We've outgrown our own deadlock avoidance strategy. The btree iterator API provides an interface where the user doesn't need to concern themselves with lock ordering - different btree iterators can be traversed in any order. Without special care, this will lead to deadlocks. Our previous strategy was to define a lock ordering internally, and whenever we attempt to take a lock and trylock() fails, we'd check if the current btree transaction is holding any locks that cause a lock ordering violation. If so, we'd issue a transaction restart, and then bch2_trans_begin() would re-traverse all previously used iterators, but in the correct order. That approach had some issues, though. - Sometimes we'd issue transaction restarts unnecessarily, when no deadlock would have actually occured. Lock ordering restarts have become our primary cause of transaction restarts, on some workloads totally 20% of actual transaction commits. - To avoid deadlock or livelock, we'd often have to take intent locks when we only wanted a read lock: with the lock ordering approach, it is actually illegal to hold _any_ read lock while blocking on an intent lock, and this has been causing us unnecessary lock contention. - It was getting fragile - the various lock ordering rules are not trivial, and we'd been seeing occasional livelock issues related to this machinery. So, since bcachefs is already a relational database masquerading as a filesystem, we're stealing the next traditional database technique and switching to a cycle detector for avoiding deadlocks. When we block taking a btree lock, after adding ourself to the waitlist but before sleeping, we do a DFS of btree transactions waiting on other btree transactions, starting with the current transaction and walking our held locks, and transactions blocking on our held locks. If we find a cycle, we emit a transaction restart. Occasionally (e.g. the btree split path) we can not allow the lock() operation to fail, so if necessary we'll tell another transaction that it has to fail. Result: trans_restart_would_deadlock events are reduced by a factor of 10 to 100, and we'll be able to delete a whole bunch of grotty, fragile code. Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com> |
||
---|---|---|
arch | ||
block | ||
certs | ||
crypto | ||
Documentation | ||
drivers | ||
fs | ||
include | ||
init | ||
io_uring | ||
ipc | ||
kernel | ||
lib | ||
LICENSES | ||
mm | ||
net | ||
rust | ||
samples | ||
scripts | ||
security | ||
sound | ||
tools | ||
usr | ||
virt | ||
.clang-format | ||
.cocciconfig | ||
.get_maintainer.ignore | ||
.gitattributes | ||
.gitignore | ||
.mailmap | ||
.rustfmt.toml | ||
COPYING | ||
CREDITS | ||
Kbuild | ||
Kconfig | ||
MAINTAINERS | ||
Makefile | ||
README |
Linux kernel ============ There are several guides for kernel developers and users. These guides can be rendered in a number of formats, like HTML and PDF. Please read Documentation/admin-guide/README.rst first. In order to build the documentation, use ``make htmldocs`` or ``make pdfdocs``. The formatted documentation can also be read online at: https://www.kernel.org/doc/html/latest/ There are various text files in the Documentation/ subdirectory, several of them using the Restructured Text markup notation. Please read the Documentation/process/changes.rst file, as it contains the requirements for building and running the kernel, and information about the problems which may result by upgrading your kernel.