Javi Merino 4c7aa00213 arm64: kernel: initialise cpu_logical_map from the DT
When booting the kernel, the cpu logical id map must be initialised
using device tree data passed by FW or through an embedded blob.

This patch parses the reg property in device tree "cpu" nodes,
retrieves the corresponding CPUs hardware identifiers (MPIDR) and
initialises the cpu logical map accordingly.

The device tree HW identifiers are considered valid if all CPU nodes
contain a "reg" property, there are no duplicate "reg" entries and the
DT defines a CPU node whose "reg" property defines affinity levels
that matches those of the boot CPU.

The primary CPU is assigned cpu logical number 0 to keep the current
convention valid.

Based on a0ae02405076ac32bd17ece976e914b5b6075bb0 (ARM: kernel: add
device tree init map function).

Signed-off-by: Javi Merino <javi.merino@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2013-03-20 17:26:24 +00:00

383 lines
8.8 KiB
C

/*
* Based on arch/arm/kernel/setup.c
*
* Copyright (C) 1995-2001 Russell King
* Copyright (C) 2012 ARM Ltd.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/export.h>
#include <linux/kernel.h>
#include <linux/stddef.h>
#include <linux/ioport.h>
#include <linux/delay.h>
#include <linux/utsname.h>
#include <linux/initrd.h>
#include <linux/console.h>
#include <linux/bootmem.h>
#include <linux/seq_file.h>
#include <linux/screen_info.h>
#include <linux/init.h>
#include <linux/kexec.h>
#include <linux/crash_dump.h>
#include <linux/root_dev.h>
#include <linux/clk-provider.h>
#include <linux/cpu.h>
#include <linux/interrupt.h>
#include <linux/smp.h>
#include <linux/fs.h>
#include <linux/proc_fs.h>
#include <linux/memblock.h>
#include <linux/of_fdt.h>
#include <linux/of_platform.h>
#include <asm/cputype.h>
#include <asm/elf.h>
#include <asm/cputable.h>
#include <asm/sections.h>
#include <asm/setup.h>
#include <asm/smp_plat.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/traps.h>
#include <asm/memblock.h>
#include <asm/psci.h>
unsigned int processor_id;
EXPORT_SYMBOL(processor_id);
unsigned int elf_hwcap __read_mostly;
EXPORT_SYMBOL_GPL(elf_hwcap);
static const char *cpu_name;
static const char *machine_name;
phys_addr_t __fdt_pointer __initdata;
/*
* Standard memory resources
*/
static struct resource mem_res[] = {
{
.name = "Kernel code",
.start = 0,
.end = 0,
.flags = IORESOURCE_MEM
},
{
.name = "Kernel data",
.start = 0,
.end = 0,
.flags = IORESOURCE_MEM
}
};
#define kernel_code mem_res[0]
#define kernel_data mem_res[1]
void __init early_print(const char *str, ...)
{
char buf[256];
va_list ap;
va_start(ap, str);
vsnprintf(buf, sizeof(buf), str, ap);
va_end(ap);
printk("%s", buf);
}
static void __init setup_processor(void)
{
struct cpu_info *cpu_info;
/*
* locate processor in the list of supported processor
* types. The linker builds this table for us from the
* entries in arch/arm/mm/proc.S
*/
cpu_info = lookup_processor_type(read_cpuid_id());
if (!cpu_info) {
printk("CPU configuration botched (ID %08x), unable to continue.\n",
read_cpuid_id());
while (1);
}
cpu_name = cpu_info->cpu_name;
printk("CPU: %s [%08x] revision %d\n",
cpu_name, read_cpuid_id(), read_cpuid_id() & 15);
sprintf(init_utsname()->machine, "aarch64");
elf_hwcap = 0;
}
static void __init setup_machine_fdt(phys_addr_t dt_phys)
{
struct boot_param_header *devtree;
unsigned long dt_root;
/* Check we have a non-NULL DT pointer */
if (!dt_phys) {
early_print("\n"
"Error: NULL or invalid device tree blob\n"
"The dtb must be 8-byte aligned and passed in the first 512MB of memory\n"
"\nPlease check your bootloader.\n");
while (true)
cpu_relax();
}
devtree = phys_to_virt(dt_phys);
/* Check device tree validity */
if (be32_to_cpu(devtree->magic) != OF_DT_HEADER) {
early_print("\n"
"Error: invalid device tree blob at physical address 0x%p (virtual address 0x%p)\n"
"Expected 0x%x, found 0x%x\n"
"\nPlease check your bootloader.\n",
dt_phys, devtree, OF_DT_HEADER,
be32_to_cpu(devtree->magic));
while (true)
cpu_relax();
}
initial_boot_params = devtree;
dt_root = of_get_flat_dt_root();
machine_name = of_get_flat_dt_prop(dt_root, "model", NULL);
if (!machine_name)
machine_name = of_get_flat_dt_prop(dt_root, "compatible", NULL);
if (!machine_name)
machine_name = "<unknown>";
pr_info("Machine: %s\n", machine_name);
/* Retrieve various information from the /chosen node */
of_scan_flat_dt(early_init_dt_scan_chosen, boot_command_line);
/* Initialize {size,address}-cells info */
of_scan_flat_dt(early_init_dt_scan_root, NULL);
/* Setup memory, calling early_init_dt_add_memory_arch */
of_scan_flat_dt(early_init_dt_scan_memory, NULL);
}
void __init early_init_dt_add_memory_arch(u64 base, u64 size)
{
base &= PAGE_MASK;
size &= PAGE_MASK;
if (base + size < PHYS_OFFSET) {
pr_warning("Ignoring memory block 0x%llx - 0x%llx\n",
base, base + size);
return;
}
if (base < PHYS_OFFSET) {
pr_warning("Ignoring memory range 0x%llx - 0x%llx\n",
base, PHYS_OFFSET);
size -= PHYS_OFFSET - base;
base = PHYS_OFFSET;
}
memblock_add(base, size);
}
void * __init early_init_dt_alloc_memory_arch(u64 size, u64 align)
{
return __va(memblock_alloc(size, align));
}
/*
* Limit the memory size that was specified via FDT.
*/
static int __init early_mem(char *p)
{
phys_addr_t limit;
if (!p)
return 1;
limit = memparse(p, &p) & PAGE_MASK;
pr_notice("Memory limited to %lldMB\n", limit >> 20);
memblock_enforce_memory_limit(limit);
return 0;
}
early_param("mem", early_mem);
static void __init request_standard_resources(void)
{
struct memblock_region *region;
struct resource *res;
kernel_code.start = virt_to_phys(_text);
kernel_code.end = virt_to_phys(_etext - 1);
kernel_data.start = virt_to_phys(_sdata);
kernel_data.end = virt_to_phys(_end - 1);
for_each_memblock(memory, region) {
res = alloc_bootmem_low(sizeof(*res));
res->name = "System RAM";
res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
request_resource(&iomem_resource, res);
if (kernel_code.start >= res->start &&
kernel_code.end <= res->end)
request_resource(res, &kernel_code);
if (kernel_data.start >= res->start &&
kernel_data.end <= res->end)
request_resource(res, &kernel_data);
}
}
u64 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = INVALID_HWID };
void __init setup_arch(char **cmdline_p)
{
setup_processor();
setup_machine_fdt(__fdt_pointer);
init_mm.start_code = (unsigned long) _text;
init_mm.end_code = (unsigned long) _etext;
init_mm.end_data = (unsigned long) _edata;
init_mm.brk = (unsigned long) _end;
*cmdline_p = boot_command_line;
parse_early_param();
arm64_memblock_init();
paging_init();
request_standard_resources();
unflatten_device_tree();
psci_init();
cpu_logical_map(0) = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
#ifdef CONFIG_SMP
smp_init_cpus();
#endif
#ifdef CONFIG_VT
#if defined(CONFIG_VGA_CONSOLE)
conswitchp = &vga_con;
#elif defined(CONFIG_DUMMY_CONSOLE)
conswitchp = &dummy_con;
#endif
#endif
}
static int __init arm64_of_clk_init(void)
{
of_clk_init(NULL);
return 0;
}
arch_initcall(arm64_of_clk_init);
static DEFINE_PER_CPU(struct cpu, cpu_data);
static int __init topology_init(void)
{
int i;
for_each_possible_cpu(i) {
struct cpu *cpu = &per_cpu(cpu_data, i);
cpu->hotpluggable = 1;
register_cpu(cpu, i);
}
return 0;
}
subsys_initcall(topology_init);
static int __init arm64_device_probe(void)
{
of_platform_populate(NULL, of_default_bus_match_table, NULL, NULL);
return 0;
}
device_initcall(arm64_device_probe);
static const char *hwcap_str[] = {
"fp",
"asimd",
NULL
};
static int c_show(struct seq_file *m, void *v)
{
int i;
seq_printf(m, "Processor\t: %s rev %d (%s)\n",
cpu_name, read_cpuid_id() & 15, ELF_PLATFORM);
for_each_online_cpu(i) {
/*
* glibc reads /proc/cpuinfo to determine the number of
* online processors, looking for lines beginning with
* "processor". Give glibc what it expects.
*/
#ifdef CONFIG_SMP
seq_printf(m, "processor\t: %d\n", i);
#endif
seq_printf(m, "BogoMIPS\t: %lu.%02lu\n\n",
loops_per_jiffy / (500000UL/HZ),
loops_per_jiffy / (5000UL/HZ) % 100);
}
/* dump out the processor features */
seq_puts(m, "Features\t: ");
for (i = 0; hwcap_str[i]; i++)
if (elf_hwcap & (1 << i))
seq_printf(m, "%s ", hwcap_str[i]);
seq_printf(m, "\nCPU implementer\t: 0x%02x\n", read_cpuid_id() >> 24);
seq_printf(m, "CPU architecture: AArch64\n");
seq_printf(m, "CPU variant\t: 0x%x\n", (read_cpuid_id() >> 20) & 15);
seq_printf(m, "CPU part\t: 0x%03x\n", (read_cpuid_id() >> 4) & 0xfff);
seq_printf(m, "CPU revision\t: %d\n", read_cpuid_id() & 15);
seq_puts(m, "\n");
seq_printf(m, "Hardware\t: %s\n", machine_name);
return 0;
}
static void *c_start(struct seq_file *m, loff_t *pos)
{
return *pos < 1 ? (void *)1 : NULL;
}
static void *c_next(struct seq_file *m, void *v, loff_t *pos)
{
++*pos;
return NULL;
}
static void c_stop(struct seq_file *m, void *v)
{
}
const struct seq_operations cpuinfo_op = {
.start = c_start,
.next = c_next,
.stop = c_stop,
.show = c_show
};