linux/arch/blackfin/kernel/time-ts.c
Yi Li 0d152c27e3 Blackfin: SMP: make core timers per-cpu clock events for HRT
SMP systems require per-cpu local clock event devices in order to enable
HRT support.  One a BF561, we can use local core timer for this purpose.
Originally, there was one global core-timer clock event device set up for
core A.

To accomplish this feat, we need to split the gptimer0/core timer logic
so that each is a standalone clock event.  There is no requirement that
we only have one clock event source anyways.  Once we have this, we just
define per-cpu clock event devices for each local core timer.

Signed-off-by: Yi Li <yi.li@analog.com>
Signed-off-by: Mike Frysinger <vapier@gentoo.org>
2010-03-09 00:30:48 -05:00

388 lines
9.6 KiB
C

/*
* Based on arm clockevents implementation and old bfin time tick.
*
* Copyright 2008-2009 Analog Devics Inc.
* 2008 GeoTechnologies
* Vitja Makarov
*
* Licensed under the GPL-2
*/
#include <linux/module.h>
#include <linux/profile.h>
#include <linux/interrupt.h>
#include <linux/time.h>
#include <linux/timex.h>
#include <linux/irq.h>
#include <linux/clocksource.h>
#include <linux/clockchips.h>
#include <linux/cpufreq.h>
#include <asm/blackfin.h>
#include <asm/time.h>
#include <asm/gptimers.h>
/* Accelerators for sched_clock()
* convert from cycles(64bits) => nanoseconds (64bits)
* basic equation:
* ns = cycles / (freq / ns_per_sec)
* ns = cycles * (ns_per_sec / freq)
* ns = cycles * (10^9 / (cpu_khz * 10^3))
* ns = cycles * (10^6 / cpu_khz)
*
* Then we use scaling math (suggested by george@mvista.com) to get:
* ns = cycles * (10^6 * SC / cpu_khz) / SC
* ns = cycles * cyc2ns_scale / SC
*
* And since SC is a constant power of two, we can convert the div
* into a shift.
*
* We can use khz divisor instead of mhz to keep a better precision, since
* cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
* (mathieu.desnoyers@polymtl.ca)
*
* -johnstul@us.ibm.com "math is hard, lets go shopping!"
*/
#define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */
#if defined(CONFIG_CYCLES_CLOCKSOURCE)
static notrace cycle_t bfin_read_cycles(struct clocksource *cs)
{
return __bfin_cycles_off + (get_cycles() << __bfin_cycles_mod);
}
static struct clocksource bfin_cs_cycles = {
.name = "bfin_cs_cycles",
.rating = 400,
.read = bfin_read_cycles,
.mask = CLOCKSOURCE_MASK(64),
.shift = CYC2NS_SCALE_FACTOR,
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
};
static inline unsigned long long bfin_cs_cycles_sched_clock(void)
{
return clocksource_cyc2ns(bfin_read_cycles(&bfin_cs_cycles),
bfin_cs_cycles.mult, bfin_cs_cycles.shift);
}
static int __init bfin_cs_cycles_init(void)
{
bfin_cs_cycles.mult = \
clocksource_hz2mult(get_cclk(), bfin_cs_cycles.shift);
if (clocksource_register(&bfin_cs_cycles))
panic("failed to register clocksource");
return 0;
}
#else
# define bfin_cs_cycles_init()
#endif
#ifdef CONFIG_GPTMR0_CLOCKSOURCE
void __init setup_gptimer0(void)
{
disable_gptimers(TIMER0bit);
set_gptimer_config(TIMER0_id, \
TIMER_OUT_DIS | TIMER_PERIOD_CNT | TIMER_MODE_PWM);
set_gptimer_period(TIMER0_id, -1);
set_gptimer_pwidth(TIMER0_id, -2);
SSYNC();
enable_gptimers(TIMER0bit);
}
static cycle_t bfin_read_gptimer0(struct clocksource *cs)
{
return bfin_read_TIMER0_COUNTER();
}
static struct clocksource bfin_cs_gptimer0 = {
.name = "bfin_cs_gptimer0",
.rating = 350,
.read = bfin_read_gptimer0,
.mask = CLOCKSOURCE_MASK(32),
.shift = CYC2NS_SCALE_FACTOR,
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
};
static inline unsigned long long bfin_cs_gptimer0_sched_clock(void)
{
return clocksource_cyc2ns(bfin_read_TIMER0_COUNTER(),
bfin_cs_gptimer0.mult, bfin_cs_gptimer0.shift);
}
static int __init bfin_cs_gptimer0_init(void)
{
setup_gptimer0();
bfin_cs_gptimer0.mult = \
clocksource_hz2mult(get_sclk(), bfin_cs_gptimer0.shift);
if (clocksource_register(&bfin_cs_gptimer0))
panic("failed to register clocksource");
return 0;
}
#else
# define bfin_cs_gptimer0_init()
#endif
#if defined(CONFIG_GPTMR0_CLOCKSOURCE) || defined(CONFIG_CYCLES_CLOCKSOURCE)
/* prefer to use cycles since it has higher rating */
notrace unsigned long long sched_clock(void)
{
#if defined(CONFIG_CYCLES_CLOCKSOURCE)
return bfin_cs_cycles_sched_clock();
#else
return bfin_cs_gptimer0_sched_clock();
#endif
}
#endif
#if defined(CONFIG_TICKSOURCE_GPTMR0)
static int bfin_gptmr0_set_next_event(unsigned long cycles,
struct clock_event_device *evt)
{
disable_gptimers(TIMER0bit);
/* it starts counting three SCLK cycles after the TIMENx bit is set */
set_gptimer_pwidth(TIMER0_id, cycles - 3);
enable_gptimers(TIMER0bit);
return 0;
}
static void bfin_gptmr0_set_mode(enum clock_event_mode mode,
struct clock_event_device *evt)
{
switch (mode) {
case CLOCK_EVT_MODE_PERIODIC: {
set_gptimer_config(TIMER0_id, \
TIMER_OUT_DIS | TIMER_IRQ_ENA | \
TIMER_PERIOD_CNT | TIMER_MODE_PWM);
set_gptimer_period(TIMER0_id, get_sclk() / HZ);
set_gptimer_pwidth(TIMER0_id, get_sclk() / HZ - 1);
enable_gptimers(TIMER0bit);
break;
}
case CLOCK_EVT_MODE_ONESHOT:
disable_gptimers(TIMER0bit);
set_gptimer_config(TIMER0_id, \
TIMER_OUT_DIS | TIMER_IRQ_ENA | TIMER_MODE_PWM);
set_gptimer_period(TIMER0_id, 0);
break;
case CLOCK_EVT_MODE_UNUSED:
case CLOCK_EVT_MODE_SHUTDOWN:
disable_gptimers(TIMER0bit);
break;
case CLOCK_EVT_MODE_RESUME:
break;
}
}
static void bfin_gptmr0_ack(void)
{
set_gptimer_status(TIMER_GROUP1, TIMER_STATUS_TIMIL0);
}
static void __init bfin_gptmr0_init(void)
{
disable_gptimers(TIMER0bit);
}
#ifdef CONFIG_CORE_TIMER_IRQ_L1
__attribute__((l1_text))
#endif
irqreturn_t bfin_gptmr0_interrupt(int irq, void *dev_id)
{
struct clock_event_device *evt = dev_id;
smp_mb();
evt->event_handler(evt);
bfin_gptmr0_ack();
return IRQ_HANDLED;
}
static struct irqaction gptmr0_irq = {
.name = "Blackfin GPTimer0",
.flags = IRQF_DISABLED | IRQF_TIMER | \
IRQF_IRQPOLL | IRQF_PERCPU,
.handler = bfin_gptmr0_interrupt,
};
static struct clock_event_device clockevent_gptmr0 = {
.name = "bfin_gptimer0",
.rating = 300,
.irq = IRQ_TIMER0,
.shift = 32,
.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
.set_next_event = bfin_gptmr0_set_next_event,
.set_mode = bfin_gptmr0_set_mode,
};
static void __init bfin_gptmr0_clockevent_init(struct clock_event_device *evt)
{
unsigned long clock_tick;
clock_tick = get_sclk();
evt->mult = div_sc(clock_tick, NSEC_PER_SEC, evt->shift);
evt->max_delta_ns = clockevent_delta2ns(-1, evt);
evt->min_delta_ns = clockevent_delta2ns(100, evt);
evt->cpumask = cpumask_of(0);
clockevents_register_device(evt);
}
#endif /* CONFIG_TICKSOURCE_GPTMR0 */
#if defined(CONFIG_TICKSOURCE_CORETMR)
/* per-cpu local core timer */
static DEFINE_PER_CPU(struct clock_event_device, coretmr_events);
static int bfin_coretmr_set_next_event(unsigned long cycles,
struct clock_event_device *evt)
{
bfin_write_TCNTL(TMPWR);
CSYNC();
bfin_write_TCOUNT(cycles);
CSYNC();
bfin_write_TCNTL(TMPWR | TMREN);
return 0;
}
static void bfin_coretmr_set_mode(enum clock_event_mode mode,
struct clock_event_device *evt)
{
switch (mode) {
case CLOCK_EVT_MODE_PERIODIC: {
unsigned long tcount = ((get_cclk() / (HZ * TIME_SCALE)) - 1);
bfin_write_TCNTL(TMPWR);
CSYNC();
bfin_write_TSCALE(TIME_SCALE - 1);
bfin_write_TPERIOD(tcount);
bfin_write_TCOUNT(tcount);
CSYNC();
bfin_write_TCNTL(TMPWR | TMREN | TAUTORLD);
break;
}
case CLOCK_EVT_MODE_ONESHOT:
bfin_write_TCNTL(TMPWR);
CSYNC();
bfin_write_TSCALE(TIME_SCALE - 1);
bfin_write_TPERIOD(0);
bfin_write_TCOUNT(0);
break;
case CLOCK_EVT_MODE_UNUSED:
case CLOCK_EVT_MODE_SHUTDOWN:
bfin_write_TCNTL(0);
CSYNC();
break;
case CLOCK_EVT_MODE_RESUME:
break;
}
}
void bfin_coretmr_init(void)
{
/* power up the timer, but don't enable it just yet */
bfin_write_TCNTL(TMPWR);
CSYNC();
/* the TSCALE prescaler counter. */
bfin_write_TSCALE(TIME_SCALE - 1);
bfin_write_TPERIOD(0);
bfin_write_TCOUNT(0);
CSYNC();
}
#ifdef CONFIG_CORE_TIMER_IRQ_L1
__attribute__((l1_text))
#endif
irqreturn_t bfin_coretmr_interrupt(int irq, void *dev_id)
{
int cpu = smp_processor_id();
struct clock_event_device *evt = &per_cpu(coretmr_events, cpu);
smp_mb();
evt->event_handler(evt);
return IRQ_HANDLED;
}
static struct irqaction coretmr_irq = {
.name = "Blackfin CoreTimer",
.flags = IRQF_DISABLED | IRQF_TIMER | \
IRQF_IRQPOLL | IRQF_PERCPU,
.handler = bfin_coretmr_interrupt,
};
void bfin_coretmr_clockevent_init(void)
{
unsigned long clock_tick;
unsigned int cpu = smp_processor_id();
struct clock_event_device *evt = &per_cpu(coretmr_events, cpu);
evt->name = "bfin_core_timer";
evt->rating = 350;
evt->irq = -1;
evt->shift = 32;
evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
evt->set_next_event = bfin_coretmr_set_next_event;
evt->set_mode = bfin_coretmr_set_mode;
clock_tick = get_cclk() / TIME_SCALE;
evt->mult = div_sc(clock_tick, NSEC_PER_SEC, evt->shift);
evt->max_delta_ns = clockevent_delta2ns(-1, evt);
evt->min_delta_ns = clockevent_delta2ns(100, evt);
evt->cpumask = cpumask_of(cpu);
clockevents_register_device(evt);
}
#endif /* CONFIG_TICKSOURCE_CORETMR */
void __init time_init(void)
{
time_t secs_since_1970 = (365 * 37 + 9) * 24 * 60 * 60; /* 1 Jan 2007 */
#ifdef CONFIG_RTC_DRV_BFIN
/* [#2663] hack to filter junk RTC values that would cause
* userspace to have to deal with time values greater than
* 2^31 seconds (which uClibc cannot cope with yet)
*/
if ((bfin_read_RTC_STAT() & 0xC0000000) == 0xC0000000) {
printk(KERN_NOTICE "bfin-rtc: invalid date; resetting\n");
bfin_write_RTC_STAT(0);
}
#endif
/* Initialize xtime. From now on, xtime is updated with timer interrupts */
xtime.tv_sec = secs_since_1970;
xtime.tv_nsec = 0;
set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec);
bfin_cs_cycles_init();
bfin_cs_gptimer0_init();
#if defined(CONFIG_TICKSOURCE_CORETMR)
bfin_coretmr_init();
setup_irq(IRQ_CORETMR, &coretmr_irq);
bfin_coretmr_clockevent_init();
#endif
#if defined(CONFIG_TICKSOURCE_GPTMR0)
bfin_gptmr0_init();
setup_irq(IRQ_TIMER0, &gptmr0_irq);
gptmr0_irq.dev_id = &clockevent_gptmr0;
bfin_gptmr0_clockevent_init(&clockevent_gptmr0);
#endif
#if !defined(CONFIG_TICKSOURCE_CORETMR) && !defined(CONFIG_TICKSOURCE_GPTMR0)
# error at least one clock event device is required
#endif
}