bd9d9624b7
KMSAN is frequently used in fuzzing scenarios and thus saves a lot of stack traces. As KMSAN does not support evicting stack traces from the stack depot, the stack depot capacity might be reached quickly with large stack records. Adjust the maximum number of stack depot pools for this case. The average size of a stack trace saved into the stack depot is ~16 frames. Thus, adjust the maximum pools number accordingly to keep the maximum number of stack traces that can be saved into the stack depot similar to the one that was allowed before the stack trace eviction changes. Link: https://lkml.kernel.org/r/301a115cf7ce8ddb42ef6de9151c2bb76ba728fc.1700502145.git.andreyknvl@google.com Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Cc: Alexander Potapenko <glider@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Evgenii Stepanov <eugenis@google.com> Cc: Marco Elver <elver@google.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
684 lines
18 KiB
C
684 lines
18 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Stack depot - a stack trace storage that avoids duplication.
|
|
*
|
|
* Internally, stack depot maintains a hash table of unique stacktraces. The
|
|
* stack traces themselves are stored contiguously one after another in a set
|
|
* of separate page allocations.
|
|
*
|
|
* Author: Alexander Potapenko <glider@google.com>
|
|
* Copyright (C) 2016 Google, Inc.
|
|
*
|
|
* Based on the code by Dmitry Chernenkov.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "stackdepot: " fmt
|
|
|
|
#include <linux/gfp.h>
|
|
#include <linux/jhash.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/kmsan.h>
|
|
#include <linux/list.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/printk.h>
|
|
#include <linux/refcount.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/stacktrace.h>
|
|
#include <linux/stackdepot.h>
|
|
#include <linux/string.h>
|
|
#include <linux/types.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/kasan-enabled.h>
|
|
|
|
#define DEPOT_HANDLE_BITS (sizeof(depot_stack_handle_t) * 8)
|
|
|
|
#define DEPOT_POOL_ORDER 2 /* Pool size order, 4 pages */
|
|
#define DEPOT_POOL_SIZE (1LL << (PAGE_SHIFT + DEPOT_POOL_ORDER))
|
|
#define DEPOT_STACK_ALIGN 4
|
|
#define DEPOT_OFFSET_BITS (DEPOT_POOL_ORDER + PAGE_SHIFT - DEPOT_STACK_ALIGN)
|
|
#define DEPOT_POOL_INDEX_BITS (DEPOT_HANDLE_BITS - DEPOT_OFFSET_BITS - \
|
|
STACK_DEPOT_EXTRA_BITS)
|
|
#if IS_ENABLED(CONFIG_KMSAN) && CONFIG_STACKDEPOT_MAX_FRAMES >= 32
|
|
/*
|
|
* KMSAN is frequently used in fuzzing scenarios and thus saves a lot of stack
|
|
* traces. As KMSAN does not support evicting stack traces from the stack
|
|
* depot, the stack depot capacity might be reached quickly with large stack
|
|
* records. Adjust the maximum number of stack depot pools for this case.
|
|
*/
|
|
#define DEPOT_POOLS_CAP (8192 * (CONFIG_STACKDEPOT_MAX_FRAMES / 16))
|
|
#else
|
|
#define DEPOT_POOLS_CAP 8192
|
|
#endif
|
|
#define DEPOT_MAX_POOLS \
|
|
(((1LL << (DEPOT_POOL_INDEX_BITS)) < DEPOT_POOLS_CAP) ? \
|
|
(1LL << (DEPOT_POOL_INDEX_BITS)) : DEPOT_POOLS_CAP)
|
|
|
|
/* Compact structure that stores a reference to a stack. */
|
|
union handle_parts {
|
|
depot_stack_handle_t handle;
|
|
struct {
|
|
u32 pool_index : DEPOT_POOL_INDEX_BITS;
|
|
u32 offset : DEPOT_OFFSET_BITS;
|
|
u32 extra : STACK_DEPOT_EXTRA_BITS;
|
|
};
|
|
};
|
|
|
|
struct stack_record {
|
|
struct list_head list; /* Links in hash table or freelist */
|
|
u32 hash; /* Hash in hash table */
|
|
u32 size; /* Number of stored frames */
|
|
union handle_parts handle;
|
|
refcount_t count;
|
|
unsigned long entries[CONFIG_STACKDEPOT_MAX_FRAMES]; /* Frames */
|
|
};
|
|
|
|
#define DEPOT_STACK_RECORD_SIZE \
|
|
ALIGN(sizeof(struct stack_record), 1 << DEPOT_STACK_ALIGN)
|
|
|
|
static bool stack_depot_disabled;
|
|
static bool __stack_depot_early_init_requested __initdata = IS_ENABLED(CONFIG_STACKDEPOT_ALWAYS_INIT);
|
|
static bool __stack_depot_early_init_passed __initdata;
|
|
|
|
/* Use one hash table bucket per 16 KB of memory. */
|
|
#define STACK_HASH_TABLE_SCALE 14
|
|
/* Limit the number of buckets between 4K and 1M. */
|
|
#define STACK_BUCKET_NUMBER_ORDER_MIN 12
|
|
#define STACK_BUCKET_NUMBER_ORDER_MAX 20
|
|
/* Initial seed for jhash2. */
|
|
#define STACK_HASH_SEED 0x9747b28c
|
|
|
|
/* Hash table of stored stack records. */
|
|
static struct list_head *stack_table;
|
|
/* Fixed order of the number of table buckets. Used when KASAN is enabled. */
|
|
static unsigned int stack_bucket_number_order;
|
|
/* Hash mask for indexing the table. */
|
|
static unsigned int stack_hash_mask;
|
|
|
|
/* Array of memory regions that store stack records. */
|
|
static void *stack_pools[DEPOT_MAX_POOLS];
|
|
/* Newly allocated pool that is not yet added to stack_pools. */
|
|
static void *new_pool;
|
|
/* Number of pools in stack_pools. */
|
|
static int pools_num;
|
|
/* Freelist of stack records within stack_pools. */
|
|
static LIST_HEAD(free_stacks);
|
|
/*
|
|
* Stack depot tries to keep an extra pool allocated even before it runs out
|
|
* of space in the currently used pool. This flag marks whether this extra pool
|
|
* needs to be allocated. It has the value 0 when either an extra pool is not
|
|
* yet allocated or if the limit on the number of pools is reached.
|
|
*/
|
|
static bool new_pool_required = true;
|
|
/* Lock that protects the variables above. */
|
|
static DEFINE_RWLOCK(pool_rwlock);
|
|
|
|
static int __init disable_stack_depot(char *str)
|
|
{
|
|
return kstrtobool(str, &stack_depot_disabled);
|
|
}
|
|
early_param("stack_depot_disable", disable_stack_depot);
|
|
|
|
void __init stack_depot_request_early_init(void)
|
|
{
|
|
/* Too late to request early init now. */
|
|
WARN_ON(__stack_depot_early_init_passed);
|
|
|
|
__stack_depot_early_init_requested = true;
|
|
}
|
|
|
|
/* Initialize list_head's within the hash table. */
|
|
static void init_stack_table(unsigned long entries)
|
|
{
|
|
unsigned long i;
|
|
|
|
for (i = 0; i < entries; i++)
|
|
INIT_LIST_HEAD(&stack_table[i]);
|
|
}
|
|
|
|
/* Allocates a hash table via memblock. Can only be used during early boot. */
|
|
int __init stack_depot_early_init(void)
|
|
{
|
|
unsigned long entries = 0;
|
|
|
|
/* This function must be called only once, from mm_init(). */
|
|
if (WARN_ON(__stack_depot_early_init_passed))
|
|
return 0;
|
|
__stack_depot_early_init_passed = true;
|
|
|
|
/*
|
|
* Print disabled message even if early init has not been requested:
|
|
* stack_depot_init() will not print one.
|
|
*/
|
|
if (stack_depot_disabled) {
|
|
pr_info("disabled\n");
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* If KASAN is enabled, use the maximum order: KASAN is frequently used
|
|
* in fuzzing scenarios, which leads to a large number of different
|
|
* stack traces being stored in stack depot.
|
|
*/
|
|
if (kasan_enabled() && !stack_bucket_number_order)
|
|
stack_bucket_number_order = STACK_BUCKET_NUMBER_ORDER_MAX;
|
|
|
|
/*
|
|
* Check if early init has been requested after setting
|
|
* stack_bucket_number_order: stack_depot_init() uses its value.
|
|
*/
|
|
if (!__stack_depot_early_init_requested)
|
|
return 0;
|
|
|
|
/*
|
|
* If stack_bucket_number_order is not set, leave entries as 0 to rely
|
|
* on the automatic calculations performed by alloc_large_system_hash().
|
|
*/
|
|
if (stack_bucket_number_order)
|
|
entries = 1UL << stack_bucket_number_order;
|
|
pr_info("allocating hash table via alloc_large_system_hash\n");
|
|
stack_table = alloc_large_system_hash("stackdepot",
|
|
sizeof(struct list_head),
|
|
entries,
|
|
STACK_HASH_TABLE_SCALE,
|
|
HASH_EARLY,
|
|
NULL,
|
|
&stack_hash_mask,
|
|
1UL << STACK_BUCKET_NUMBER_ORDER_MIN,
|
|
1UL << STACK_BUCKET_NUMBER_ORDER_MAX);
|
|
if (!stack_table) {
|
|
pr_err("hash table allocation failed, disabling\n");
|
|
stack_depot_disabled = true;
|
|
return -ENOMEM;
|
|
}
|
|
if (!entries) {
|
|
/*
|
|
* Obtain the number of entries that was calculated by
|
|
* alloc_large_system_hash().
|
|
*/
|
|
entries = stack_hash_mask + 1;
|
|
}
|
|
init_stack_table(entries);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Allocates a hash table via kvcalloc. Can be used after boot. */
|
|
int stack_depot_init(void)
|
|
{
|
|
static DEFINE_MUTEX(stack_depot_init_mutex);
|
|
unsigned long entries;
|
|
int ret = 0;
|
|
|
|
mutex_lock(&stack_depot_init_mutex);
|
|
|
|
if (stack_depot_disabled || stack_table)
|
|
goto out_unlock;
|
|
|
|
/*
|
|
* Similarly to stack_depot_early_init, use stack_bucket_number_order
|
|
* if assigned, and rely on automatic scaling otherwise.
|
|
*/
|
|
if (stack_bucket_number_order) {
|
|
entries = 1UL << stack_bucket_number_order;
|
|
} else {
|
|
int scale = STACK_HASH_TABLE_SCALE;
|
|
|
|
entries = nr_free_buffer_pages();
|
|
entries = roundup_pow_of_two(entries);
|
|
|
|
if (scale > PAGE_SHIFT)
|
|
entries >>= (scale - PAGE_SHIFT);
|
|
else
|
|
entries <<= (PAGE_SHIFT - scale);
|
|
}
|
|
|
|
if (entries < 1UL << STACK_BUCKET_NUMBER_ORDER_MIN)
|
|
entries = 1UL << STACK_BUCKET_NUMBER_ORDER_MIN;
|
|
if (entries > 1UL << STACK_BUCKET_NUMBER_ORDER_MAX)
|
|
entries = 1UL << STACK_BUCKET_NUMBER_ORDER_MAX;
|
|
|
|
pr_info("allocating hash table of %lu entries via kvcalloc\n", entries);
|
|
stack_table = kvcalloc(entries, sizeof(struct list_head), GFP_KERNEL);
|
|
if (!stack_table) {
|
|
pr_err("hash table allocation failed, disabling\n");
|
|
stack_depot_disabled = true;
|
|
ret = -ENOMEM;
|
|
goto out_unlock;
|
|
}
|
|
stack_hash_mask = entries - 1;
|
|
init_stack_table(entries);
|
|
|
|
out_unlock:
|
|
mutex_unlock(&stack_depot_init_mutex);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(stack_depot_init);
|
|
|
|
/* Initializes a stack depol pool. */
|
|
static void depot_init_pool(void *pool)
|
|
{
|
|
int offset;
|
|
|
|
lockdep_assert_held_write(&pool_rwlock);
|
|
|
|
WARN_ON(!list_empty(&free_stacks));
|
|
|
|
/* Initialize handles and link stack records into the freelist. */
|
|
for (offset = 0; offset <= DEPOT_POOL_SIZE - DEPOT_STACK_RECORD_SIZE;
|
|
offset += DEPOT_STACK_RECORD_SIZE) {
|
|
struct stack_record *stack = pool + offset;
|
|
|
|
stack->handle.pool_index = pools_num;
|
|
stack->handle.offset = offset >> DEPOT_STACK_ALIGN;
|
|
stack->handle.extra = 0;
|
|
|
|
list_add(&stack->list, &free_stacks);
|
|
}
|
|
|
|
/* Save reference to the pool to be used by depot_fetch_stack(). */
|
|
stack_pools[pools_num] = pool;
|
|
pools_num++;
|
|
}
|
|
|
|
/* Keeps the preallocated memory to be used for a new stack depot pool. */
|
|
static void depot_keep_new_pool(void **prealloc)
|
|
{
|
|
lockdep_assert_held_write(&pool_rwlock);
|
|
|
|
/*
|
|
* If a new pool is already saved or the maximum number of
|
|
* pools is reached, do not use the preallocated memory.
|
|
*/
|
|
if (!new_pool_required)
|
|
return;
|
|
|
|
/*
|
|
* Use the preallocated memory for the new pool
|
|
* as long as we do not exceed the maximum number of pools.
|
|
*/
|
|
if (pools_num < DEPOT_MAX_POOLS) {
|
|
new_pool = *prealloc;
|
|
*prealloc = NULL;
|
|
}
|
|
|
|
/*
|
|
* At this point, either a new pool is kept or the maximum
|
|
* number of pools is reached. In either case, take note that
|
|
* keeping another pool is not required.
|
|
*/
|
|
new_pool_required = false;
|
|
}
|
|
|
|
/* Updates references to the current and the next stack depot pools. */
|
|
static bool depot_update_pools(void **prealloc)
|
|
{
|
|
lockdep_assert_held_write(&pool_rwlock);
|
|
|
|
/* Check if we still have objects in the freelist. */
|
|
if (!list_empty(&free_stacks))
|
|
goto out_keep_prealloc;
|
|
|
|
/* Check if we have a new pool saved and use it. */
|
|
if (new_pool) {
|
|
depot_init_pool(new_pool);
|
|
new_pool = NULL;
|
|
|
|
/* Take note that we might need a new new_pool. */
|
|
if (pools_num < DEPOT_MAX_POOLS)
|
|
new_pool_required = true;
|
|
|
|
/* Try keeping the preallocated memory for new_pool. */
|
|
goto out_keep_prealloc;
|
|
}
|
|
|
|
/* Bail out if we reached the pool limit. */
|
|
if (unlikely(pools_num >= DEPOT_MAX_POOLS)) {
|
|
WARN_ONCE(1, "Stack depot reached limit capacity");
|
|
return false;
|
|
}
|
|
|
|
/* Check if we have preallocated memory and use it. */
|
|
if (*prealloc) {
|
|
depot_init_pool(*prealloc);
|
|
*prealloc = NULL;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
|
|
out_keep_prealloc:
|
|
/* Keep the preallocated memory for a new pool if required. */
|
|
if (*prealloc)
|
|
depot_keep_new_pool(prealloc);
|
|
return true;
|
|
}
|
|
|
|
/* Allocates a new stack in a stack depot pool. */
|
|
static struct stack_record *
|
|
depot_alloc_stack(unsigned long *entries, int size, u32 hash, void **prealloc)
|
|
{
|
|
struct stack_record *stack;
|
|
|
|
lockdep_assert_held_write(&pool_rwlock);
|
|
|
|
/* Update current and new pools if required and possible. */
|
|
if (!depot_update_pools(prealloc))
|
|
return NULL;
|
|
|
|
/* Check if we have a stack record to save the stack trace. */
|
|
if (list_empty(&free_stacks))
|
|
return NULL;
|
|
|
|
/* Get and unlink the first entry from the freelist. */
|
|
stack = list_first_entry(&free_stacks, struct stack_record, list);
|
|
list_del(&stack->list);
|
|
|
|
/* Limit number of saved frames to CONFIG_STACKDEPOT_MAX_FRAMES. */
|
|
if (size > CONFIG_STACKDEPOT_MAX_FRAMES)
|
|
size = CONFIG_STACKDEPOT_MAX_FRAMES;
|
|
|
|
/* Save the stack trace. */
|
|
stack->hash = hash;
|
|
stack->size = size;
|
|
/* stack->handle is already filled in by depot_init_pool(). */
|
|
refcount_set(&stack->count, 1);
|
|
memcpy(stack->entries, entries, flex_array_size(stack, entries, size));
|
|
|
|
/*
|
|
* Let KMSAN know the stored stack record is initialized. This shall
|
|
* prevent false positive reports if instrumented code accesses it.
|
|
*/
|
|
kmsan_unpoison_memory(stack, DEPOT_STACK_RECORD_SIZE);
|
|
|
|
return stack;
|
|
}
|
|
|
|
static struct stack_record *depot_fetch_stack(depot_stack_handle_t handle)
|
|
{
|
|
union handle_parts parts = { .handle = handle };
|
|
void *pool;
|
|
size_t offset = parts.offset << DEPOT_STACK_ALIGN;
|
|
struct stack_record *stack;
|
|
|
|
lockdep_assert_held(&pool_rwlock);
|
|
|
|
if (parts.pool_index > pools_num) {
|
|
WARN(1, "pool index %d out of bounds (%d) for stack id %08x\n",
|
|
parts.pool_index, pools_num, handle);
|
|
return NULL;
|
|
}
|
|
|
|
pool = stack_pools[parts.pool_index];
|
|
if (!pool)
|
|
return NULL;
|
|
|
|
stack = pool + offset;
|
|
return stack;
|
|
}
|
|
|
|
/* Links stack into the freelist. */
|
|
static void depot_free_stack(struct stack_record *stack)
|
|
{
|
|
lockdep_assert_held_write(&pool_rwlock);
|
|
|
|
list_add(&stack->list, &free_stacks);
|
|
}
|
|
|
|
/* Calculates the hash for a stack. */
|
|
static inline u32 hash_stack(unsigned long *entries, unsigned int size)
|
|
{
|
|
return jhash2((u32 *)entries,
|
|
array_size(size, sizeof(*entries)) / sizeof(u32),
|
|
STACK_HASH_SEED);
|
|
}
|
|
|
|
/*
|
|
* Non-instrumented version of memcmp().
|
|
* Does not check the lexicographical order, only the equality.
|
|
*/
|
|
static inline
|
|
int stackdepot_memcmp(const unsigned long *u1, const unsigned long *u2,
|
|
unsigned int n)
|
|
{
|
|
for ( ; n-- ; u1++, u2++) {
|
|
if (*u1 != *u2)
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Finds a stack in a bucket of the hash table. */
|
|
static inline struct stack_record *find_stack(struct list_head *bucket,
|
|
unsigned long *entries, int size,
|
|
u32 hash)
|
|
{
|
|
struct list_head *pos;
|
|
struct stack_record *found;
|
|
|
|
lockdep_assert_held(&pool_rwlock);
|
|
|
|
list_for_each(pos, bucket) {
|
|
found = list_entry(pos, struct stack_record, list);
|
|
if (found->hash == hash &&
|
|
found->size == size &&
|
|
!stackdepot_memcmp(entries, found->entries, size))
|
|
return found;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
depot_stack_handle_t stack_depot_save_flags(unsigned long *entries,
|
|
unsigned int nr_entries,
|
|
gfp_t alloc_flags,
|
|
depot_flags_t depot_flags)
|
|
{
|
|
struct list_head *bucket;
|
|
struct stack_record *found = NULL;
|
|
depot_stack_handle_t handle = 0;
|
|
struct page *page = NULL;
|
|
void *prealloc = NULL;
|
|
bool can_alloc = depot_flags & STACK_DEPOT_FLAG_CAN_ALLOC;
|
|
bool need_alloc = false;
|
|
unsigned long flags;
|
|
u32 hash;
|
|
|
|
if (WARN_ON(depot_flags & ~STACK_DEPOT_FLAGS_MASK))
|
|
return 0;
|
|
|
|
/*
|
|
* If this stack trace is from an interrupt, including anything before
|
|
* interrupt entry usually leads to unbounded stack depot growth.
|
|
*
|
|
* Since use of filter_irq_stacks() is a requirement to ensure stack
|
|
* depot can efficiently deduplicate interrupt stacks, always
|
|
* filter_irq_stacks() to simplify all callers' use of stack depot.
|
|
*/
|
|
nr_entries = filter_irq_stacks(entries, nr_entries);
|
|
|
|
if (unlikely(nr_entries == 0) || stack_depot_disabled)
|
|
return 0;
|
|
|
|
hash = hash_stack(entries, nr_entries);
|
|
bucket = &stack_table[hash & stack_hash_mask];
|
|
|
|
read_lock_irqsave(&pool_rwlock, flags);
|
|
|
|
/* Fast path: look the stack trace up without full locking. */
|
|
found = find_stack(bucket, entries, nr_entries, hash);
|
|
if (found) {
|
|
if (depot_flags & STACK_DEPOT_FLAG_GET)
|
|
refcount_inc(&found->count);
|
|
read_unlock_irqrestore(&pool_rwlock, flags);
|
|
goto exit;
|
|
}
|
|
|
|
/* Take note if another stack pool needs to be allocated. */
|
|
if (new_pool_required)
|
|
need_alloc = true;
|
|
|
|
read_unlock_irqrestore(&pool_rwlock, flags);
|
|
|
|
/*
|
|
* Allocate memory for a new pool if required now:
|
|
* we won't be able to do that under the lock.
|
|
*/
|
|
if (unlikely(can_alloc && need_alloc)) {
|
|
/*
|
|
* Zero out zone modifiers, as we don't have specific zone
|
|
* requirements. Keep the flags related to allocation in atomic
|
|
* contexts and I/O.
|
|
*/
|
|
alloc_flags &= ~GFP_ZONEMASK;
|
|
alloc_flags &= (GFP_ATOMIC | GFP_KERNEL);
|
|
alloc_flags |= __GFP_NOWARN;
|
|
page = alloc_pages(alloc_flags, DEPOT_POOL_ORDER);
|
|
if (page)
|
|
prealloc = page_address(page);
|
|
}
|
|
|
|
write_lock_irqsave(&pool_rwlock, flags);
|
|
|
|
found = find_stack(bucket, entries, nr_entries, hash);
|
|
if (!found) {
|
|
struct stack_record *new =
|
|
depot_alloc_stack(entries, nr_entries, hash, &prealloc);
|
|
|
|
if (new) {
|
|
list_add(&new->list, bucket);
|
|
found = new;
|
|
}
|
|
} else {
|
|
if (depot_flags & STACK_DEPOT_FLAG_GET)
|
|
refcount_inc(&found->count);
|
|
/*
|
|
* Stack depot already contains this stack trace, but let's
|
|
* keep the preallocated memory for future.
|
|
*/
|
|
if (prealloc)
|
|
depot_keep_new_pool(&prealloc);
|
|
}
|
|
|
|
write_unlock_irqrestore(&pool_rwlock, flags);
|
|
exit:
|
|
if (prealloc) {
|
|
/* Stack depot didn't use this memory, free it. */
|
|
free_pages((unsigned long)prealloc, DEPOT_POOL_ORDER);
|
|
}
|
|
if (found)
|
|
handle = found->handle.handle;
|
|
return handle;
|
|
}
|
|
EXPORT_SYMBOL_GPL(stack_depot_save_flags);
|
|
|
|
depot_stack_handle_t stack_depot_save(unsigned long *entries,
|
|
unsigned int nr_entries,
|
|
gfp_t alloc_flags)
|
|
{
|
|
return stack_depot_save_flags(entries, nr_entries, alloc_flags,
|
|
STACK_DEPOT_FLAG_CAN_ALLOC);
|
|
}
|
|
EXPORT_SYMBOL_GPL(stack_depot_save);
|
|
|
|
unsigned int stack_depot_fetch(depot_stack_handle_t handle,
|
|
unsigned long **entries)
|
|
{
|
|
struct stack_record *stack;
|
|
unsigned long flags;
|
|
|
|
*entries = NULL;
|
|
/*
|
|
* Let KMSAN know *entries is initialized. This shall prevent false
|
|
* positive reports if instrumented code accesses it.
|
|
*/
|
|
kmsan_unpoison_memory(entries, sizeof(*entries));
|
|
|
|
if (!handle || stack_depot_disabled)
|
|
return 0;
|
|
|
|
read_lock_irqsave(&pool_rwlock, flags);
|
|
|
|
stack = depot_fetch_stack(handle);
|
|
|
|
read_unlock_irqrestore(&pool_rwlock, flags);
|
|
|
|
*entries = stack->entries;
|
|
return stack->size;
|
|
}
|
|
EXPORT_SYMBOL_GPL(stack_depot_fetch);
|
|
|
|
void stack_depot_put(depot_stack_handle_t handle)
|
|
{
|
|
struct stack_record *stack;
|
|
unsigned long flags;
|
|
|
|
if (!handle || stack_depot_disabled)
|
|
return;
|
|
|
|
write_lock_irqsave(&pool_rwlock, flags);
|
|
|
|
stack = depot_fetch_stack(handle);
|
|
if (WARN_ON(!stack))
|
|
goto out;
|
|
|
|
if (refcount_dec_and_test(&stack->count)) {
|
|
/* Unlink stack from the hash table. */
|
|
list_del(&stack->list);
|
|
|
|
/* Free stack. */
|
|
depot_free_stack(stack);
|
|
}
|
|
|
|
out:
|
|
write_unlock_irqrestore(&pool_rwlock, flags);
|
|
}
|
|
EXPORT_SYMBOL_GPL(stack_depot_put);
|
|
|
|
void stack_depot_print(depot_stack_handle_t stack)
|
|
{
|
|
unsigned long *entries;
|
|
unsigned int nr_entries;
|
|
|
|
nr_entries = stack_depot_fetch(stack, &entries);
|
|
if (nr_entries > 0)
|
|
stack_trace_print(entries, nr_entries, 0);
|
|
}
|
|
EXPORT_SYMBOL_GPL(stack_depot_print);
|
|
|
|
int stack_depot_snprint(depot_stack_handle_t handle, char *buf, size_t size,
|
|
int spaces)
|
|
{
|
|
unsigned long *entries;
|
|
unsigned int nr_entries;
|
|
|
|
nr_entries = stack_depot_fetch(handle, &entries);
|
|
return nr_entries ? stack_trace_snprint(buf, size, entries, nr_entries,
|
|
spaces) : 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(stack_depot_snprint);
|
|
|
|
depot_stack_handle_t __must_check stack_depot_set_extra_bits(
|
|
depot_stack_handle_t handle, unsigned int extra_bits)
|
|
{
|
|
union handle_parts parts = { .handle = handle };
|
|
|
|
/* Don't set extra bits on empty handles. */
|
|
if (!handle)
|
|
return 0;
|
|
|
|
parts.extra = extra_bits;
|
|
return parts.handle;
|
|
}
|
|
EXPORT_SYMBOL(stack_depot_set_extra_bits);
|
|
|
|
unsigned int stack_depot_get_extra_bits(depot_stack_handle_t handle)
|
|
{
|
|
union handle_parts parts = { .handle = handle };
|
|
|
|
return parts.extra;
|
|
}
|
|
EXPORT_SYMBOL(stack_depot_get_extra_bits);
|