linux/drivers/scsi/aacraid/commsup.c
Mark Haverkamp 33524b70e8 [SCSI] aacraid: Detect Blinkled at startup
Received from Mark Salyzyn:

Blinkled at startup is useful for catching Adapters in a lot of pain, in a
BlinkLED assert, quickly; rather than waiting several minutes for commands to
timeout.

Signed-off-by: Mark Haverkamp <markh@osdl.org>
Signed-off-by: James Bottomley <James.Bottomley@SteelEye.com>
2006-11-22 12:28:22 -06:00

1555 lines
44 KiB
C

/*
* Adaptec AAC series RAID controller driver
* (c) Copyright 2001 Red Hat Inc. <alan@redhat.com>
*
* based on the old aacraid driver that is..
* Adaptec aacraid device driver for Linux.
*
* Copyright (c) 2000 Adaptec, Inc. (aacraid@adaptec.com)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
*
* Module Name:
* commsup.c
*
* Abstract: Contain all routines that are required for FSA host/adapter
* communication.
*
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/sched.h>
#include <linux/pci.h>
#include <linux/spinlock.h>
#include <linux/slab.h>
#include <linux/completion.h>
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/kthread.h>
#include <linux/interrupt.h>
#include <scsi/scsi.h>
#include <scsi/scsi_host.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_cmnd.h>
#include <asm/semaphore.h>
#include "aacraid.h"
/**
* fib_map_alloc - allocate the fib objects
* @dev: Adapter to allocate for
*
* Allocate and map the shared PCI space for the FIB blocks used to
* talk to the Adaptec firmware.
*/
static int fib_map_alloc(struct aac_dev *dev)
{
dprintk((KERN_INFO
"allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n",
dev->pdev, dev->max_fib_size, dev->scsi_host_ptr->can_queue,
AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
if((dev->hw_fib_va = pci_alloc_consistent(dev->pdev, dev->max_fib_size
* (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB),
&dev->hw_fib_pa))==NULL)
return -ENOMEM;
return 0;
}
/**
* aac_fib_map_free - free the fib objects
* @dev: Adapter to free
*
* Free the PCI mappings and the memory allocated for FIB blocks
* on this adapter.
*/
void aac_fib_map_free(struct aac_dev *dev)
{
pci_free_consistent(dev->pdev, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB), dev->hw_fib_va, dev->hw_fib_pa);
}
/**
* aac_fib_setup - setup the fibs
* @dev: Adapter to set up
*
* Allocate the PCI space for the fibs, map it and then intialise the
* fib area, the unmapped fib data and also the free list
*/
int aac_fib_setup(struct aac_dev * dev)
{
struct fib *fibptr;
struct hw_fib *hw_fib_va;
dma_addr_t hw_fib_pa;
int i;
while (((i = fib_map_alloc(dev)) == -ENOMEM)
&& (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
dev->init->MaxIoCommands = cpu_to_le32((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) >> 1);
dev->scsi_host_ptr->can_queue = le32_to_cpu(dev->init->MaxIoCommands) - AAC_NUM_MGT_FIB;
}
if (i<0)
return -ENOMEM;
hw_fib_va = dev->hw_fib_va;
hw_fib_pa = dev->hw_fib_pa;
memset(hw_fib_va, 0, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
/*
* Initialise the fibs
*/
for (i = 0, fibptr = &dev->fibs[i]; i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); i++, fibptr++)
{
fibptr->dev = dev;
fibptr->hw_fib = hw_fib_va;
fibptr->data = (void *) fibptr->hw_fib->data;
fibptr->next = fibptr+1; /* Forward chain the fibs */
init_MUTEX_LOCKED(&fibptr->event_wait);
spin_lock_init(&fibptr->event_lock);
hw_fib_va->header.XferState = cpu_to_le32(0xffffffff);
hw_fib_va->header.SenderSize = cpu_to_le16(dev->max_fib_size);
fibptr->hw_fib_pa = hw_fib_pa;
hw_fib_va = (struct hw_fib *)((unsigned char *)hw_fib_va + dev->max_fib_size);
hw_fib_pa = hw_fib_pa + dev->max_fib_size;
}
/*
* Add the fib chain to the free list
*/
dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
/*
* Enable this to debug out of queue space
*/
dev->free_fib = &dev->fibs[0];
return 0;
}
/**
* aac_fib_alloc - allocate a fib
* @dev: Adapter to allocate the fib for
*
* Allocate a fib from the adapter fib pool. If the pool is empty we
* return NULL.
*/
struct fib *aac_fib_alloc(struct aac_dev *dev)
{
struct fib * fibptr;
unsigned long flags;
spin_lock_irqsave(&dev->fib_lock, flags);
fibptr = dev->free_fib;
if(!fibptr){
spin_unlock_irqrestore(&dev->fib_lock, flags);
return fibptr;
}
dev->free_fib = fibptr->next;
spin_unlock_irqrestore(&dev->fib_lock, flags);
/*
* Set the proper node type code and node byte size
*/
fibptr->type = FSAFS_NTC_FIB_CONTEXT;
fibptr->size = sizeof(struct fib);
/*
* Null out fields that depend on being zero at the start of
* each I/O
*/
fibptr->hw_fib->header.XferState = 0;
fibptr->callback = NULL;
fibptr->callback_data = NULL;
return fibptr;
}
/**
* aac_fib_free - free a fib
* @fibptr: fib to free up
*
* Frees up a fib and places it on the appropriate queue
* (either free or timed out)
*/
void aac_fib_free(struct fib *fibptr)
{
unsigned long flags;
spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
if (fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT) {
aac_config.fib_timeouts++;
fibptr->next = fibptr->dev->timeout_fib;
fibptr->dev->timeout_fib = fibptr;
} else {
if (fibptr->hw_fib->header.XferState != 0) {
printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
(void*)fibptr,
le32_to_cpu(fibptr->hw_fib->header.XferState));
}
fibptr->next = fibptr->dev->free_fib;
fibptr->dev->free_fib = fibptr;
}
spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
}
/**
* aac_fib_init - initialise a fib
* @fibptr: The fib to initialize
*
* Set up the generic fib fields ready for use
*/
void aac_fib_init(struct fib *fibptr)
{
struct hw_fib *hw_fib = fibptr->hw_fib;
hw_fib->header.StructType = FIB_MAGIC;
hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
hw_fib->header.SenderFibAddress = 0; /* Filled in later if needed */
hw_fib->header.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
}
/**
* fib_deallocate - deallocate a fib
* @fibptr: fib to deallocate
*
* Will deallocate and return to the free pool the FIB pointed to by the
* caller.
*/
static void fib_dealloc(struct fib * fibptr)
{
struct hw_fib *hw_fib = fibptr->hw_fib;
BUG_ON(hw_fib->header.StructType != FIB_MAGIC);
hw_fib->header.XferState = 0;
}
/*
* Commuication primitives define and support the queuing method we use to
* support host to adapter commuication. All queue accesses happen through
* these routines and are the only routines which have a knowledge of the
* how these queues are implemented.
*/
/**
* aac_get_entry - get a queue entry
* @dev: Adapter
* @qid: Queue Number
* @entry: Entry return
* @index: Index return
* @nonotify: notification control
*
* With a priority the routine returns a queue entry if the queue has free entries. If the queue
* is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
* returned.
*/
static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
{
struct aac_queue * q;
unsigned long idx;
/*
* All of the queues wrap when they reach the end, so we check
* to see if they have reached the end and if they have we just
* set the index back to zero. This is a wrap. You could or off
* the high bits in all updates but this is a bit faster I think.
*/
q = &dev->queues->queue[qid];
idx = *index = le32_to_cpu(*(q->headers.producer));
/* Interrupt Moderation, only interrupt for first two entries */
if (idx != le32_to_cpu(*(q->headers.consumer))) {
if (--idx == 0) {
if (qid == AdapNormCmdQueue)
idx = ADAP_NORM_CMD_ENTRIES;
else
idx = ADAP_NORM_RESP_ENTRIES;
}
if (idx != le32_to_cpu(*(q->headers.consumer)))
*nonotify = 1;
}
if (qid == AdapNormCmdQueue) {
if (*index >= ADAP_NORM_CMD_ENTRIES)
*index = 0; /* Wrap to front of the Producer Queue. */
} else {
if (*index >= ADAP_NORM_RESP_ENTRIES)
*index = 0; /* Wrap to front of the Producer Queue. */
}
if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) { /* Queue is full */
printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
qid, q->numpending);
return 0;
} else {
*entry = q->base + *index;
return 1;
}
}
/**
* aac_queue_get - get the next free QE
* @dev: Adapter
* @index: Returned index
* @priority: Priority of fib
* @fib: Fib to associate with the queue entry
* @wait: Wait if queue full
* @fibptr: Driver fib object to go with fib
* @nonotify: Don't notify the adapter
*
* Gets the next free QE off the requested priorty adapter command
* queue and associates the Fib with the QE. The QE represented by
* index is ready to insert on the queue when this routine returns
* success.
*/
static int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
{
struct aac_entry * entry = NULL;
int map = 0;
if (qid == AdapNormCmdQueue) {
/* if no entries wait for some if caller wants to */
while (!aac_get_entry(dev, qid, &entry, index, nonotify))
{
printk(KERN_ERR "GetEntries failed\n");
}
/*
* Setup queue entry with a command, status and fib mapped
*/
entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
map = 1;
} else {
while(!aac_get_entry(dev, qid, &entry, index, nonotify))
{
/* if no entries wait for some if caller wants to */
}
/*
* Setup queue entry with command, status and fib mapped
*/
entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
entry->addr = hw_fib->header.SenderFibAddress;
/* Restore adapters pointer to the FIB */
hw_fib->header.ReceiverFibAddress = hw_fib->header.SenderFibAddress; /* Let the adapter now where to find its data */
map = 0;
}
/*
* If MapFib is true than we need to map the Fib and put pointers
* in the queue entry.
*/
if (map)
entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
return 0;
}
/*
* Define the highest level of host to adapter communication routines.
* These routines will support host to adapter FS commuication. These
* routines have no knowledge of the commuication method used. This level
* sends and receives FIBs. This level has no knowledge of how these FIBs
* get passed back and forth.
*/
/**
* aac_fib_send - send a fib to the adapter
* @command: Command to send
* @fibptr: The fib
* @size: Size of fib data area
* @priority: Priority of Fib
* @wait: Async/sync select
* @reply: True if a reply is wanted
* @callback: Called with reply
* @callback_data: Passed to callback
*
* Sends the requested FIB to the adapter and optionally will wait for a
* response FIB. If the caller does not wish to wait for a response than
* an event to wait on must be supplied. This event will be set when a
* response FIB is received from the adapter.
*/
int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
int priority, int wait, int reply, fib_callback callback,
void *callback_data)
{
struct aac_dev * dev = fibptr->dev;
struct hw_fib * hw_fib = fibptr->hw_fib;
struct aac_queue * q;
unsigned long flags = 0;
unsigned long qflags;
if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
return -EBUSY;
/*
* There are 5 cases with the wait and reponse requested flags.
* The only invalid cases are if the caller requests to wait and
* does not request a response and if the caller does not want a
* response and the Fib is not allocated from pool. If a response
* is not requesed the Fib will just be deallocaed by the DPC
* routine when the response comes back from the adapter. No
* further processing will be done besides deleting the Fib. We
* will have a debug mode where the adapter can notify the host
* it had a problem and the host can log that fact.
*/
if (wait && !reply) {
return -EINVAL;
} else if (!wait && reply) {
hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
} else if (!wait && !reply) {
hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
} else if (wait && reply) {
hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
FIB_COUNTER_INCREMENT(aac_config.NormalSent);
}
/*
* Map the fib into 32bits by using the fib number
*/
hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
hw_fib->header.SenderData = (u32)(fibptr - dev->fibs);
/*
* Set FIB state to indicate where it came from and if we want a
* response from the adapter. Also load the command from the
* caller.
*
* Map the hw fib pointer as a 32bit value
*/
hw_fib->header.Command = cpu_to_le16(command);
hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
fibptr->hw_fib->header.Flags = 0; /* 0 the flags field - internal only*/
/*
* Set the size of the Fib we want to send to the adapter
*/
hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
return -EMSGSIZE;
}
/*
* Get a queue entry connect the FIB to it and send an notify
* the adapter a command is ready.
*/
hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
/*
* Fill in the Callback and CallbackContext if we are not
* going to wait.
*/
if (!wait) {
fibptr->callback = callback;
fibptr->callback_data = callback_data;
}
fibptr->done = 0;
fibptr->flags = 0;
FIB_COUNTER_INCREMENT(aac_config.FibsSent);
dprintk((KERN_DEBUG "Fib contents:.\n"));
dprintk((KERN_DEBUG " Command = %d.\n", le32_to_cpu(hw_fib->header.Command)));
dprintk((KERN_DEBUG " SubCommand = %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
dprintk((KERN_DEBUG " XferState = %x.\n", le32_to_cpu(hw_fib->header.XferState)));
dprintk((KERN_DEBUG " hw_fib va being sent=%p\n",fibptr->hw_fib));
dprintk((KERN_DEBUG " hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
dprintk((KERN_DEBUG " fib being sent=%p\n",fibptr));
if (!dev->queues)
return -EBUSY;
q = &dev->queues->queue[AdapNormCmdQueue];
if(wait)
spin_lock_irqsave(&fibptr->event_lock, flags);
spin_lock_irqsave(q->lock, qflags);
if (dev->new_comm_interface) {
unsigned long count = 10000000L; /* 50 seconds */
q->numpending++;
spin_unlock_irqrestore(q->lock, qflags);
while (aac_adapter_send(fibptr) != 0) {
if (--count == 0) {
if (wait)
spin_unlock_irqrestore(&fibptr->event_lock, flags);
spin_lock_irqsave(q->lock, qflags);
q->numpending--;
spin_unlock_irqrestore(q->lock, qflags);
return -ETIMEDOUT;
}
udelay(5);
}
} else {
u32 index;
unsigned long nointr = 0;
aac_queue_get( dev, &index, AdapNormCmdQueue, hw_fib, 1, fibptr, &nointr);
q->numpending++;
*(q->headers.producer) = cpu_to_le32(index + 1);
spin_unlock_irqrestore(q->lock, qflags);
dprintk((KERN_DEBUG "aac_fib_send: inserting a queue entry at index %d.\n",index));
if (!(nointr & aac_config.irq_mod))
aac_adapter_notify(dev, AdapNormCmdQueue);
}
/*
* If the caller wanted us to wait for response wait now.
*/
if (wait) {
spin_unlock_irqrestore(&fibptr->event_lock, flags);
/* Only set for first known interruptable command */
if (wait < 0) {
/*
* *VERY* Dangerous to time out a command, the
* assumption is made that we have no hope of
* functioning because an interrupt routing or other
* hardware failure has occurred.
*/
unsigned long count = 36000000L; /* 3 minutes */
while (down_trylock(&fibptr->event_wait)) {
int blink;
if (--count == 0) {
spin_lock_irqsave(q->lock, qflags);
q->numpending--;
spin_unlock_irqrestore(q->lock, qflags);
if (wait == -1) {
printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
"Usually a result of a PCI interrupt routing problem;\n"
"update mother board BIOS or consider utilizing one of\n"
"the SAFE mode kernel options (acpi, apic etc)\n");
}
return -ETIMEDOUT;
}
if ((blink = aac_adapter_check_health(dev)) > 0) {
if (wait == -1) {
printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
"Usually a result of a serious unrecoverable hardware problem\n",
blink);
}
return -EFAULT;
}
udelay(5);
}
} else if (down_interruptible(&fibptr->event_wait)) {
spin_lock_irqsave(&fibptr->event_lock, flags);
if (fibptr->done == 0) {
fibptr->done = 2; /* Tell interrupt we aborted */
spin_unlock_irqrestore(&fibptr->event_lock, flags);
return -EINTR;
}
spin_unlock_irqrestore(&fibptr->event_lock, flags);
}
BUG_ON(fibptr->done == 0);
if((fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)){
return -ETIMEDOUT;
} else {
return 0;
}
}
/*
* If the user does not want a response than return success otherwise
* return pending
*/
if (reply)
return -EINPROGRESS;
else
return 0;
}
/**
* aac_consumer_get - get the top of the queue
* @dev: Adapter
* @q: Queue
* @entry: Return entry
*
* Will return a pointer to the entry on the top of the queue requested that
* we are a consumer of, and return the address of the queue entry. It does
* not change the state of the queue.
*/
int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
{
u32 index;
int status;
if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
status = 0;
} else {
/*
* The consumer index must be wrapped if we have reached
* the end of the queue, else we just use the entry
* pointed to by the header index
*/
if (le32_to_cpu(*q->headers.consumer) >= q->entries)
index = 0;
else
index = le32_to_cpu(*q->headers.consumer);
*entry = q->base + index;
status = 1;
}
return(status);
}
/**
* aac_consumer_free - free consumer entry
* @dev: Adapter
* @q: Queue
* @qid: Queue ident
*
* Frees up the current top of the queue we are a consumer of. If the
* queue was full notify the producer that the queue is no longer full.
*/
void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
{
int wasfull = 0;
u32 notify;
if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
wasfull = 1;
if (le32_to_cpu(*q->headers.consumer) >= q->entries)
*q->headers.consumer = cpu_to_le32(1);
else
*q->headers.consumer = cpu_to_le32(le32_to_cpu(*q->headers.consumer)+1);
if (wasfull) {
switch (qid) {
case HostNormCmdQueue:
notify = HostNormCmdNotFull;
break;
case HostNormRespQueue:
notify = HostNormRespNotFull;
break;
default:
BUG();
return;
}
aac_adapter_notify(dev, notify);
}
}
/**
* aac_fib_adapter_complete - complete adapter issued fib
* @fibptr: fib to complete
* @size: size of fib
*
* Will do all necessary work to complete a FIB that was sent from
* the adapter.
*/
int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
{
struct hw_fib * hw_fib = fibptr->hw_fib;
struct aac_dev * dev = fibptr->dev;
struct aac_queue * q;
unsigned long nointr = 0;
unsigned long qflags;
if (hw_fib->header.XferState == 0) {
if (dev->new_comm_interface)
kfree (hw_fib);
return 0;
}
/*
* If we plan to do anything check the structure type first.
*/
if ( hw_fib->header.StructType != FIB_MAGIC ) {
if (dev->new_comm_interface)
kfree (hw_fib);
return -EINVAL;
}
/*
* This block handles the case where the adapter had sent us a
* command and we have finished processing the command. We
* call completeFib when we are done processing the command
* and want to send a response back to the adapter. This will
* send the completed cdb to the adapter.
*/
if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
if (dev->new_comm_interface) {
kfree (hw_fib);
} else {
u32 index;
hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
if (size) {
size += sizeof(struct aac_fibhdr);
if (size > le16_to_cpu(hw_fib->header.SenderSize))
return -EMSGSIZE;
hw_fib->header.Size = cpu_to_le16(size);
}
q = &dev->queues->queue[AdapNormRespQueue];
spin_lock_irqsave(q->lock, qflags);
aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
*(q->headers.producer) = cpu_to_le32(index + 1);
spin_unlock_irqrestore(q->lock, qflags);
if (!(nointr & (int)aac_config.irq_mod))
aac_adapter_notify(dev, AdapNormRespQueue);
}
}
else
{
printk(KERN_WARNING "aac_fib_adapter_complete: Unknown xferstate detected.\n");
BUG();
}
return 0;
}
/**
* aac_fib_complete - fib completion handler
* @fib: FIB to complete
*
* Will do all necessary work to complete a FIB.
*/
int aac_fib_complete(struct fib *fibptr)
{
struct hw_fib * hw_fib = fibptr->hw_fib;
/*
* Check for a fib which has already been completed
*/
if (hw_fib->header.XferState == 0)
return 0;
/*
* If we plan to do anything check the structure type first.
*/
if (hw_fib->header.StructType != FIB_MAGIC)
return -EINVAL;
/*
* This block completes a cdb which orginated on the host and we
* just need to deallocate the cdb or reinit it. At this point the
* command is complete that we had sent to the adapter and this
* cdb could be reused.
*/
if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
(hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
{
fib_dealloc(fibptr);
}
else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
{
/*
* This handles the case when the host has aborted the I/O
* to the adapter because the adapter is not responding
*/
fib_dealloc(fibptr);
} else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
fib_dealloc(fibptr);
} else {
BUG();
}
return 0;
}
/**
* aac_printf - handle printf from firmware
* @dev: Adapter
* @val: Message info
*
* Print a message passed to us by the controller firmware on the
* Adaptec board
*/
void aac_printf(struct aac_dev *dev, u32 val)
{
char *cp = dev->printfbuf;
if (dev->printf_enabled)
{
int length = val & 0xffff;
int level = (val >> 16) & 0xffff;
/*
* The size of the printfbuf is set in port.c
* There is no variable or define for it
*/
if (length > 255)
length = 255;
if (cp[length] != 0)
cp[length] = 0;
if (level == LOG_AAC_HIGH_ERROR)
printk(KERN_WARNING "%s:%s", dev->name, cp);
else
printk(KERN_INFO "%s:%s", dev->name, cp);
}
memset(cp, 0, 256);
}
/**
* aac_handle_aif - Handle a message from the firmware
* @dev: Which adapter this fib is from
* @fibptr: Pointer to fibptr from adapter
*
* This routine handles a driver notify fib from the adapter and
* dispatches it to the appropriate routine for handling.
*/
#define AIF_SNIFF_TIMEOUT (30*HZ)
static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
{
struct hw_fib * hw_fib = fibptr->hw_fib;
struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
int busy;
u32 container;
struct scsi_device *device;
enum {
NOTHING,
DELETE,
ADD,
CHANGE
} device_config_needed;
/* Sniff for container changes */
if (!dev || !dev->fsa_dev)
return;
container = (u32)-1;
/*
* We have set this up to try and minimize the number of
* re-configures that take place. As a result of this when
* certain AIF's come in we will set a flag waiting for another
* type of AIF before setting the re-config flag.
*/
switch (le32_to_cpu(aifcmd->command)) {
case AifCmdDriverNotify:
switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) {
/*
* Morph or Expand complete
*/
case AifDenMorphComplete:
case AifDenVolumeExtendComplete:
container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
if (container >= dev->maximum_num_containers)
break;
/*
* Find the scsi_device associated with the SCSI
* address. Make sure we have the right array, and if
* so set the flag to initiate a new re-config once we
* see an AifEnConfigChange AIF come through.
*/
if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
device = scsi_device_lookup(dev->scsi_host_ptr,
CONTAINER_TO_CHANNEL(container),
CONTAINER_TO_ID(container),
CONTAINER_TO_LUN(container));
if (device) {
dev->fsa_dev[container].config_needed = CHANGE;
dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
dev->fsa_dev[container].config_waiting_stamp = jiffies;
scsi_device_put(device);
}
}
}
/*
* If we are waiting on something and this happens to be
* that thing then set the re-configure flag.
*/
if (container != (u32)-1) {
if (container >= dev->maximum_num_containers)
break;
if ((dev->fsa_dev[container].config_waiting_on ==
le32_to_cpu(*(u32 *)aifcmd->data)) &&
time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
dev->fsa_dev[container].config_waiting_on = 0;
} else for (container = 0;
container < dev->maximum_num_containers; ++container) {
if ((dev->fsa_dev[container].config_waiting_on ==
le32_to_cpu(*(u32 *)aifcmd->data)) &&
time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
dev->fsa_dev[container].config_waiting_on = 0;
}
break;
case AifCmdEventNotify:
switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) {
/*
* Add an Array.
*/
case AifEnAddContainer:
container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
if (container >= dev->maximum_num_containers)
break;
dev->fsa_dev[container].config_needed = ADD;
dev->fsa_dev[container].config_waiting_on =
AifEnConfigChange;
dev->fsa_dev[container].config_waiting_stamp = jiffies;
break;
/*
* Delete an Array.
*/
case AifEnDeleteContainer:
container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
if (container >= dev->maximum_num_containers)
break;
dev->fsa_dev[container].config_needed = DELETE;
dev->fsa_dev[container].config_waiting_on =
AifEnConfigChange;
dev->fsa_dev[container].config_waiting_stamp = jiffies;
break;
/*
* Container change detected. If we currently are not
* waiting on something else, setup to wait on a Config Change.
*/
case AifEnContainerChange:
container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
if (container >= dev->maximum_num_containers)
break;
if (dev->fsa_dev[container].config_waiting_on &&
time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
break;
dev->fsa_dev[container].config_needed = CHANGE;
dev->fsa_dev[container].config_waiting_on =
AifEnConfigChange;
dev->fsa_dev[container].config_waiting_stamp = jiffies;
break;
case AifEnConfigChange:
break;
}
/*
* If we are waiting on something and this happens to be
* that thing then set the re-configure flag.
*/
if (container != (u32)-1) {
if (container >= dev->maximum_num_containers)
break;
if ((dev->fsa_dev[container].config_waiting_on ==
le32_to_cpu(*(u32 *)aifcmd->data)) &&
time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
dev->fsa_dev[container].config_waiting_on = 0;
} else for (container = 0;
container < dev->maximum_num_containers; ++container) {
if ((dev->fsa_dev[container].config_waiting_on ==
le32_to_cpu(*(u32 *)aifcmd->data)) &&
time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
dev->fsa_dev[container].config_waiting_on = 0;
}
break;
case AifCmdJobProgress:
/*
* These are job progress AIF's. When a Clear is being
* done on a container it is initially created then hidden from
* the OS. When the clear completes we don't get a config
* change so we monitor the job status complete on a clear then
* wait for a container change.
*/
if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero))
&& ((((u32 *)aifcmd->data)[6] == ((u32 *)aifcmd->data)[5])
|| (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess)))) {
for (container = 0;
container < dev->maximum_num_containers;
++container) {
/*
* Stomp on all config sequencing for all
* containers?
*/
dev->fsa_dev[container].config_waiting_on =
AifEnContainerChange;
dev->fsa_dev[container].config_needed = ADD;
dev->fsa_dev[container].config_waiting_stamp =
jiffies;
}
}
if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero))
&& (((u32 *)aifcmd->data)[6] == 0)
&& (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning))) {
for (container = 0;
container < dev->maximum_num_containers;
++container) {
/*
* Stomp on all config sequencing for all
* containers?
*/
dev->fsa_dev[container].config_waiting_on =
AifEnContainerChange;
dev->fsa_dev[container].config_needed = DELETE;
dev->fsa_dev[container].config_waiting_stamp =
jiffies;
}
}
break;
}
device_config_needed = NOTHING;
for (container = 0; container < dev->maximum_num_containers;
++container) {
if ((dev->fsa_dev[container].config_waiting_on == 0) &&
(dev->fsa_dev[container].config_needed != NOTHING) &&
time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
device_config_needed =
dev->fsa_dev[container].config_needed;
dev->fsa_dev[container].config_needed = NOTHING;
break;
}
}
if (device_config_needed == NOTHING)
return;
/*
* If we decided that a re-configuration needs to be done,
* schedule it here on the way out the door, please close the door
* behind you.
*/
busy = 0;
/*
* Find the scsi_device associated with the SCSI address,
* and mark it as changed, invalidating the cache. This deals
* with changes to existing device IDs.
*/
if (!dev || !dev->scsi_host_ptr)
return;
/*
* force reload of disk info via aac_probe_container
*/
if ((device_config_needed == CHANGE)
&& (dev->fsa_dev[container].valid == 1))
dev->fsa_dev[container].valid = 2;
if ((device_config_needed == CHANGE) ||
(device_config_needed == ADD))
aac_probe_container(dev, container);
device = scsi_device_lookup(dev->scsi_host_ptr,
CONTAINER_TO_CHANNEL(container),
CONTAINER_TO_ID(container),
CONTAINER_TO_LUN(container));
if (device) {
switch (device_config_needed) {
case DELETE:
case CHANGE:
scsi_rescan_device(&device->sdev_gendev);
default:
break;
}
scsi_device_put(device);
}
if (device_config_needed == ADD) {
scsi_add_device(dev->scsi_host_ptr,
CONTAINER_TO_CHANNEL(container),
CONTAINER_TO_ID(container),
CONTAINER_TO_LUN(container));
}
}
static int _aac_reset_adapter(struct aac_dev *aac)
{
int index, quirks;
u32 ret;
int retval;
struct Scsi_Host *host;
struct scsi_device *dev;
struct scsi_cmnd *command;
struct scsi_cmnd *command_list;
/*
* Assumptions:
* - host is locked.
* - in_reset is asserted, so no new i/o is getting to the
* card.
* - The card is dead.
*/
host = aac->scsi_host_ptr;
scsi_block_requests(host);
aac_adapter_disable_int(aac);
spin_unlock_irq(host->host_lock);
kthread_stop(aac->thread);
/*
* If a positive health, means in a known DEAD PANIC
* state and the adapter could be reset to `try again'.
*/
retval = aac_adapter_check_health(aac);
if (retval == 0)
retval = aac_adapter_sync_cmd(aac, IOP_RESET_ALWAYS,
0, 0, 0, 0, 0, 0, &ret, NULL, NULL, NULL, NULL);
if (retval)
retval = aac_adapter_sync_cmd(aac, IOP_RESET,
0, 0, 0, 0, 0, 0, &ret, NULL, NULL, NULL, NULL);
if (retval)
goto out;
if (ret != 0x00000001) {
retval = -ENODEV;
goto out;
}
index = aac->cardtype;
/*
* Re-initialize the adapter, first free resources, then carefully
* apply the initialization sequence to come back again. Only risk
* is a change in Firmware dropping cache, it is assumed the caller
* will ensure that i/o is queisced and the card is flushed in that
* case.
*/
aac_fib_map_free(aac);
aac->hw_fib_va = NULL;
aac->hw_fib_pa = 0;
pci_free_consistent(aac->pdev, aac->comm_size, aac->comm_addr, aac->comm_phys);
aac->comm_addr = NULL;
aac->comm_phys = 0;
kfree(aac->queues);
aac->queues = NULL;
free_irq(aac->pdev->irq, aac);
kfree(aac->fsa_dev);
aac->fsa_dev = NULL;
if (aac_get_driver_ident(index)->quirks & AAC_QUIRK_31BIT) {
if (((retval = pci_set_dma_mask(aac->pdev, DMA_32BIT_MASK))) ||
((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_32BIT_MASK))))
goto out;
} else {
if (((retval = pci_set_dma_mask(aac->pdev, 0x7FFFFFFFULL))) ||
((retval = pci_set_consistent_dma_mask(aac->pdev, 0x7FFFFFFFULL))))
goto out;
}
if ((retval = (*(aac_get_driver_ident(index)->init))(aac)))
goto out;
if (aac_get_driver_ident(index)->quirks & AAC_QUIRK_31BIT)
if ((retval = pci_set_dma_mask(aac->pdev, DMA_32BIT_MASK)))
goto out;
aac->thread = kthread_run(aac_command_thread, aac, aac->name);
if (IS_ERR(aac->thread)) {
retval = PTR_ERR(aac->thread);
goto out;
}
(void)aac_get_adapter_info(aac);
quirks = aac_get_driver_ident(index)->quirks;
if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) {
host->sg_tablesize = 34;
host->max_sectors = (host->sg_tablesize * 8) + 112;
}
if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) {
host->sg_tablesize = 17;
host->max_sectors = (host->sg_tablesize * 8) + 112;
}
aac_get_config_status(aac, 1);
aac_get_containers(aac);
/*
* This is where the assumption that the Adapter is quiesced
* is important.
*/
command_list = NULL;
__shost_for_each_device(dev, host) {
unsigned long flags;
spin_lock_irqsave(&dev->list_lock, flags);
list_for_each_entry(command, &dev->cmd_list, list)
if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
command->SCp.buffer = (struct scatterlist *)command_list;
command_list = command;
}
spin_unlock_irqrestore(&dev->list_lock, flags);
}
while ((command = command_list)) {
command_list = (struct scsi_cmnd *)command->SCp.buffer;
command->SCp.buffer = NULL;
command->result = DID_OK << 16
| COMMAND_COMPLETE << 8
| SAM_STAT_TASK_SET_FULL;
command->SCp.phase = AAC_OWNER_ERROR_HANDLER;
command->scsi_done(command);
}
retval = 0;
out:
aac->in_reset = 0;
scsi_unblock_requests(host);
spin_lock_irq(host->host_lock);
return retval;
}
int aac_check_health(struct aac_dev * aac)
{
int BlinkLED;
unsigned long time_now, flagv = 0;
struct list_head * entry;
struct Scsi_Host * host;
/* Extending the scope of fib_lock slightly to protect aac->in_reset */
if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
return 0;
if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) {
spin_unlock_irqrestore(&aac->fib_lock, flagv);
return 0; /* OK */
}
aac->in_reset = 1;
/* Fake up an AIF:
* aac_aifcmd.command = AifCmdEventNotify = 1
* aac_aifcmd.seqnum = 0xFFFFFFFF
* aac_aifcmd.data[0] = AifEnExpEvent = 23
* aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
* aac.aifcmd.data[2] = AifHighPriority = 3
* aac.aifcmd.data[3] = BlinkLED
*/
time_now = jiffies/HZ;
entry = aac->fib_list.next;
/*
* For each Context that is on the
* fibctxList, make a copy of the
* fib, and then set the event to wake up the
* thread that is waiting for it.
*/
while (entry != &aac->fib_list) {
/*
* Extract the fibctx
*/
struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next);
struct hw_fib * hw_fib;
struct fib * fib;
/*
* Check if the queue is getting
* backlogged
*/
if (fibctx->count > 20) {
/*
* It's *not* jiffies folks,
* but jiffies / HZ, so do not
* panic ...
*/
u32 time_last = fibctx->jiffies;
/*
* Has it been > 2 minutes
* since the last read off
* the queue?
*/
if ((time_now - time_last) > aif_timeout) {
entry = entry->next;
aac_close_fib_context(aac, fibctx);
continue;
}
}
/*
* Warning: no sleep allowed while
* holding spinlock
*/
hw_fib = kmalloc(sizeof(struct hw_fib), GFP_ATOMIC);
fib = kmalloc(sizeof(struct fib), GFP_ATOMIC);
if (fib && hw_fib) {
struct aac_aifcmd * aif;
memset(hw_fib, 0, sizeof(struct hw_fib));
memset(fib, 0, sizeof(struct fib));
fib->hw_fib = hw_fib;
fib->dev = aac;
aac_fib_init(fib);
fib->type = FSAFS_NTC_FIB_CONTEXT;
fib->size = sizeof (struct fib);
fib->data = hw_fib->data;
aif = (struct aac_aifcmd *)hw_fib->data;
aif->command = cpu_to_le32(AifCmdEventNotify);
aif->seqnum = cpu_to_le32(0xFFFFFFFF);
aif->data[0] = cpu_to_le32(AifEnExpEvent);
aif->data[1] = cpu_to_le32(AifExeFirmwarePanic);
aif->data[2] = cpu_to_le32(AifHighPriority);
aif->data[3] = cpu_to_le32(BlinkLED);
/*
* Put the FIB onto the
* fibctx's fibs
*/
list_add_tail(&fib->fiblink, &fibctx->fib_list);
fibctx->count++;
/*
* Set the event to wake up the
* thread that will waiting.
*/
up(&fibctx->wait_sem);
} else {
printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
kfree(fib);
kfree(hw_fib);
}
entry = entry->next;
}
spin_unlock_irqrestore(&aac->fib_lock, flagv);
if (BlinkLED < 0) {
printk(KERN_ERR "%s: Host adapter dead %d\n", aac->name, BlinkLED);
goto out;
}
printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED);
host = aac->scsi_host_ptr;
spin_lock_irqsave(host->host_lock, flagv);
BlinkLED = _aac_reset_adapter(aac);
spin_unlock_irqrestore(host->host_lock, flagv);
return BlinkLED;
out:
aac->in_reset = 0;
return BlinkLED;
}
/**
* aac_command_thread - command processing thread
* @dev: Adapter to monitor
*
* Waits on the commandready event in it's queue. When the event gets set
* it will pull FIBs off it's queue. It will continue to pull FIBs off
* until the queue is empty. When the queue is empty it will wait for
* more FIBs.
*/
int aac_command_thread(void *data)
{
struct aac_dev *dev = data;
struct hw_fib *hw_fib, *hw_newfib;
struct fib *fib, *newfib;
struct aac_fib_context *fibctx;
unsigned long flags;
DECLARE_WAITQUEUE(wait, current);
/*
* We can only have one thread per adapter for AIF's.
*/
if (dev->aif_thread)
return -EINVAL;
/*
* Let the DPC know it has a place to send the AIF's to.
*/
dev->aif_thread = 1;
add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
set_current_state(TASK_INTERRUPTIBLE);
dprintk ((KERN_INFO "aac_command_thread start\n"));
while(1)
{
spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
while(!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
struct list_head *entry;
struct aac_aifcmd * aifcmd;
set_current_state(TASK_RUNNING);
entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
list_del(entry);
spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
fib = list_entry(entry, struct fib, fiblink);
/*
* We will process the FIB here or pass it to a
* worker thread that is TBD. We Really can't
* do anything at this point since we don't have
* anything defined for this thread to do.
*/
hw_fib = fib->hw_fib;
memset(fib, 0, sizeof(struct fib));
fib->type = FSAFS_NTC_FIB_CONTEXT;
fib->size = sizeof( struct fib );
fib->hw_fib = hw_fib;
fib->data = hw_fib->data;
fib->dev = dev;
/*
* We only handle AifRequest fibs from the adapter.
*/
aifcmd = (struct aac_aifcmd *) hw_fib->data;
if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
/* Handle Driver Notify Events */
aac_handle_aif(dev, fib);
*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
aac_fib_adapter_complete(fib, (u16)sizeof(u32));
} else {
struct list_head *entry;
/* The u32 here is important and intended. We are using
32bit wrapping time to fit the adapter field */
u32 time_now, time_last;
unsigned long flagv;
unsigned num;
struct hw_fib ** hw_fib_pool, ** hw_fib_p;
struct fib ** fib_pool, ** fib_p;
/* Sniff events */
if ((aifcmd->command ==
cpu_to_le32(AifCmdEventNotify)) ||
(aifcmd->command ==
cpu_to_le32(AifCmdJobProgress))) {
aac_handle_aif(dev, fib);
}
time_now = jiffies/HZ;
/*
* Warning: no sleep allowed while
* holding spinlock. We take the estimate
* and pre-allocate a set of fibs outside the
* lock.
*/
num = le32_to_cpu(dev->init->AdapterFibsSize)
/ sizeof(struct hw_fib); /* some extra */
spin_lock_irqsave(&dev->fib_lock, flagv);
entry = dev->fib_list.next;
while (entry != &dev->fib_list) {
entry = entry->next;
++num;
}
spin_unlock_irqrestore(&dev->fib_lock, flagv);
hw_fib_pool = NULL;
fib_pool = NULL;
if (num
&& ((hw_fib_pool = kmalloc(sizeof(struct hw_fib *) * num, GFP_KERNEL)))
&& ((fib_pool = kmalloc(sizeof(struct fib *) * num, GFP_KERNEL)))) {
hw_fib_p = hw_fib_pool;
fib_p = fib_pool;
while (hw_fib_p < &hw_fib_pool[num]) {
if (!(*(hw_fib_p++) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL))) {
--hw_fib_p;
break;
}
if (!(*(fib_p++) = kmalloc(sizeof(struct fib), GFP_KERNEL))) {
kfree(*(--hw_fib_p));
break;
}
}
if ((num = hw_fib_p - hw_fib_pool) == 0) {
kfree(fib_pool);
fib_pool = NULL;
kfree(hw_fib_pool);
hw_fib_pool = NULL;
}
} else {
kfree(hw_fib_pool);
hw_fib_pool = NULL;
}
spin_lock_irqsave(&dev->fib_lock, flagv);
entry = dev->fib_list.next;
/*
* For each Context that is on the
* fibctxList, make a copy of the
* fib, and then set the event to wake up the
* thread that is waiting for it.
*/
hw_fib_p = hw_fib_pool;
fib_p = fib_pool;
while (entry != &dev->fib_list) {
/*
* Extract the fibctx
*/
fibctx = list_entry(entry, struct aac_fib_context, next);
/*
* Check if the queue is getting
* backlogged
*/
if (fibctx->count > 20)
{
/*
* It's *not* jiffies folks,
* but jiffies / HZ so do not
* panic ...
*/
time_last = fibctx->jiffies;
/*
* Has it been > 2 minutes
* since the last read off
* the queue?
*/
if ((time_now - time_last) > aif_timeout) {
entry = entry->next;
aac_close_fib_context(dev, fibctx);
continue;
}
}
/*
* Warning: no sleep allowed while
* holding spinlock
*/
if (hw_fib_p < &hw_fib_pool[num]) {
hw_newfib = *hw_fib_p;
*(hw_fib_p++) = NULL;
newfib = *fib_p;
*(fib_p++) = NULL;
/*
* Make the copy of the FIB
*/
memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
memcpy(newfib, fib, sizeof(struct fib));
newfib->hw_fib = hw_newfib;
/*
* Put the FIB onto the
* fibctx's fibs
*/
list_add_tail(&newfib->fiblink, &fibctx->fib_list);
fibctx->count++;
/*
* Set the event to wake up the
* thread that is waiting.
*/
up(&fibctx->wait_sem);
} else {
printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
}
entry = entry->next;
}
/*
* Set the status of this FIB
*/
*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
aac_fib_adapter_complete(fib, sizeof(u32));
spin_unlock_irqrestore(&dev->fib_lock, flagv);
/* Free up the remaining resources */
hw_fib_p = hw_fib_pool;
fib_p = fib_pool;
while (hw_fib_p < &hw_fib_pool[num]) {
kfree(*hw_fib_p);
kfree(*fib_p);
++fib_p;
++hw_fib_p;
}
kfree(hw_fib_pool);
kfree(fib_pool);
}
kfree(fib);
spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
}
/*
* There are no more AIF's
*/
spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
schedule();
if (kthread_should_stop())
break;
set_current_state(TASK_INTERRUPTIBLE);
}
if (dev->queues)
remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
dev->aif_thread = 0;
return 0;
}