x69, 0x72, 0x3b
SYM_DATA_END(loaded_image_proto)
.data
.balign 8
SYM_DATA_START_LOCAL(efi32_boot_gdt)
.word 0
.quad 0
SYM_DATA_END(efi32_boot_gdt)
SYM_DATA_START_LOCAL(efi32_boot_idt)
.word 0
.quad 0
SYM_DATA_END(efi32_boot_idt)
SYM_DATA_LOCAL(efi32_boot_cs, .word 0)
SYM_DATA_LOCAL(efi32_boot_ds, .word 0)
SYM_DATA_LOCAL(efi32_boot_args, .long 0, 0, 0)
SYM_DATA(efi_is64, .byte 1)