a881b49694
The VFIO_DEVICE_GET_INFO, VFIO_DEVICE_GET_REGION_INFO, and VFIO_IOMMU_GET_INFO ioctls fill in an info struct followed by capability structs: +------+---------+---------+-----+ | info | caps[0] | caps[1] | ... | +------+---------+---------+-----+ Both the info and capability struct sizes are not always multiples of sizeof(u64), leaving u64 fields in later capability structs misaligned. Userspace applications currently need to handle misalignment manually in order to support CPU architectures and programming languages with strict alignment requirements. Make life easier for userspace by ensuring alignment in the kernel. This is done by padding info struct definitions and by copying out zeroes after capability structs that are not aligned. The new layout is as follows: +------+---------+---+---------+-----+ | info | caps[0] | 0 | caps[1] | ... | +------+---------+---+---------+-----+ In this example caps[0] has a size that is not multiples of sizeof(u64), so zero padding is added to align the subsequent structure. Adding zero padding between structs does not break the uapi. The memory layout is specified by the info.cap_offset and caps[i].next fields filled in by the kernel. Applications use these field values to locate structs and are therefore unaffected by the addition of zero padding. Note that code that copies out info structs with padding is updated to always zero the struct and copy out as many bytes as userspace requested. This makes the code shorter and avoids potential information leaks by ensuring padding is initialized. Originally-by: Alex Williamson <alex.williamson@redhat.com> Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Reviewed-by: Kevin Tian <kevin.tian@intel.com> Acked-by: Jason Gunthorpe <jgg@nvidia.com> Link: https://lore.kernel.org/r/20230809203144.2880050-1-stefanha@redhat.com Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2665 lines
70 KiB
C
2665 lines
70 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright (C) 2012 Red Hat, Inc. All rights reserved.
|
|
* Author: Alex Williamson <alex.williamson@redhat.com>
|
|
*
|
|
* Derived from original vfio:
|
|
* Copyright 2010 Cisco Systems, Inc. All rights reserved.
|
|
* Author: Tom Lyon, pugs@cisco.com
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/aperture.h>
|
|
#include <linux/device.h>
|
|
#include <linux/eventfd.h>
|
|
#include <linux/file.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/iommu.h>
|
|
#include <linux/module.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/pm_runtime.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/types.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/vgaarb.h>
|
|
#include <linux/nospec.h>
|
|
#include <linux/sched/mm.h>
|
|
#include <linux/iommufd.h>
|
|
#if IS_ENABLED(CONFIG_EEH)
|
|
#include <asm/eeh.h>
|
|
#endif
|
|
|
|
#include "vfio_pci_priv.h"
|
|
|
|
#define DRIVER_AUTHOR "Alex Williamson <alex.williamson@redhat.com>"
|
|
#define DRIVER_DESC "core driver for VFIO based PCI devices"
|
|
|
|
static bool nointxmask;
|
|
static bool disable_vga;
|
|
static bool disable_idle_d3;
|
|
|
|
/* List of PF's that vfio_pci_core_sriov_configure() has been called on */
|
|
static DEFINE_MUTEX(vfio_pci_sriov_pfs_mutex);
|
|
static LIST_HEAD(vfio_pci_sriov_pfs);
|
|
|
|
struct vfio_pci_dummy_resource {
|
|
struct resource resource;
|
|
int index;
|
|
struct list_head res_next;
|
|
};
|
|
|
|
struct vfio_pci_vf_token {
|
|
struct mutex lock;
|
|
uuid_t uuid;
|
|
int users;
|
|
};
|
|
|
|
struct vfio_pci_mmap_vma {
|
|
struct vm_area_struct *vma;
|
|
struct list_head vma_next;
|
|
};
|
|
|
|
static inline bool vfio_vga_disabled(void)
|
|
{
|
|
#ifdef CONFIG_VFIO_PCI_VGA
|
|
return disable_vga;
|
|
#else
|
|
return true;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Our VGA arbiter participation is limited since we don't know anything
|
|
* about the device itself. However, if the device is the only VGA device
|
|
* downstream of a bridge and VFIO VGA support is disabled, then we can
|
|
* safely return legacy VGA IO and memory as not decoded since the user
|
|
* has no way to get to it and routing can be disabled externally at the
|
|
* bridge.
|
|
*/
|
|
static unsigned int vfio_pci_set_decode(struct pci_dev *pdev, bool single_vga)
|
|
{
|
|
struct pci_dev *tmp = NULL;
|
|
unsigned char max_busnr;
|
|
unsigned int decodes;
|
|
|
|
if (single_vga || !vfio_vga_disabled() || pci_is_root_bus(pdev->bus))
|
|
return VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM |
|
|
VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM;
|
|
|
|
max_busnr = pci_bus_max_busnr(pdev->bus);
|
|
decodes = VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
|
|
|
|
while ((tmp = pci_get_class(PCI_CLASS_DISPLAY_VGA << 8, tmp)) != NULL) {
|
|
if (tmp == pdev ||
|
|
pci_domain_nr(tmp->bus) != pci_domain_nr(pdev->bus) ||
|
|
pci_is_root_bus(tmp->bus))
|
|
continue;
|
|
|
|
if (tmp->bus->number >= pdev->bus->number &&
|
|
tmp->bus->number <= max_busnr) {
|
|
pci_dev_put(tmp);
|
|
decodes |= VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return decodes;
|
|
}
|
|
|
|
static void vfio_pci_probe_mmaps(struct vfio_pci_core_device *vdev)
|
|
{
|
|
struct resource *res;
|
|
int i;
|
|
struct vfio_pci_dummy_resource *dummy_res;
|
|
|
|
for (i = 0; i < PCI_STD_NUM_BARS; i++) {
|
|
int bar = i + PCI_STD_RESOURCES;
|
|
|
|
res = &vdev->pdev->resource[bar];
|
|
|
|
if (!IS_ENABLED(CONFIG_VFIO_PCI_MMAP))
|
|
goto no_mmap;
|
|
|
|
if (!(res->flags & IORESOURCE_MEM))
|
|
goto no_mmap;
|
|
|
|
/*
|
|
* The PCI core shouldn't set up a resource with a
|
|
* type but zero size. But there may be bugs that
|
|
* cause us to do that.
|
|
*/
|
|
if (!resource_size(res))
|
|
goto no_mmap;
|
|
|
|
if (resource_size(res) >= PAGE_SIZE) {
|
|
vdev->bar_mmap_supported[bar] = true;
|
|
continue;
|
|
}
|
|
|
|
if (!(res->start & ~PAGE_MASK)) {
|
|
/*
|
|
* Add a dummy resource to reserve the remainder
|
|
* of the exclusive page in case that hot-add
|
|
* device's bar is assigned into it.
|
|
*/
|
|
dummy_res =
|
|
kzalloc(sizeof(*dummy_res), GFP_KERNEL_ACCOUNT);
|
|
if (dummy_res == NULL)
|
|
goto no_mmap;
|
|
|
|
dummy_res->resource.name = "vfio sub-page reserved";
|
|
dummy_res->resource.start = res->end + 1;
|
|
dummy_res->resource.end = res->start + PAGE_SIZE - 1;
|
|
dummy_res->resource.flags = res->flags;
|
|
if (request_resource(res->parent,
|
|
&dummy_res->resource)) {
|
|
kfree(dummy_res);
|
|
goto no_mmap;
|
|
}
|
|
dummy_res->index = bar;
|
|
list_add(&dummy_res->res_next,
|
|
&vdev->dummy_resources_list);
|
|
vdev->bar_mmap_supported[bar] = true;
|
|
continue;
|
|
}
|
|
/*
|
|
* Here we don't handle the case when the BAR is not page
|
|
* aligned because we can't expect the BAR will be
|
|
* assigned into the same location in a page in guest
|
|
* when we passthrough the BAR. And it's hard to access
|
|
* this BAR in userspace because we have no way to get
|
|
* the BAR's location in a page.
|
|
*/
|
|
no_mmap:
|
|
vdev->bar_mmap_supported[bar] = false;
|
|
}
|
|
}
|
|
|
|
struct vfio_pci_group_info;
|
|
static void vfio_pci_dev_set_try_reset(struct vfio_device_set *dev_set);
|
|
static int vfio_pci_dev_set_hot_reset(struct vfio_device_set *dev_set,
|
|
struct vfio_pci_group_info *groups,
|
|
struct iommufd_ctx *iommufd_ctx);
|
|
|
|
/*
|
|
* INTx masking requires the ability to disable INTx signaling via PCI_COMMAND
|
|
* _and_ the ability detect when the device is asserting INTx via PCI_STATUS.
|
|
* If a device implements the former but not the latter we would typically
|
|
* expect broken_intx_masking be set and require an exclusive interrupt.
|
|
* However since we do have control of the device's ability to assert INTx,
|
|
* we can instead pretend that the device does not implement INTx, virtualizing
|
|
* the pin register to report zero and maintaining DisINTx set on the host.
|
|
*/
|
|
static bool vfio_pci_nointx(struct pci_dev *pdev)
|
|
{
|
|
switch (pdev->vendor) {
|
|
case PCI_VENDOR_ID_INTEL:
|
|
switch (pdev->device) {
|
|
/* All i40e (XL710/X710/XXV710) 10/20/25/40GbE NICs */
|
|
case 0x1572:
|
|
case 0x1574:
|
|
case 0x1580 ... 0x1581:
|
|
case 0x1583 ... 0x158b:
|
|
case 0x37d0 ... 0x37d2:
|
|
/* X550 */
|
|
case 0x1563:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static void vfio_pci_probe_power_state(struct vfio_pci_core_device *vdev)
|
|
{
|
|
struct pci_dev *pdev = vdev->pdev;
|
|
u16 pmcsr;
|
|
|
|
if (!pdev->pm_cap)
|
|
return;
|
|
|
|
pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmcsr);
|
|
|
|
vdev->needs_pm_restore = !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET);
|
|
}
|
|
|
|
/*
|
|
* pci_set_power_state() wrapper handling devices which perform a soft reset on
|
|
* D3->D0 transition. Save state prior to D0/1/2->D3, stash it on the vdev,
|
|
* restore when returned to D0. Saved separately from pci_saved_state for use
|
|
* by PM capability emulation and separately from pci_dev internal saved state
|
|
* to avoid it being overwritten and consumed around other resets.
|
|
*/
|
|
int vfio_pci_set_power_state(struct vfio_pci_core_device *vdev, pci_power_t state)
|
|
{
|
|
struct pci_dev *pdev = vdev->pdev;
|
|
bool needs_restore = false, needs_save = false;
|
|
int ret;
|
|
|
|
/* Prevent changing power state for PFs with VFs enabled */
|
|
if (pci_num_vf(pdev) && state > PCI_D0)
|
|
return -EBUSY;
|
|
|
|
if (vdev->needs_pm_restore) {
|
|
if (pdev->current_state < PCI_D3hot && state >= PCI_D3hot) {
|
|
pci_save_state(pdev);
|
|
needs_save = true;
|
|
}
|
|
|
|
if (pdev->current_state >= PCI_D3hot && state <= PCI_D0)
|
|
needs_restore = true;
|
|
}
|
|
|
|
ret = pci_set_power_state(pdev, state);
|
|
|
|
if (!ret) {
|
|
/* D3 might be unsupported via quirk, skip unless in D3 */
|
|
if (needs_save && pdev->current_state >= PCI_D3hot) {
|
|
/*
|
|
* The current PCI state will be saved locally in
|
|
* 'pm_save' during the D3hot transition. When the
|
|
* device state is changed to D0 again with the current
|
|
* function, then pci_store_saved_state() will restore
|
|
* the state and will free the memory pointed by
|
|
* 'pm_save'. There are few cases where the PCI power
|
|
* state can be changed to D0 without the involvement
|
|
* of the driver. For these cases, free the earlier
|
|
* allocated memory first before overwriting 'pm_save'
|
|
* to prevent the memory leak.
|
|
*/
|
|
kfree(vdev->pm_save);
|
|
vdev->pm_save = pci_store_saved_state(pdev);
|
|
} else if (needs_restore) {
|
|
pci_load_and_free_saved_state(pdev, &vdev->pm_save);
|
|
pci_restore_state(pdev);
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int vfio_pci_runtime_pm_entry(struct vfio_pci_core_device *vdev,
|
|
struct eventfd_ctx *efdctx)
|
|
{
|
|
/*
|
|
* The vdev power related flags are protected with 'memory_lock'
|
|
* semaphore.
|
|
*/
|
|
vfio_pci_zap_and_down_write_memory_lock(vdev);
|
|
if (vdev->pm_runtime_engaged) {
|
|
up_write(&vdev->memory_lock);
|
|
return -EINVAL;
|
|
}
|
|
|
|
vdev->pm_runtime_engaged = true;
|
|
vdev->pm_wake_eventfd_ctx = efdctx;
|
|
pm_runtime_put_noidle(&vdev->pdev->dev);
|
|
up_write(&vdev->memory_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int vfio_pci_core_pm_entry(struct vfio_device *device, u32 flags,
|
|
void __user *arg, size_t argsz)
|
|
{
|
|
struct vfio_pci_core_device *vdev =
|
|
container_of(device, struct vfio_pci_core_device, vdev);
|
|
int ret;
|
|
|
|
ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_SET, 0);
|
|
if (ret != 1)
|
|
return ret;
|
|
|
|
/*
|
|
* Inside vfio_pci_runtime_pm_entry(), only the runtime PM usage count
|
|
* will be decremented. The pm_runtime_put() will be invoked again
|
|
* while returning from the ioctl and then the device can go into
|
|
* runtime suspended state.
|
|
*/
|
|
return vfio_pci_runtime_pm_entry(vdev, NULL);
|
|
}
|
|
|
|
static int vfio_pci_core_pm_entry_with_wakeup(
|
|
struct vfio_device *device, u32 flags,
|
|
struct vfio_device_low_power_entry_with_wakeup __user *arg,
|
|
size_t argsz)
|
|
{
|
|
struct vfio_pci_core_device *vdev =
|
|
container_of(device, struct vfio_pci_core_device, vdev);
|
|
struct vfio_device_low_power_entry_with_wakeup entry;
|
|
struct eventfd_ctx *efdctx;
|
|
int ret;
|
|
|
|
ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_SET,
|
|
sizeof(entry));
|
|
if (ret != 1)
|
|
return ret;
|
|
|
|
if (copy_from_user(&entry, arg, sizeof(entry)))
|
|
return -EFAULT;
|
|
|
|
if (entry.wakeup_eventfd < 0)
|
|
return -EINVAL;
|
|
|
|
efdctx = eventfd_ctx_fdget(entry.wakeup_eventfd);
|
|
if (IS_ERR(efdctx))
|
|
return PTR_ERR(efdctx);
|
|
|
|
ret = vfio_pci_runtime_pm_entry(vdev, efdctx);
|
|
if (ret)
|
|
eventfd_ctx_put(efdctx);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void __vfio_pci_runtime_pm_exit(struct vfio_pci_core_device *vdev)
|
|
{
|
|
if (vdev->pm_runtime_engaged) {
|
|
vdev->pm_runtime_engaged = false;
|
|
pm_runtime_get_noresume(&vdev->pdev->dev);
|
|
|
|
if (vdev->pm_wake_eventfd_ctx) {
|
|
eventfd_ctx_put(vdev->pm_wake_eventfd_ctx);
|
|
vdev->pm_wake_eventfd_ctx = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void vfio_pci_runtime_pm_exit(struct vfio_pci_core_device *vdev)
|
|
{
|
|
/*
|
|
* The vdev power related flags are protected with 'memory_lock'
|
|
* semaphore.
|
|
*/
|
|
down_write(&vdev->memory_lock);
|
|
__vfio_pci_runtime_pm_exit(vdev);
|
|
up_write(&vdev->memory_lock);
|
|
}
|
|
|
|
static int vfio_pci_core_pm_exit(struct vfio_device *device, u32 flags,
|
|
void __user *arg, size_t argsz)
|
|
{
|
|
struct vfio_pci_core_device *vdev =
|
|
container_of(device, struct vfio_pci_core_device, vdev);
|
|
int ret;
|
|
|
|
ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_SET, 0);
|
|
if (ret != 1)
|
|
return ret;
|
|
|
|
/*
|
|
* The device is always in the active state here due to pm wrappers
|
|
* around ioctls. If the device had entered a low power state and
|
|
* pm_wake_eventfd_ctx is valid, vfio_pci_core_runtime_resume() has
|
|
* already signaled the eventfd and exited low power mode itself.
|
|
* pm_runtime_engaged protects the redundant call here.
|
|
*/
|
|
vfio_pci_runtime_pm_exit(vdev);
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_PM
|
|
static int vfio_pci_core_runtime_suspend(struct device *dev)
|
|
{
|
|
struct vfio_pci_core_device *vdev = dev_get_drvdata(dev);
|
|
|
|
down_write(&vdev->memory_lock);
|
|
/*
|
|
* The user can move the device into D3hot state before invoking
|
|
* power management IOCTL. Move the device into D0 state here and then
|
|
* the pci-driver core runtime PM suspend function will move the device
|
|
* into the low power state. Also, for the devices which have
|
|
* NoSoftRst-, it will help in restoring the original state
|
|
* (saved locally in 'vdev->pm_save').
|
|
*/
|
|
vfio_pci_set_power_state(vdev, PCI_D0);
|
|
up_write(&vdev->memory_lock);
|
|
|
|
/*
|
|
* If INTx is enabled, then mask INTx before going into the runtime
|
|
* suspended state and unmask the same in the runtime resume.
|
|
* If INTx has already been masked by the user, then
|
|
* vfio_pci_intx_mask() will return false and in that case, INTx
|
|
* should not be unmasked in the runtime resume.
|
|
*/
|
|
vdev->pm_intx_masked = ((vdev->irq_type == VFIO_PCI_INTX_IRQ_INDEX) &&
|
|
vfio_pci_intx_mask(vdev));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int vfio_pci_core_runtime_resume(struct device *dev)
|
|
{
|
|
struct vfio_pci_core_device *vdev = dev_get_drvdata(dev);
|
|
|
|
/*
|
|
* Resume with a pm_wake_eventfd_ctx signals the eventfd and exit
|
|
* low power mode.
|
|
*/
|
|
down_write(&vdev->memory_lock);
|
|
if (vdev->pm_wake_eventfd_ctx) {
|
|
eventfd_signal(vdev->pm_wake_eventfd_ctx, 1);
|
|
__vfio_pci_runtime_pm_exit(vdev);
|
|
}
|
|
up_write(&vdev->memory_lock);
|
|
|
|
if (vdev->pm_intx_masked)
|
|
vfio_pci_intx_unmask(vdev);
|
|
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_PM */
|
|
|
|
/*
|
|
* The pci-driver core runtime PM routines always save the device state
|
|
* before going into suspended state. If the device is going into low power
|
|
* state with only with runtime PM ops, then no explicit handling is needed
|
|
* for the devices which have NoSoftRst-.
|
|
*/
|
|
static const struct dev_pm_ops vfio_pci_core_pm_ops = {
|
|
SET_RUNTIME_PM_OPS(vfio_pci_core_runtime_suspend,
|
|
vfio_pci_core_runtime_resume,
|
|
NULL)
|
|
};
|
|
|
|
int vfio_pci_core_enable(struct vfio_pci_core_device *vdev)
|
|
{
|
|
struct pci_dev *pdev = vdev->pdev;
|
|
int ret;
|
|
u16 cmd;
|
|
u8 msix_pos;
|
|
|
|
if (!disable_idle_d3) {
|
|
ret = pm_runtime_resume_and_get(&pdev->dev);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
|
|
/* Don't allow our initial saved state to include busmaster */
|
|
pci_clear_master(pdev);
|
|
|
|
ret = pci_enable_device(pdev);
|
|
if (ret)
|
|
goto out_power;
|
|
|
|
/* If reset fails because of the device lock, fail this path entirely */
|
|
ret = pci_try_reset_function(pdev);
|
|
if (ret == -EAGAIN)
|
|
goto out_disable_device;
|
|
|
|
vdev->reset_works = !ret;
|
|
pci_save_state(pdev);
|
|
vdev->pci_saved_state = pci_store_saved_state(pdev);
|
|
if (!vdev->pci_saved_state)
|
|
pci_dbg(pdev, "%s: Couldn't store saved state\n", __func__);
|
|
|
|
if (likely(!nointxmask)) {
|
|
if (vfio_pci_nointx(pdev)) {
|
|
pci_info(pdev, "Masking broken INTx support\n");
|
|
vdev->nointx = true;
|
|
pci_intx(pdev, 0);
|
|
} else
|
|
vdev->pci_2_3 = pci_intx_mask_supported(pdev);
|
|
}
|
|
|
|
pci_read_config_word(pdev, PCI_COMMAND, &cmd);
|
|
if (vdev->pci_2_3 && (cmd & PCI_COMMAND_INTX_DISABLE)) {
|
|
cmd &= ~PCI_COMMAND_INTX_DISABLE;
|
|
pci_write_config_word(pdev, PCI_COMMAND, cmd);
|
|
}
|
|
|
|
ret = vfio_pci_zdev_open_device(vdev);
|
|
if (ret)
|
|
goto out_free_state;
|
|
|
|
ret = vfio_config_init(vdev);
|
|
if (ret)
|
|
goto out_free_zdev;
|
|
|
|
msix_pos = pdev->msix_cap;
|
|
if (msix_pos) {
|
|
u16 flags;
|
|
u32 table;
|
|
|
|
pci_read_config_word(pdev, msix_pos + PCI_MSIX_FLAGS, &flags);
|
|
pci_read_config_dword(pdev, msix_pos + PCI_MSIX_TABLE, &table);
|
|
|
|
vdev->msix_bar = table & PCI_MSIX_TABLE_BIR;
|
|
vdev->msix_offset = table & PCI_MSIX_TABLE_OFFSET;
|
|
vdev->msix_size = ((flags & PCI_MSIX_FLAGS_QSIZE) + 1) * 16;
|
|
vdev->has_dyn_msix = pci_msix_can_alloc_dyn(pdev);
|
|
} else {
|
|
vdev->msix_bar = 0xFF;
|
|
vdev->has_dyn_msix = false;
|
|
}
|
|
|
|
if (!vfio_vga_disabled() && vfio_pci_is_vga(pdev))
|
|
vdev->has_vga = true;
|
|
|
|
|
|
return 0;
|
|
|
|
out_free_zdev:
|
|
vfio_pci_zdev_close_device(vdev);
|
|
out_free_state:
|
|
kfree(vdev->pci_saved_state);
|
|
vdev->pci_saved_state = NULL;
|
|
out_disable_device:
|
|
pci_disable_device(pdev);
|
|
out_power:
|
|
if (!disable_idle_d3)
|
|
pm_runtime_put(&pdev->dev);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(vfio_pci_core_enable);
|
|
|
|
void vfio_pci_core_disable(struct vfio_pci_core_device *vdev)
|
|
{
|
|
struct pci_dev *pdev = vdev->pdev;
|
|
struct vfio_pci_dummy_resource *dummy_res, *tmp;
|
|
struct vfio_pci_ioeventfd *ioeventfd, *ioeventfd_tmp;
|
|
int i, bar;
|
|
|
|
/* For needs_reset */
|
|
lockdep_assert_held(&vdev->vdev.dev_set->lock);
|
|
|
|
/*
|
|
* This function can be invoked while the power state is non-D0.
|
|
* This non-D0 power state can be with or without runtime PM.
|
|
* vfio_pci_runtime_pm_exit() will internally increment the usage
|
|
* count corresponding to pm_runtime_put() called during low power
|
|
* feature entry and then pm_runtime_resume() will wake up the device,
|
|
* if the device has already gone into the suspended state. Otherwise,
|
|
* the vfio_pci_set_power_state() will change the device power state
|
|
* to D0.
|
|
*/
|
|
vfio_pci_runtime_pm_exit(vdev);
|
|
pm_runtime_resume(&pdev->dev);
|
|
|
|
/*
|
|
* This function calls __pci_reset_function_locked() which internally
|
|
* can use pci_pm_reset() for the function reset. pci_pm_reset() will
|
|
* fail if the power state is non-D0. Also, for the devices which
|
|
* have NoSoftRst-, the reset function can cause the PCI config space
|
|
* reset without restoring the original state (saved locally in
|
|
* 'vdev->pm_save').
|
|
*/
|
|
vfio_pci_set_power_state(vdev, PCI_D0);
|
|
|
|
/* Stop the device from further DMA */
|
|
pci_clear_master(pdev);
|
|
|
|
vfio_pci_set_irqs_ioctl(vdev, VFIO_IRQ_SET_DATA_NONE |
|
|
VFIO_IRQ_SET_ACTION_TRIGGER,
|
|
vdev->irq_type, 0, 0, NULL);
|
|
|
|
/* Device closed, don't need mutex here */
|
|
list_for_each_entry_safe(ioeventfd, ioeventfd_tmp,
|
|
&vdev->ioeventfds_list, next) {
|
|
vfio_virqfd_disable(&ioeventfd->virqfd);
|
|
list_del(&ioeventfd->next);
|
|
kfree(ioeventfd);
|
|
}
|
|
vdev->ioeventfds_nr = 0;
|
|
|
|
vdev->virq_disabled = false;
|
|
|
|
for (i = 0; i < vdev->num_regions; i++)
|
|
vdev->region[i].ops->release(vdev, &vdev->region[i]);
|
|
|
|
vdev->num_regions = 0;
|
|
kfree(vdev->region);
|
|
vdev->region = NULL; /* don't krealloc a freed pointer */
|
|
|
|
vfio_config_free(vdev);
|
|
|
|
for (i = 0; i < PCI_STD_NUM_BARS; i++) {
|
|
bar = i + PCI_STD_RESOURCES;
|
|
if (!vdev->barmap[bar])
|
|
continue;
|
|
pci_iounmap(pdev, vdev->barmap[bar]);
|
|
pci_release_selected_regions(pdev, 1 << bar);
|
|
vdev->barmap[bar] = NULL;
|
|
}
|
|
|
|
list_for_each_entry_safe(dummy_res, tmp,
|
|
&vdev->dummy_resources_list, res_next) {
|
|
list_del(&dummy_res->res_next);
|
|
release_resource(&dummy_res->resource);
|
|
kfree(dummy_res);
|
|
}
|
|
|
|
vdev->needs_reset = true;
|
|
|
|
vfio_pci_zdev_close_device(vdev);
|
|
|
|
/*
|
|
* If we have saved state, restore it. If we can reset the device,
|
|
* even better. Resetting with current state seems better than
|
|
* nothing, but saving and restoring current state without reset
|
|
* is just busy work.
|
|
*/
|
|
if (pci_load_and_free_saved_state(pdev, &vdev->pci_saved_state)) {
|
|
pci_info(pdev, "%s: Couldn't reload saved state\n", __func__);
|
|
|
|
if (!vdev->reset_works)
|
|
goto out;
|
|
|
|
pci_save_state(pdev);
|
|
}
|
|
|
|
/*
|
|
* Disable INTx and MSI, presumably to avoid spurious interrupts
|
|
* during reset. Stolen from pci_reset_function()
|
|
*/
|
|
pci_write_config_word(pdev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
|
|
|
|
/*
|
|
* Try to get the locks ourselves to prevent a deadlock. The
|
|
* success of this is dependent on being able to lock the device,
|
|
* which is not always possible.
|
|
* We can not use the "try" reset interface here, which will
|
|
* overwrite the previously restored configuration information.
|
|
*/
|
|
if (vdev->reset_works && pci_dev_trylock(pdev)) {
|
|
if (!__pci_reset_function_locked(pdev))
|
|
vdev->needs_reset = false;
|
|
pci_dev_unlock(pdev);
|
|
}
|
|
|
|
pci_restore_state(pdev);
|
|
out:
|
|
pci_disable_device(pdev);
|
|
|
|
vfio_pci_dev_set_try_reset(vdev->vdev.dev_set);
|
|
|
|
/* Put the pm-runtime usage counter acquired during enable */
|
|
if (!disable_idle_d3)
|
|
pm_runtime_put(&pdev->dev);
|
|
}
|
|
EXPORT_SYMBOL_GPL(vfio_pci_core_disable);
|
|
|
|
void vfio_pci_core_close_device(struct vfio_device *core_vdev)
|
|
{
|
|
struct vfio_pci_core_device *vdev =
|
|
container_of(core_vdev, struct vfio_pci_core_device, vdev);
|
|
|
|
if (vdev->sriov_pf_core_dev) {
|
|
mutex_lock(&vdev->sriov_pf_core_dev->vf_token->lock);
|
|
WARN_ON(!vdev->sriov_pf_core_dev->vf_token->users);
|
|
vdev->sriov_pf_core_dev->vf_token->users--;
|
|
mutex_unlock(&vdev->sriov_pf_core_dev->vf_token->lock);
|
|
}
|
|
#if IS_ENABLED(CONFIG_EEH)
|
|
eeh_dev_release(vdev->pdev);
|
|
#endif
|
|
vfio_pci_core_disable(vdev);
|
|
|
|
mutex_lock(&vdev->igate);
|
|
if (vdev->err_trigger) {
|
|
eventfd_ctx_put(vdev->err_trigger);
|
|
vdev->err_trigger = NULL;
|
|
}
|
|
if (vdev->req_trigger) {
|
|
eventfd_ctx_put(vdev->req_trigger);
|
|
vdev->req_trigger = NULL;
|
|
}
|
|
mutex_unlock(&vdev->igate);
|
|
}
|
|
EXPORT_SYMBOL_GPL(vfio_pci_core_close_device);
|
|
|
|
void vfio_pci_core_finish_enable(struct vfio_pci_core_device *vdev)
|
|
{
|
|
vfio_pci_probe_mmaps(vdev);
|
|
#if IS_ENABLED(CONFIG_EEH)
|
|
eeh_dev_open(vdev->pdev);
|
|
#endif
|
|
|
|
if (vdev->sriov_pf_core_dev) {
|
|
mutex_lock(&vdev->sriov_pf_core_dev->vf_token->lock);
|
|
vdev->sriov_pf_core_dev->vf_token->users++;
|
|
mutex_unlock(&vdev->sriov_pf_core_dev->vf_token->lock);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(vfio_pci_core_finish_enable);
|
|
|
|
static int vfio_pci_get_irq_count(struct vfio_pci_core_device *vdev, int irq_type)
|
|
{
|
|
if (irq_type == VFIO_PCI_INTX_IRQ_INDEX) {
|
|
u8 pin;
|
|
|
|
if (!IS_ENABLED(CONFIG_VFIO_PCI_INTX) ||
|
|
vdev->nointx || vdev->pdev->is_virtfn)
|
|
return 0;
|
|
|
|
pci_read_config_byte(vdev->pdev, PCI_INTERRUPT_PIN, &pin);
|
|
|
|
return pin ? 1 : 0;
|
|
} else if (irq_type == VFIO_PCI_MSI_IRQ_INDEX) {
|
|
u8 pos;
|
|
u16 flags;
|
|
|
|
pos = vdev->pdev->msi_cap;
|
|
if (pos) {
|
|
pci_read_config_word(vdev->pdev,
|
|
pos + PCI_MSI_FLAGS, &flags);
|
|
return 1 << ((flags & PCI_MSI_FLAGS_QMASK) >> 1);
|
|
}
|
|
} else if (irq_type == VFIO_PCI_MSIX_IRQ_INDEX) {
|
|
u8 pos;
|
|
u16 flags;
|
|
|
|
pos = vdev->pdev->msix_cap;
|
|
if (pos) {
|
|
pci_read_config_word(vdev->pdev,
|
|
pos + PCI_MSIX_FLAGS, &flags);
|
|
|
|
return (flags & PCI_MSIX_FLAGS_QSIZE) + 1;
|
|
}
|
|
} else if (irq_type == VFIO_PCI_ERR_IRQ_INDEX) {
|
|
if (pci_is_pcie(vdev->pdev))
|
|
return 1;
|
|
} else if (irq_type == VFIO_PCI_REQ_IRQ_INDEX) {
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int vfio_pci_count_devs(struct pci_dev *pdev, void *data)
|
|
{
|
|
(*(int *)data)++;
|
|
return 0;
|
|
}
|
|
|
|
struct vfio_pci_fill_info {
|
|
struct vfio_pci_dependent_device __user *devices;
|
|
struct vfio_pci_dependent_device __user *devices_end;
|
|
struct vfio_device *vdev;
|
|
u32 count;
|
|
u32 flags;
|
|
};
|
|
|
|
static int vfio_pci_fill_devs(struct pci_dev *pdev, void *data)
|
|
{
|
|
struct vfio_pci_dependent_device info = {
|
|
.segment = pci_domain_nr(pdev->bus),
|
|
.bus = pdev->bus->number,
|
|
.devfn = pdev->devfn,
|
|
};
|
|
struct vfio_pci_fill_info *fill = data;
|
|
|
|
fill->count++;
|
|
if (fill->devices >= fill->devices_end)
|
|
return 0;
|
|
|
|
if (fill->flags & VFIO_PCI_HOT_RESET_FLAG_DEV_ID) {
|
|
struct iommufd_ctx *iommufd = vfio_iommufd_device_ictx(fill->vdev);
|
|
struct vfio_device_set *dev_set = fill->vdev->dev_set;
|
|
struct vfio_device *vdev;
|
|
|
|
/*
|
|
* hot-reset requires all affected devices be represented in
|
|
* the dev_set.
|
|
*/
|
|
vdev = vfio_find_device_in_devset(dev_set, &pdev->dev);
|
|
if (!vdev) {
|
|
info.devid = VFIO_PCI_DEVID_NOT_OWNED;
|
|
} else {
|
|
int id = vfio_iommufd_get_dev_id(vdev, iommufd);
|
|
|
|
if (id > 0)
|
|
info.devid = id;
|
|
else if (id == -ENOENT)
|
|
info.devid = VFIO_PCI_DEVID_OWNED;
|
|
else
|
|
info.devid = VFIO_PCI_DEVID_NOT_OWNED;
|
|
}
|
|
/* If devid is VFIO_PCI_DEVID_NOT_OWNED, clear owned flag. */
|
|
if (info.devid == VFIO_PCI_DEVID_NOT_OWNED)
|
|
fill->flags &= ~VFIO_PCI_HOT_RESET_FLAG_DEV_ID_OWNED;
|
|
} else {
|
|
struct iommu_group *iommu_group;
|
|
|
|
iommu_group = iommu_group_get(&pdev->dev);
|
|
if (!iommu_group)
|
|
return -EPERM; /* Cannot reset non-isolated devices */
|
|
|
|
info.group_id = iommu_group_id(iommu_group);
|
|
iommu_group_put(iommu_group);
|
|
}
|
|
|
|
if (copy_to_user(fill->devices, &info, sizeof(info)))
|
|
return -EFAULT;
|
|
fill->devices++;
|
|
return 0;
|
|
}
|
|
|
|
struct vfio_pci_group_info {
|
|
int count;
|
|
struct file **files;
|
|
};
|
|
|
|
static bool vfio_pci_dev_below_slot(struct pci_dev *pdev, struct pci_slot *slot)
|
|
{
|
|
for (; pdev; pdev = pdev->bus->self)
|
|
if (pdev->bus == slot->bus)
|
|
return (pdev->slot == slot);
|
|
return false;
|
|
}
|
|
|
|
struct vfio_pci_walk_info {
|
|
int (*fn)(struct pci_dev *pdev, void *data);
|
|
void *data;
|
|
struct pci_dev *pdev;
|
|
bool slot;
|
|
int ret;
|
|
};
|
|
|
|
static int vfio_pci_walk_wrapper(struct pci_dev *pdev, void *data)
|
|
{
|
|
struct vfio_pci_walk_info *walk = data;
|
|
|
|
if (!walk->slot || vfio_pci_dev_below_slot(pdev, walk->pdev->slot))
|
|
walk->ret = walk->fn(pdev, walk->data);
|
|
|
|
return walk->ret;
|
|
}
|
|
|
|
static int vfio_pci_for_each_slot_or_bus(struct pci_dev *pdev,
|
|
int (*fn)(struct pci_dev *,
|
|
void *data), void *data,
|
|
bool slot)
|
|
{
|
|
struct vfio_pci_walk_info walk = {
|
|
.fn = fn, .data = data, .pdev = pdev, .slot = slot, .ret = 0,
|
|
};
|
|
|
|
pci_walk_bus(pdev->bus, vfio_pci_walk_wrapper, &walk);
|
|
|
|
return walk.ret;
|
|
}
|
|
|
|
static int msix_mmappable_cap(struct vfio_pci_core_device *vdev,
|
|
struct vfio_info_cap *caps)
|
|
{
|
|
struct vfio_info_cap_header header = {
|
|
.id = VFIO_REGION_INFO_CAP_MSIX_MAPPABLE,
|
|
.version = 1
|
|
};
|
|
|
|
return vfio_info_add_capability(caps, &header, sizeof(header));
|
|
}
|
|
|
|
int vfio_pci_core_register_dev_region(struct vfio_pci_core_device *vdev,
|
|
unsigned int type, unsigned int subtype,
|
|
const struct vfio_pci_regops *ops,
|
|
size_t size, u32 flags, void *data)
|
|
{
|
|
struct vfio_pci_region *region;
|
|
|
|
region = krealloc(vdev->region,
|
|
(vdev->num_regions + 1) * sizeof(*region),
|
|
GFP_KERNEL_ACCOUNT);
|
|
if (!region)
|
|
return -ENOMEM;
|
|
|
|
vdev->region = region;
|
|
vdev->region[vdev->num_regions].type = type;
|
|
vdev->region[vdev->num_regions].subtype = subtype;
|
|
vdev->region[vdev->num_regions].ops = ops;
|
|
vdev->region[vdev->num_regions].size = size;
|
|
vdev->region[vdev->num_regions].flags = flags;
|
|
vdev->region[vdev->num_regions].data = data;
|
|
|
|
vdev->num_regions++;
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(vfio_pci_core_register_dev_region);
|
|
|
|
static int vfio_pci_info_atomic_cap(struct vfio_pci_core_device *vdev,
|
|
struct vfio_info_cap *caps)
|
|
{
|
|
struct vfio_device_info_cap_pci_atomic_comp cap = {
|
|
.header.id = VFIO_DEVICE_INFO_CAP_PCI_ATOMIC_COMP,
|
|
.header.version = 1
|
|
};
|
|
struct pci_dev *pdev = pci_physfn(vdev->pdev);
|
|
u32 devcap2;
|
|
|
|
pcie_capability_read_dword(pdev, PCI_EXP_DEVCAP2, &devcap2);
|
|
|
|
if ((devcap2 & PCI_EXP_DEVCAP2_ATOMIC_COMP32) &&
|
|
!pci_enable_atomic_ops_to_root(pdev, PCI_EXP_DEVCAP2_ATOMIC_COMP32))
|
|
cap.flags |= VFIO_PCI_ATOMIC_COMP32;
|
|
|
|
if ((devcap2 & PCI_EXP_DEVCAP2_ATOMIC_COMP64) &&
|
|
!pci_enable_atomic_ops_to_root(pdev, PCI_EXP_DEVCAP2_ATOMIC_COMP64))
|
|
cap.flags |= VFIO_PCI_ATOMIC_COMP64;
|
|
|
|
if ((devcap2 & PCI_EXP_DEVCAP2_ATOMIC_COMP128) &&
|
|
!pci_enable_atomic_ops_to_root(pdev,
|
|
PCI_EXP_DEVCAP2_ATOMIC_COMP128))
|
|
cap.flags |= VFIO_PCI_ATOMIC_COMP128;
|
|
|
|
if (!cap.flags)
|
|
return -ENODEV;
|
|
|
|
return vfio_info_add_capability(caps, &cap.header, sizeof(cap));
|
|
}
|
|
|
|
static int vfio_pci_ioctl_get_info(struct vfio_pci_core_device *vdev,
|
|
struct vfio_device_info __user *arg)
|
|
{
|
|
unsigned long minsz = offsetofend(struct vfio_device_info, num_irqs);
|
|
struct vfio_device_info info = {};
|
|
struct vfio_info_cap caps = { .buf = NULL, .size = 0 };
|
|
int ret;
|
|
|
|
if (copy_from_user(&info, arg, minsz))
|
|
return -EFAULT;
|
|
|
|
if (info.argsz < minsz)
|
|
return -EINVAL;
|
|
|
|
minsz = min_t(size_t, info.argsz, sizeof(info));
|
|
|
|
info.flags = VFIO_DEVICE_FLAGS_PCI;
|
|
|
|
if (vdev->reset_works)
|
|
info.flags |= VFIO_DEVICE_FLAGS_RESET;
|
|
|
|
info.num_regions = VFIO_PCI_NUM_REGIONS + vdev->num_regions;
|
|
info.num_irqs = VFIO_PCI_NUM_IRQS;
|
|
|
|
ret = vfio_pci_info_zdev_add_caps(vdev, &caps);
|
|
if (ret && ret != -ENODEV) {
|
|
pci_warn(vdev->pdev,
|
|
"Failed to setup zPCI info capabilities\n");
|
|
return ret;
|
|
}
|
|
|
|
ret = vfio_pci_info_atomic_cap(vdev, &caps);
|
|
if (ret && ret != -ENODEV) {
|
|
pci_warn(vdev->pdev,
|
|
"Failed to setup AtomicOps info capability\n");
|
|
return ret;
|
|
}
|
|
|
|
if (caps.size) {
|
|
info.flags |= VFIO_DEVICE_FLAGS_CAPS;
|
|
if (info.argsz < sizeof(info) + caps.size) {
|
|
info.argsz = sizeof(info) + caps.size;
|
|
} else {
|
|
vfio_info_cap_shift(&caps, sizeof(info));
|
|
if (copy_to_user(arg + 1, caps.buf, caps.size)) {
|
|
kfree(caps.buf);
|
|
return -EFAULT;
|
|
}
|
|
info.cap_offset = sizeof(*arg);
|
|
}
|
|
|
|
kfree(caps.buf);
|
|
}
|
|
|
|
return copy_to_user(arg, &info, minsz) ? -EFAULT : 0;
|
|
}
|
|
|
|
static int vfio_pci_ioctl_get_region_info(struct vfio_pci_core_device *vdev,
|
|
struct vfio_region_info __user *arg)
|
|
{
|
|
unsigned long minsz = offsetofend(struct vfio_region_info, offset);
|
|
struct pci_dev *pdev = vdev->pdev;
|
|
struct vfio_region_info info;
|
|
struct vfio_info_cap caps = { .buf = NULL, .size = 0 };
|
|
int i, ret;
|
|
|
|
if (copy_from_user(&info, arg, minsz))
|
|
return -EFAULT;
|
|
|
|
if (info.argsz < minsz)
|
|
return -EINVAL;
|
|
|
|
switch (info.index) {
|
|
case VFIO_PCI_CONFIG_REGION_INDEX:
|
|
info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
|
|
info.size = pdev->cfg_size;
|
|
info.flags = VFIO_REGION_INFO_FLAG_READ |
|
|
VFIO_REGION_INFO_FLAG_WRITE;
|
|
break;
|
|
case VFIO_PCI_BAR0_REGION_INDEX ... VFIO_PCI_BAR5_REGION_INDEX:
|
|
info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
|
|
info.size = pci_resource_len(pdev, info.index);
|
|
if (!info.size) {
|
|
info.flags = 0;
|
|
break;
|
|
}
|
|
|
|
info.flags = VFIO_REGION_INFO_FLAG_READ |
|
|
VFIO_REGION_INFO_FLAG_WRITE;
|
|
if (vdev->bar_mmap_supported[info.index]) {
|
|
info.flags |= VFIO_REGION_INFO_FLAG_MMAP;
|
|
if (info.index == vdev->msix_bar) {
|
|
ret = msix_mmappable_cap(vdev, &caps);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
break;
|
|
case VFIO_PCI_ROM_REGION_INDEX: {
|
|
void __iomem *io;
|
|
size_t size;
|
|
u16 cmd;
|
|
|
|
info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
|
|
info.flags = 0;
|
|
|
|
/* Report the BAR size, not the ROM size */
|
|
info.size = pci_resource_len(pdev, info.index);
|
|
if (!info.size) {
|
|
/* Shadow ROMs appear as PCI option ROMs */
|
|
if (pdev->resource[PCI_ROM_RESOURCE].flags &
|
|
IORESOURCE_ROM_SHADOW)
|
|
info.size = 0x20000;
|
|
else
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Is it really there? Enable memory decode for implicit access
|
|
* in pci_map_rom().
|
|
*/
|
|
cmd = vfio_pci_memory_lock_and_enable(vdev);
|
|
io = pci_map_rom(pdev, &size);
|
|
if (io) {
|
|
info.flags = VFIO_REGION_INFO_FLAG_READ;
|
|
pci_unmap_rom(pdev, io);
|
|
} else {
|
|
info.size = 0;
|
|
}
|
|
vfio_pci_memory_unlock_and_restore(vdev, cmd);
|
|
|
|
break;
|
|
}
|
|
case VFIO_PCI_VGA_REGION_INDEX:
|
|
if (!vdev->has_vga)
|
|
return -EINVAL;
|
|
|
|
info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
|
|
info.size = 0xc0000;
|
|
info.flags = VFIO_REGION_INFO_FLAG_READ |
|
|
VFIO_REGION_INFO_FLAG_WRITE;
|
|
|
|
break;
|
|
default: {
|
|
struct vfio_region_info_cap_type cap_type = {
|
|
.header.id = VFIO_REGION_INFO_CAP_TYPE,
|
|
.header.version = 1
|
|
};
|
|
|
|
if (info.index >= VFIO_PCI_NUM_REGIONS + vdev->num_regions)
|
|
return -EINVAL;
|
|
info.index = array_index_nospec(
|
|
info.index, VFIO_PCI_NUM_REGIONS + vdev->num_regions);
|
|
|
|
i = info.index - VFIO_PCI_NUM_REGIONS;
|
|
|
|
info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
|
|
info.size = vdev->region[i].size;
|
|
info.flags = vdev->region[i].flags;
|
|
|
|
cap_type.type = vdev->region[i].type;
|
|
cap_type.subtype = vdev->region[i].subtype;
|
|
|
|
ret = vfio_info_add_capability(&caps, &cap_type.header,
|
|
sizeof(cap_type));
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (vdev->region[i].ops->add_capability) {
|
|
ret = vdev->region[i].ops->add_capability(
|
|
vdev, &vdev->region[i], &caps);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (caps.size) {
|
|
info.flags |= VFIO_REGION_INFO_FLAG_CAPS;
|
|
if (info.argsz < sizeof(info) + caps.size) {
|
|
info.argsz = sizeof(info) + caps.size;
|
|
info.cap_offset = 0;
|
|
} else {
|
|
vfio_info_cap_shift(&caps, sizeof(info));
|
|
if (copy_to_user(arg + 1, caps.buf, caps.size)) {
|
|
kfree(caps.buf);
|
|
return -EFAULT;
|
|
}
|
|
info.cap_offset = sizeof(*arg);
|
|
}
|
|
|
|
kfree(caps.buf);
|
|
}
|
|
|
|
return copy_to_user(arg, &info, minsz) ? -EFAULT : 0;
|
|
}
|
|
|
|
static int vfio_pci_ioctl_get_irq_info(struct vfio_pci_core_device *vdev,
|
|
struct vfio_irq_info __user *arg)
|
|
{
|
|
unsigned long minsz = offsetofend(struct vfio_irq_info, count);
|
|
struct vfio_irq_info info;
|
|
|
|
if (copy_from_user(&info, arg, minsz))
|
|
return -EFAULT;
|
|
|
|
if (info.argsz < minsz || info.index >= VFIO_PCI_NUM_IRQS)
|
|
return -EINVAL;
|
|
|
|
switch (info.index) {
|
|
case VFIO_PCI_INTX_IRQ_INDEX ... VFIO_PCI_MSIX_IRQ_INDEX:
|
|
case VFIO_PCI_REQ_IRQ_INDEX:
|
|
break;
|
|
case VFIO_PCI_ERR_IRQ_INDEX:
|
|
if (pci_is_pcie(vdev->pdev))
|
|
break;
|
|
fallthrough;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
info.flags = VFIO_IRQ_INFO_EVENTFD;
|
|
|
|
info.count = vfio_pci_get_irq_count(vdev, info.index);
|
|
|
|
if (info.index == VFIO_PCI_INTX_IRQ_INDEX)
|
|
info.flags |=
|
|
(VFIO_IRQ_INFO_MASKABLE | VFIO_IRQ_INFO_AUTOMASKED);
|
|
else if (info.index != VFIO_PCI_MSIX_IRQ_INDEX || !vdev->has_dyn_msix)
|
|
info.flags |= VFIO_IRQ_INFO_NORESIZE;
|
|
|
|
return copy_to_user(arg, &info, minsz) ? -EFAULT : 0;
|
|
}
|
|
|
|
static int vfio_pci_ioctl_set_irqs(struct vfio_pci_core_device *vdev,
|
|
struct vfio_irq_set __user *arg)
|
|
{
|
|
unsigned long minsz = offsetofend(struct vfio_irq_set, count);
|
|
struct vfio_irq_set hdr;
|
|
u8 *data = NULL;
|
|
int max, ret = 0;
|
|
size_t data_size = 0;
|
|
|
|
if (copy_from_user(&hdr, arg, minsz))
|
|
return -EFAULT;
|
|
|
|
max = vfio_pci_get_irq_count(vdev, hdr.index);
|
|
|
|
ret = vfio_set_irqs_validate_and_prepare(&hdr, max, VFIO_PCI_NUM_IRQS,
|
|
&data_size);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (data_size) {
|
|
data = memdup_user(&arg->data, data_size);
|
|
if (IS_ERR(data))
|
|
return PTR_ERR(data);
|
|
}
|
|
|
|
mutex_lock(&vdev->igate);
|
|
|
|
ret = vfio_pci_set_irqs_ioctl(vdev, hdr.flags, hdr.index, hdr.start,
|
|
hdr.count, data);
|
|
|
|
mutex_unlock(&vdev->igate);
|
|
kfree(data);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int vfio_pci_ioctl_reset(struct vfio_pci_core_device *vdev,
|
|
void __user *arg)
|
|
{
|
|
int ret;
|
|
|
|
if (!vdev->reset_works)
|
|
return -EINVAL;
|
|
|
|
vfio_pci_zap_and_down_write_memory_lock(vdev);
|
|
|
|
/*
|
|
* This function can be invoked while the power state is non-D0. If
|
|
* pci_try_reset_function() has been called while the power state is
|
|
* non-D0, then pci_try_reset_function() will internally set the power
|
|
* state to D0 without vfio driver involvement. For the devices which
|
|
* have NoSoftRst-, the reset function can cause the PCI config space
|
|
* reset without restoring the original state (saved locally in
|
|
* 'vdev->pm_save').
|
|
*/
|
|
vfio_pci_set_power_state(vdev, PCI_D0);
|
|
|
|
ret = pci_try_reset_function(vdev->pdev);
|
|
up_write(&vdev->memory_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int vfio_pci_ioctl_get_pci_hot_reset_info(
|
|
struct vfio_pci_core_device *vdev,
|
|
struct vfio_pci_hot_reset_info __user *arg)
|
|
{
|
|
unsigned long minsz =
|
|
offsetofend(struct vfio_pci_hot_reset_info, count);
|
|
struct vfio_pci_hot_reset_info hdr;
|
|
struct vfio_pci_fill_info fill = {};
|
|
bool slot = false;
|
|
int ret = 0;
|
|
|
|
if (copy_from_user(&hdr, arg, minsz))
|
|
return -EFAULT;
|
|
|
|
if (hdr.argsz < minsz)
|
|
return -EINVAL;
|
|
|
|
hdr.flags = 0;
|
|
|
|
/* Can we do a slot or bus reset or neither? */
|
|
if (!pci_probe_reset_slot(vdev->pdev->slot))
|
|
slot = true;
|
|
else if (pci_probe_reset_bus(vdev->pdev->bus))
|
|
return -ENODEV;
|
|
|
|
fill.devices = arg->devices;
|
|
fill.devices_end = arg->devices +
|
|
(hdr.argsz - sizeof(hdr)) / sizeof(arg->devices[0]);
|
|
fill.vdev = &vdev->vdev;
|
|
|
|
if (vfio_device_cdev_opened(&vdev->vdev))
|
|
fill.flags |= VFIO_PCI_HOT_RESET_FLAG_DEV_ID |
|
|
VFIO_PCI_HOT_RESET_FLAG_DEV_ID_OWNED;
|
|
|
|
mutex_lock(&vdev->vdev.dev_set->lock);
|
|
ret = vfio_pci_for_each_slot_or_bus(vdev->pdev, vfio_pci_fill_devs,
|
|
&fill, slot);
|
|
mutex_unlock(&vdev->vdev.dev_set->lock);
|
|
if (ret)
|
|
return ret;
|
|
|
|
hdr.count = fill.count;
|
|
hdr.flags = fill.flags;
|
|
if (copy_to_user(arg, &hdr, minsz))
|
|
return -EFAULT;
|
|
|
|
if (fill.count > fill.devices - arg->devices)
|
|
return -ENOSPC;
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
vfio_pci_ioctl_pci_hot_reset_groups(struct vfio_pci_core_device *vdev,
|
|
int array_count, bool slot,
|
|
struct vfio_pci_hot_reset __user *arg)
|
|
{
|
|
int32_t *group_fds;
|
|
struct file **files;
|
|
struct vfio_pci_group_info info;
|
|
int file_idx, count = 0, ret = 0;
|
|
|
|
/*
|
|
* We can't let userspace give us an arbitrarily large buffer to copy,
|
|
* so verify how many we think there could be. Note groups can have
|
|
* multiple devices so one group per device is the max.
|
|
*/
|
|
ret = vfio_pci_for_each_slot_or_bus(vdev->pdev, vfio_pci_count_devs,
|
|
&count, slot);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (array_count > count)
|
|
return -EINVAL;
|
|
|
|
group_fds = kcalloc(array_count, sizeof(*group_fds), GFP_KERNEL);
|
|
files = kcalloc(array_count, sizeof(*files), GFP_KERNEL);
|
|
if (!group_fds || !files) {
|
|
kfree(group_fds);
|
|
kfree(files);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (copy_from_user(group_fds, arg->group_fds,
|
|
array_count * sizeof(*group_fds))) {
|
|
kfree(group_fds);
|
|
kfree(files);
|
|
return -EFAULT;
|
|
}
|
|
|
|
/*
|
|
* Get the group file for each fd to ensure the group is held across
|
|
* the reset
|
|
*/
|
|
for (file_idx = 0; file_idx < array_count; file_idx++) {
|
|
struct file *file = fget(group_fds[file_idx]);
|
|
|
|
if (!file) {
|
|
ret = -EBADF;
|
|
break;
|
|
}
|
|
|
|
/* Ensure the FD is a vfio group FD.*/
|
|
if (!vfio_file_is_group(file)) {
|
|
fput(file);
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
files[file_idx] = file;
|
|
}
|
|
|
|
kfree(group_fds);
|
|
|
|
/* release reference to groups on error */
|
|
if (ret)
|
|
goto hot_reset_release;
|
|
|
|
info.count = array_count;
|
|
info.files = files;
|
|
|
|
ret = vfio_pci_dev_set_hot_reset(vdev->vdev.dev_set, &info, NULL);
|
|
|
|
hot_reset_release:
|
|
for (file_idx--; file_idx >= 0; file_idx--)
|
|
fput(files[file_idx]);
|
|
|
|
kfree(files);
|
|
return ret;
|
|
}
|
|
|
|
static int vfio_pci_ioctl_pci_hot_reset(struct vfio_pci_core_device *vdev,
|
|
struct vfio_pci_hot_reset __user *arg)
|
|
{
|
|
unsigned long minsz = offsetofend(struct vfio_pci_hot_reset, count);
|
|
struct vfio_pci_hot_reset hdr;
|
|
bool slot = false;
|
|
|
|
if (copy_from_user(&hdr, arg, minsz))
|
|
return -EFAULT;
|
|
|
|
if (hdr.argsz < minsz || hdr.flags)
|
|
return -EINVAL;
|
|
|
|
/* zero-length array is only for cdev opened devices */
|
|
if (!!hdr.count == vfio_device_cdev_opened(&vdev->vdev))
|
|
return -EINVAL;
|
|
|
|
/* Can we do a slot or bus reset or neither? */
|
|
if (!pci_probe_reset_slot(vdev->pdev->slot))
|
|
slot = true;
|
|
else if (pci_probe_reset_bus(vdev->pdev->bus))
|
|
return -ENODEV;
|
|
|
|
if (hdr.count)
|
|
return vfio_pci_ioctl_pci_hot_reset_groups(vdev, hdr.count, slot, arg);
|
|
|
|
return vfio_pci_dev_set_hot_reset(vdev->vdev.dev_set, NULL,
|
|
vfio_iommufd_device_ictx(&vdev->vdev));
|
|
}
|
|
|
|
static int vfio_pci_ioctl_ioeventfd(struct vfio_pci_core_device *vdev,
|
|
struct vfio_device_ioeventfd __user *arg)
|
|
{
|
|
unsigned long minsz = offsetofend(struct vfio_device_ioeventfd, fd);
|
|
struct vfio_device_ioeventfd ioeventfd;
|
|
int count;
|
|
|
|
if (copy_from_user(&ioeventfd, arg, minsz))
|
|
return -EFAULT;
|
|
|
|
if (ioeventfd.argsz < minsz)
|
|
return -EINVAL;
|
|
|
|
if (ioeventfd.flags & ~VFIO_DEVICE_IOEVENTFD_SIZE_MASK)
|
|
return -EINVAL;
|
|
|
|
count = ioeventfd.flags & VFIO_DEVICE_IOEVENTFD_SIZE_MASK;
|
|
|
|
if (hweight8(count) != 1 || ioeventfd.fd < -1)
|
|
return -EINVAL;
|
|
|
|
return vfio_pci_ioeventfd(vdev, ioeventfd.offset, ioeventfd.data, count,
|
|
ioeventfd.fd);
|
|
}
|
|
|
|
long vfio_pci_core_ioctl(struct vfio_device *core_vdev, unsigned int cmd,
|
|
unsigned long arg)
|
|
{
|
|
struct vfio_pci_core_device *vdev =
|
|
container_of(core_vdev, struct vfio_pci_core_device, vdev);
|
|
void __user *uarg = (void __user *)arg;
|
|
|
|
switch (cmd) {
|
|
case VFIO_DEVICE_GET_INFO:
|
|
return vfio_pci_ioctl_get_info(vdev, uarg);
|
|
case VFIO_DEVICE_GET_IRQ_INFO:
|
|
return vfio_pci_ioctl_get_irq_info(vdev, uarg);
|
|
case VFIO_DEVICE_GET_PCI_HOT_RESET_INFO:
|
|
return vfio_pci_ioctl_get_pci_hot_reset_info(vdev, uarg);
|
|
case VFIO_DEVICE_GET_REGION_INFO:
|
|
return vfio_pci_ioctl_get_region_info(vdev, uarg);
|
|
case VFIO_DEVICE_IOEVENTFD:
|
|
return vfio_pci_ioctl_ioeventfd(vdev, uarg);
|
|
case VFIO_DEVICE_PCI_HOT_RESET:
|
|
return vfio_pci_ioctl_pci_hot_reset(vdev, uarg);
|
|
case VFIO_DEVICE_RESET:
|
|
return vfio_pci_ioctl_reset(vdev, uarg);
|
|
case VFIO_DEVICE_SET_IRQS:
|
|
return vfio_pci_ioctl_set_irqs(vdev, uarg);
|
|
default:
|
|
return -ENOTTY;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(vfio_pci_core_ioctl);
|
|
|
|
static int vfio_pci_core_feature_token(struct vfio_device *device, u32 flags,
|
|
uuid_t __user *arg, size_t argsz)
|
|
{
|
|
struct vfio_pci_core_device *vdev =
|
|
container_of(device, struct vfio_pci_core_device, vdev);
|
|
uuid_t uuid;
|
|
int ret;
|
|
|
|
if (!vdev->vf_token)
|
|
return -ENOTTY;
|
|
/*
|
|
* We do not support GET of the VF Token UUID as this could
|
|
* expose the token of the previous device user.
|
|
*/
|
|
ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_SET,
|
|
sizeof(uuid));
|
|
if (ret != 1)
|
|
return ret;
|
|
|
|
if (copy_from_user(&uuid, arg, sizeof(uuid)))
|
|
return -EFAULT;
|
|
|
|
mutex_lock(&vdev->vf_token->lock);
|
|
uuid_copy(&vdev->vf_token->uuid, &uuid);
|
|
mutex_unlock(&vdev->vf_token->lock);
|
|
return 0;
|
|
}
|
|
|
|
int vfio_pci_core_ioctl_feature(struct vfio_device *device, u32 flags,
|
|
void __user *arg, size_t argsz)
|
|
{
|
|
switch (flags & VFIO_DEVICE_FEATURE_MASK) {
|
|
case VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY:
|
|
return vfio_pci_core_pm_entry(device, flags, arg, argsz);
|
|
case VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY_WITH_WAKEUP:
|
|
return vfio_pci_core_pm_entry_with_wakeup(device, flags,
|
|
arg, argsz);
|
|
case VFIO_DEVICE_FEATURE_LOW_POWER_EXIT:
|
|
return vfio_pci_core_pm_exit(device, flags, arg, argsz);
|
|
case VFIO_DEVICE_FEATURE_PCI_VF_TOKEN:
|
|
return vfio_pci_core_feature_token(device, flags, arg, argsz);
|
|
default:
|
|
return -ENOTTY;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(vfio_pci_core_ioctl_feature);
|
|
|
|
static ssize_t vfio_pci_rw(struct vfio_pci_core_device *vdev, char __user *buf,
|
|
size_t count, loff_t *ppos, bool iswrite)
|
|
{
|
|
unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos);
|
|
int ret;
|
|
|
|
if (index >= VFIO_PCI_NUM_REGIONS + vdev->num_regions)
|
|
return -EINVAL;
|
|
|
|
ret = pm_runtime_resume_and_get(&vdev->pdev->dev);
|
|
if (ret) {
|
|
pci_info_ratelimited(vdev->pdev, "runtime resume failed %d\n",
|
|
ret);
|
|
return -EIO;
|
|
}
|
|
|
|
switch (index) {
|
|
case VFIO_PCI_CONFIG_REGION_INDEX:
|
|
ret = vfio_pci_config_rw(vdev, buf, count, ppos, iswrite);
|
|
break;
|
|
|
|
case VFIO_PCI_ROM_REGION_INDEX:
|
|
if (iswrite)
|
|
ret = -EINVAL;
|
|
else
|
|
ret = vfio_pci_bar_rw(vdev, buf, count, ppos, false);
|
|
break;
|
|
|
|
case VFIO_PCI_BAR0_REGION_INDEX ... VFIO_PCI_BAR5_REGION_INDEX:
|
|
ret = vfio_pci_bar_rw(vdev, buf, count, ppos, iswrite);
|
|
break;
|
|
|
|
case VFIO_PCI_VGA_REGION_INDEX:
|
|
ret = vfio_pci_vga_rw(vdev, buf, count, ppos, iswrite);
|
|
break;
|
|
|
|
default:
|
|
index -= VFIO_PCI_NUM_REGIONS;
|
|
ret = vdev->region[index].ops->rw(vdev, buf,
|
|
count, ppos, iswrite);
|
|
break;
|
|
}
|
|
|
|
pm_runtime_put(&vdev->pdev->dev);
|
|
return ret;
|
|
}
|
|
|
|
ssize_t vfio_pci_core_read(struct vfio_device *core_vdev, char __user *buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
struct vfio_pci_core_device *vdev =
|
|
container_of(core_vdev, struct vfio_pci_core_device, vdev);
|
|
|
|
if (!count)
|
|
return 0;
|
|
|
|
return vfio_pci_rw(vdev, buf, count, ppos, false);
|
|
}
|
|
EXPORT_SYMBOL_GPL(vfio_pci_core_read);
|
|
|
|
ssize_t vfio_pci_core_write(struct vfio_device *core_vdev, const char __user *buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
struct vfio_pci_core_device *vdev =
|
|
container_of(core_vdev, struct vfio_pci_core_device, vdev);
|
|
|
|
if (!count)
|
|
return 0;
|
|
|
|
return vfio_pci_rw(vdev, (char __user *)buf, count, ppos, true);
|
|
}
|
|
EXPORT_SYMBOL_GPL(vfio_pci_core_write);
|
|
|
|
/* Return 1 on zap and vma_lock acquired, 0 on contention (only with @try) */
|
|
static int vfio_pci_zap_and_vma_lock(struct vfio_pci_core_device *vdev, bool try)
|
|
{
|
|
struct vfio_pci_mmap_vma *mmap_vma, *tmp;
|
|
|
|
/*
|
|
* Lock ordering:
|
|
* vma_lock is nested under mmap_lock for vm_ops callback paths.
|
|
* The memory_lock semaphore is used by both code paths calling
|
|
* into this function to zap vmas and the vm_ops.fault callback
|
|
* to protect the memory enable state of the device.
|
|
*
|
|
* When zapping vmas we need to maintain the mmap_lock => vma_lock
|
|
* ordering, which requires using vma_lock to walk vma_list to
|
|
* acquire an mm, then dropping vma_lock to get the mmap_lock and
|
|
* reacquiring vma_lock. This logic is derived from similar
|
|
* requirements in uverbs_user_mmap_disassociate().
|
|
*
|
|
* mmap_lock must always be the top-level lock when it is taken.
|
|
* Therefore we can only hold the memory_lock write lock when
|
|
* vma_list is empty, as we'd need to take mmap_lock to clear
|
|
* entries. vma_list can only be guaranteed empty when holding
|
|
* vma_lock, thus memory_lock is nested under vma_lock.
|
|
*
|
|
* This enables the vm_ops.fault callback to acquire vma_lock,
|
|
* followed by memory_lock read lock, while already holding
|
|
* mmap_lock without risk of deadlock.
|
|
*/
|
|
while (1) {
|
|
struct mm_struct *mm = NULL;
|
|
|
|
if (try) {
|
|
if (!mutex_trylock(&vdev->vma_lock))
|
|
return 0;
|
|
} else {
|
|
mutex_lock(&vdev->vma_lock);
|
|
}
|
|
while (!list_empty(&vdev->vma_list)) {
|
|
mmap_vma = list_first_entry(&vdev->vma_list,
|
|
struct vfio_pci_mmap_vma,
|
|
vma_next);
|
|
mm = mmap_vma->vma->vm_mm;
|
|
if (mmget_not_zero(mm))
|
|
break;
|
|
|
|
list_del(&mmap_vma->vma_next);
|
|
kfree(mmap_vma);
|
|
mm = NULL;
|
|
}
|
|
if (!mm)
|
|
return 1;
|
|
mutex_unlock(&vdev->vma_lock);
|
|
|
|
if (try) {
|
|
if (!mmap_read_trylock(mm)) {
|
|
mmput(mm);
|
|
return 0;
|
|
}
|
|
} else {
|
|
mmap_read_lock(mm);
|
|
}
|
|
if (try) {
|
|
if (!mutex_trylock(&vdev->vma_lock)) {
|
|
mmap_read_unlock(mm);
|
|
mmput(mm);
|
|
return 0;
|
|
}
|
|
} else {
|
|
mutex_lock(&vdev->vma_lock);
|
|
}
|
|
list_for_each_entry_safe(mmap_vma, tmp,
|
|
&vdev->vma_list, vma_next) {
|
|
struct vm_area_struct *vma = mmap_vma->vma;
|
|
|
|
if (vma->vm_mm != mm)
|
|
continue;
|
|
|
|
list_del(&mmap_vma->vma_next);
|
|
kfree(mmap_vma);
|
|
|
|
zap_vma_ptes(vma, vma->vm_start,
|
|
vma->vm_end - vma->vm_start);
|
|
}
|
|
mutex_unlock(&vdev->vma_lock);
|
|
mmap_read_unlock(mm);
|
|
mmput(mm);
|
|
}
|
|
}
|
|
|
|
void vfio_pci_zap_and_down_write_memory_lock(struct vfio_pci_core_device *vdev)
|
|
{
|
|
vfio_pci_zap_and_vma_lock(vdev, false);
|
|
down_write(&vdev->memory_lock);
|
|
mutex_unlock(&vdev->vma_lock);
|
|
}
|
|
|
|
u16 vfio_pci_memory_lock_and_enable(struct vfio_pci_core_device *vdev)
|
|
{
|
|
u16 cmd;
|
|
|
|
down_write(&vdev->memory_lock);
|
|
pci_read_config_word(vdev->pdev, PCI_COMMAND, &cmd);
|
|
if (!(cmd & PCI_COMMAND_MEMORY))
|
|
pci_write_config_word(vdev->pdev, PCI_COMMAND,
|
|
cmd | PCI_COMMAND_MEMORY);
|
|
|
|
return cmd;
|
|
}
|
|
|
|
void vfio_pci_memory_unlock_and_restore(struct vfio_pci_core_device *vdev, u16 cmd)
|
|
{
|
|
pci_write_config_word(vdev->pdev, PCI_COMMAND, cmd);
|
|
up_write(&vdev->memory_lock);
|
|
}
|
|
|
|
/* Caller holds vma_lock */
|
|
static int __vfio_pci_add_vma(struct vfio_pci_core_device *vdev,
|
|
struct vm_area_struct *vma)
|
|
{
|
|
struct vfio_pci_mmap_vma *mmap_vma;
|
|
|
|
mmap_vma = kmalloc(sizeof(*mmap_vma), GFP_KERNEL_ACCOUNT);
|
|
if (!mmap_vma)
|
|
return -ENOMEM;
|
|
|
|
mmap_vma->vma = vma;
|
|
list_add(&mmap_vma->vma_next, &vdev->vma_list);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Zap mmaps on open so that we can fault them in on access and therefore
|
|
* our vma_list only tracks mappings accessed since last zap.
|
|
*/
|
|
static void vfio_pci_mmap_open(struct vm_area_struct *vma)
|
|
{
|
|
zap_vma_ptes(vma, vma->vm_start, vma->vm_end - vma->vm_start);
|
|
}
|
|
|
|
static void vfio_pci_mmap_close(struct vm_area_struct *vma)
|
|
{
|
|
struct vfio_pci_core_device *vdev = vma->vm_private_data;
|
|
struct vfio_pci_mmap_vma *mmap_vma;
|
|
|
|
mutex_lock(&vdev->vma_lock);
|
|
list_for_each_entry(mmap_vma, &vdev->vma_list, vma_next) {
|
|
if (mmap_vma->vma == vma) {
|
|
list_del(&mmap_vma->vma_next);
|
|
kfree(mmap_vma);
|
|
break;
|
|
}
|
|
}
|
|
mutex_unlock(&vdev->vma_lock);
|
|
}
|
|
|
|
static vm_fault_t vfio_pci_mmap_fault(struct vm_fault *vmf)
|
|
{
|
|
struct vm_area_struct *vma = vmf->vma;
|
|
struct vfio_pci_core_device *vdev = vma->vm_private_data;
|
|
struct vfio_pci_mmap_vma *mmap_vma;
|
|
vm_fault_t ret = VM_FAULT_NOPAGE;
|
|
|
|
mutex_lock(&vdev->vma_lock);
|
|
down_read(&vdev->memory_lock);
|
|
|
|
/*
|
|
* Memory region cannot be accessed if the low power feature is engaged
|
|
* or memory access is disabled.
|
|
*/
|
|
if (vdev->pm_runtime_engaged || !__vfio_pci_memory_enabled(vdev)) {
|
|
ret = VM_FAULT_SIGBUS;
|
|
goto up_out;
|
|
}
|
|
|
|
/*
|
|
* We populate the whole vma on fault, so we need to test whether
|
|
* the vma has already been mapped, such as for concurrent faults
|
|
* to the same vma. io_remap_pfn_range() will trigger a BUG_ON if
|
|
* we ask it to fill the same range again.
|
|
*/
|
|
list_for_each_entry(mmap_vma, &vdev->vma_list, vma_next) {
|
|
if (mmap_vma->vma == vma)
|
|
goto up_out;
|
|
}
|
|
|
|
if (io_remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
|
|
vma->vm_end - vma->vm_start,
|
|
vma->vm_page_prot)) {
|
|
ret = VM_FAULT_SIGBUS;
|
|
zap_vma_ptes(vma, vma->vm_start, vma->vm_end - vma->vm_start);
|
|
goto up_out;
|
|
}
|
|
|
|
if (__vfio_pci_add_vma(vdev, vma)) {
|
|
ret = VM_FAULT_OOM;
|
|
zap_vma_ptes(vma, vma->vm_start, vma->vm_end - vma->vm_start);
|
|
}
|
|
|
|
up_out:
|
|
up_read(&vdev->memory_lock);
|
|
mutex_unlock(&vdev->vma_lock);
|
|
return ret;
|
|
}
|
|
|
|
static const struct vm_operations_struct vfio_pci_mmap_ops = {
|
|
.open = vfio_pci_mmap_open,
|
|
.close = vfio_pci_mmap_close,
|
|
.fault = vfio_pci_mmap_fault,
|
|
};
|
|
|
|
int vfio_pci_core_mmap(struct vfio_device *core_vdev, struct vm_area_struct *vma)
|
|
{
|
|
struct vfio_pci_core_device *vdev =
|
|
container_of(core_vdev, struct vfio_pci_core_device, vdev);
|
|
struct pci_dev *pdev = vdev->pdev;
|
|
unsigned int index;
|
|
u64 phys_len, req_len, pgoff, req_start;
|
|
int ret;
|
|
|
|
index = vma->vm_pgoff >> (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT);
|
|
|
|
if (index >= VFIO_PCI_NUM_REGIONS + vdev->num_regions)
|
|
return -EINVAL;
|
|
if (vma->vm_end < vma->vm_start)
|
|
return -EINVAL;
|
|
if ((vma->vm_flags & VM_SHARED) == 0)
|
|
return -EINVAL;
|
|
if (index >= VFIO_PCI_NUM_REGIONS) {
|
|
int regnum = index - VFIO_PCI_NUM_REGIONS;
|
|
struct vfio_pci_region *region = vdev->region + regnum;
|
|
|
|
if (region->ops && region->ops->mmap &&
|
|
(region->flags & VFIO_REGION_INFO_FLAG_MMAP))
|
|
return region->ops->mmap(vdev, region, vma);
|
|
return -EINVAL;
|
|
}
|
|
if (index >= VFIO_PCI_ROM_REGION_INDEX)
|
|
return -EINVAL;
|
|
if (!vdev->bar_mmap_supported[index])
|
|
return -EINVAL;
|
|
|
|
phys_len = PAGE_ALIGN(pci_resource_len(pdev, index));
|
|
req_len = vma->vm_end - vma->vm_start;
|
|
pgoff = vma->vm_pgoff &
|
|
((1U << (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT)) - 1);
|
|
req_start = pgoff << PAGE_SHIFT;
|
|
|
|
if (req_start + req_len > phys_len)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Even though we don't make use of the barmap for the mmap,
|
|
* we need to request the region and the barmap tracks that.
|
|
*/
|
|
if (!vdev->barmap[index]) {
|
|
ret = pci_request_selected_regions(pdev,
|
|
1 << index, "vfio-pci");
|
|
if (ret)
|
|
return ret;
|
|
|
|
vdev->barmap[index] = pci_iomap(pdev, index, 0);
|
|
if (!vdev->barmap[index]) {
|
|
pci_release_selected_regions(pdev, 1 << index);
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
|
|
vma->vm_private_data = vdev;
|
|
vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
|
|
vma->vm_pgoff = (pci_resource_start(pdev, index) >> PAGE_SHIFT) + pgoff;
|
|
|
|
/*
|
|
* See remap_pfn_range(), called from vfio_pci_fault() but we can't
|
|
* change vm_flags within the fault handler. Set them now.
|
|
*/
|
|
vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
|
|
vma->vm_ops = &vfio_pci_mmap_ops;
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(vfio_pci_core_mmap);
|
|
|
|
void vfio_pci_core_request(struct vfio_device *core_vdev, unsigned int count)
|
|
{
|
|
struct vfio_pci_core_device *vdev =
|
|
container_of(core_vdev, struct vfio_pci_core_device, vdev);
|
|
struct pci_dev *pdev = vdev->pdev;
|
|
|
|
mutex_lock(&vdev->igate);
|
|
|
|
if (vdev->req_trigger) {
|
|
if (!(count % 10))
|
|
pci_notice_ratelimited(pdev,
|
|
"Relaying device request to user (#%u)\n",
|
|
count);
|
|
eventfd_signal(vdev->req_trigger, 1);
|
|
} else if (count == 0) {
|
|
pci_warn(pdev,
|
|
"No device request channel registered, blocked until released by user\n");
|
|
}
|
|
|
|
mutex_unlock(&vdev->igate);
|
|
}
|
|
EXPORT_SYMBOL_GPL(vfio_pci_core_request);
|
|
|
|
static int vfio_pci_validate_vf_token(struct vfio_pci_core_device *vdev,
|
|
bool vf_token, uuid_t *uuid)
|
|
{
|
|
/*
|
|
* There's always some degree of trust or collaboration between SR-IOV
|
|
* PF and VFs, even if just that the PF hosts the SR-IOV capability and
|
|
* can disrupt VFs with a reset, but often the PF has more explicit
|
|
* access to deny service to the VF or access data passed through the
|
|
* VF. We therefore require an opt-in via a shared VF token (UUID) to
|
|
* represent this trust. This both prevents that a VF driver might
|
|
* assume the PF driver is a trusted, in-kernel driver, and also that
|
|
* a PF driver might be replaced with a rogue driver, unknown to in-use
|
|
* VF drivers.
|
|
*
|
|
* Therefore when presented with a VF, if the PF is a vfio device and
|
|
* it is bound to the vfio-pci driver, the user needs to provide a VF
|
|
* token to access the device, in the form of appending a vf_token to
|
|
* the device name, for example:
|
|
*
|
|
* "0000:04:10.0 vf_token=bd8d9d2b-5a5f-4f5a-a211-f591514ba1f3"
|
|
*
|
|
* When presented with a PF which has VFs in use, the user must also
|
|
* provide the current VF token to prove collaboration with existing
|
|
* VF users. If VFs are not in use, the VF token provided for the PF
|
|
* device will act to set the VF token.
|
|
*
|
|
* If the VF token is provided but unused, an error is generated.
|
|
*/
|
|
if (vdev->pdev->is_virtfn) {
|
|
struct vfio_pci_core_device *pf_vdev = vdev->sriov_pf_core_dev;
|
|
bool match;
|
|
|
|
if (!pf_vdev) {
|
|
if (!vf_token)
|
|
return 0; /* PF is not vfio-pci, no VF token */
|
|
|
|
pci_info_ratelimited(vdev->pdev,
|
|
"VF token incorrectly provided, PF not bound to vfio-pci\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!vf_token) {
|
|
pci_info_ratelimited(vdev->pdev,
|
|
"VF token required to access device\n");
|
|
return -EACCES;
|
|
}
|
|
|
|
mutex_lock(&pf_vdev->vf_token->lock);
|
|
match = uuid_equal(uuid, &pf_vdev->vf_token->uuid);
|
|
mutex_unlock(&pf_vdev->vf_token->lock);
|
|
|
|
if (!match) {
|
|
pci_info_ratelimited(vdev->pdev,
|
|
"Incorrect VF token provided for device\n");
|
|
return -EACCES;
|
|
}
|
|
} else if (vdev->vf_token) {
|
|
mutex_lock(&vdev->vf_token->lock);
|
|
if (vdev->vf_token->users) {
|
|
if (!vf_token) {
|
|
mutex_unlock(&vdev->vf_token->lock);
|
|
pci_info_ratelimited(vdev->pdev,
|
|
"VF token required to access device\n");
|
|
return -EACCES;
|
|
}
|
|
|
|
if (!uuid_equal(uuid, &vdev->vf_token->uuid)) {
|
|
mutex_unlock(&vdev->vf_token->lock);
|
|
pci_info_ratelimited(vdev->pdev,
|
|
"Incorrect VF token provided for device\n");
|
|
return -EACCES;
|
|
}
|
|
} else if (vf_token) {
|
|
uuid_copy(&vdev->vf_token->uuid, uuid);
|
|
}
|
|
|
|
mutex_unlock(&vdev->vf_token->lock);
|
|
} else if (vf_token) {
|
|
pci_info_ratelimited(vdev->pdev,
|
|
"VF token incorrectly provided, not a PF or VF\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define VF_TOKEN_ARG "vf_token="
|
|
|
|
int vfio_pci_core_match(struct vfio_device *core_vdev, char *buf)
|
|
{
|
|
struct vfio_pci_core_device *vdev =
|
|
container_of(core_vdev, struct vfio_pci_core_device, vdev);
|
|
bool vf_token = false;
|
|
uuid_t uuid;
|
|
int ret;
|
|
|
|
if (strncmp(pci_name(vdev->pdev), buf, strlen(pci_name(vdev->pdev))))
|
|
return 0; /* No match */
|
|
|
|
if (strlen(buf) > strlen(pci_name(vdev->pdev))) {
|
|
buf += strlen(pci_name(vdev->pdev));
|
|
|
|
if (*buf != ' ')
|
|
return 0; /* No match: non-whitespace after name */
|
|
|
|
while (*buf) {
|
|
if (*buf == ' ') {
|
|
buf++;
|
|
continue;
|
|
}
|
|
|
|
if (!vf_token && !strncmp(buf, VF_TOKEN_ARG,
|
|
strlen(VF_TOKEN_ARG))) {
|
|
buf += strlen(VF_TOKEN_ARG);
|
|
|
|
if (strlen(buf) < UUID_STRING_LEN)
|
|
return -EINVAL;
|
|
|
|
ret = uuid_parse(buf, &uuid);
|
|
if (ret)
|
|
return ret;
|
|
|
|
vf_token = true;
|
|
buf += UUID_STRING_LEN;
|
|
} else {
|
|
/* Unknown/duplicate option */
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
}
|
|
|
|
ret = vfio_pci_validate_vf_token(vdev, vf_token, &uuid);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return 1; /* Match */
|
|
}
|
|
EXPORT_SYMBOL_GPL(vfio_pci_core_match);
|
|
|
|
static int vfio_pci_bus_notifier(struct notifier_block *nb,
|
|
unsigned long action, void *data)
|
|
{
|
|
struct vfio_pci_core_device *vdev = container_of(nb,
|
|
struct vfio_pci_core_device, nb);
|
|
struct device *dev = data;
|
|
struct pci_dev *pdev = to_pci_dev(dev);
|
|
struct pci_dev *physfn = pci_physfn(pdev);
|
|
|
|
if (action == BUS_NOTIFY_ADD_DEVICE &&
|
|
pdev->is_virtfn && physfn == vdev->pdev) {
|
|
pci_info(vdev->pdev, "Captured SR-IOV VF %s driver_override\n",
|
|
pci_name(pdev));
|
|
pdev->driver_override = kasprintf(GFP_KERNEL, "%s",
|
|
vdev->vdev.ops->name);
|
|
} else if (action == BUS_NOTIFY_BOUND_DRIVER &&
|
|
pdev->is_virtfn && physfn == vdev->pdev) {
|
|
struct pci_driver *drv = pci_dev_driver(pdev);
|
|
|
|
if (drv && drv != pci_dev_driver(vdev->pdev))
|
|
pci_warn(vdev->pdev,
|
|
"VF %s bound to driver %s while PF bound to driver %s\n",
|
|
pci_name(pdev), drv->name,
|
|
pci_dev_driver(vdev->pdev)->name);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int vfio_pci_vf_init(struct vfio_pci_core_device *vdev)
|
|
{
|
|
struct pci_dev *pdev = vdev->pdev;
|
|
struct vfio_pci_core_device *cur;
|
|
struct pci_dev *physfn;
|
|
int ret;
|
|
|
|
if (pdev->is_virtfn) {
|
|
/*
|
|
* If this VF was created by our vfio_pci_core_sriov_configure()
|
|
* then we can find the PF vfio_pci_core_device now, and due to
|
|
* the locking in pci_disable_sriov() it cannot change until
|
|
* this VF device driver is removed.
|
|
*/
|
|
physfn = pci_physfn(vdev->pdev);
|
|
mutex_lock(&vfio_pci_sriov_pfs_mutex);
|
|
list_for_each_entry(cur, &vfio_pci_sriov_pfs, sriov_pfs_item) {
|
|
if (cur->pdev == physfn) {
|
|
vdev->sriov_pf_core_dev = cur;
|
|
break;
|
|
}
|
|
}
|
|
mutex_unlock(&vfio_pci_sriov_pfs_mutex);
|
|
return 0;
|
|
}
|
|
|
|
/* Not a SRIOV PF */
|
|
if (!pdev->is_physfn)
|
|
return 0;
|
|
|
|
vdev->vf_token = kzalloc(sizeof(*vdev->vf_token), GFP_KERNEL);
|
|
if (!vdev->vf_token)
|
|
return -ENOMEM;
|
|
|
|
mutex_init(&vdev->vf_token->lock);
|
|
uuid_gen(&vdev->vf_token->uuid);
|
|
|
|
vdev->nb.notifier_call = vfio_pci_bus_notifier;
|
|
ret = bus_register_notifier(&pci_bus_type, &vdev->nb);
|
|
if (ret) {
|
|
kfree(vdev->vf_token);
|
|
return ret;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void vfio_pci_vf_uninit(struct vfio_pci_core_device *vdev)
|
|
{
|
|
if (!vdev->vf_token)
|
|
return;
|
|
|
|
bus_unregister_notifier(&pci_bus_type, &vdev->nb);
|
|
WARN_ON(vdev->vf_token->users);
|
|
mutex_destroy(&vdev->vf_token->lock);
|
|
kfree(vdev->vf_token);
|
|
}
|
|
|
|
static int vfio_pci_vga_init(struct vfio_pci_core_device *vdev)
|
|
{
|
|
struct pci_dev *pdev = vdev->pdev;
|
|
int ret;
|
|
|
|
if (!vfio_pci_is_vga(pdev))
|
|
return 0;
|
|
|
|
ret = aperture_remove_conflicting_pci_devices(pdev, vdev->vdev.ops->name);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = vga_client_register(pdev, vfio_pci_set_decode);
|
|
if (ret)
|
|
return ret;
|
|
vga_set_legacy_decoding(pdev, vfio_pci_set_decode(pdev, false));
|
|
return 0;
|
|
}
|
|
|
|
static void vfio_pci_vga_uninit(struct vfio_pci_core_device *vdev)
|
|
{
|
|
struct pci_dev *pdev = vdev->pdev;
|
|
|
|
if (!vfio_pci_is_vga(pdev))
|
|
return;
|
|
vga_client_unregister(pdev);
|
|
vga_set_legacy_decoding(pdev, VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM |
|
|
VGA_RSRC_LEGACY_IO |
|
|
VGA_RSRC_LEGACY_MEM);
|
|
}
|
|
|
|
int vfio_pci_core_init_dev(struct vfio_device *core_vdev)
|
|
{
|
|
struct vfio_pci_core_device *vdev =
|
|
container_of(core_vdev, struct vfio_pci_core_device, vdev);
|
|
|
|
vdev->pdev = to_pci_dev(core_vdev->dev);
|
|
vdev->irq_type = VFIO_PCI_NUM_IRQS;
|
|
mutex_init(&vdev->igate);
|
|
spin_lock_init(&vdev->irqlock);
|
|
mutex_init(&vdev->ioeventfds_lock);
|
|
INIT_LIST_HEAD(&vdev->dummy_resources_list);
|
|
INIT_LIST_HEAD(&vdev->ioeventfds_list);
|
|
mutex_init(&vdev->vma_lock);
|
|
INIT_LIST_HEAD(&vdev->vma_list);
|
|
INIT_LIST_HEAD(&vdev->sriov_pfs_item);
|
|
init_rwsem(&vdev->memory_lock);
|
|
xa_init(&vdev->ctx);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(vfio_pci_core_init_dev);
|
|
|
|
void vfio_pci_core_release_dev(struct vfio_device *core_vdev)
|
|
{
|
|
struct vfio_pci_core_device *vdev =
|
|
container_of(core_vdev, struct vfio_pci_core_device, vdev);
|
|
|
|
mutex_destroy(&vdev->igate);
|
|
mutex_destroy(&vdev->ioeventfds_lock);
|
|
mutex_destroy(&vdev->vma_lock);
|
|
kfree(vdev->region);
|
|
kfree(vdev->pm_save);
|
|
}
|
|
EXPORT_SYMBOL_GPL(vfio_pci_core_release_dev);
|
|
|
|
int vfio_pci_core_register_device(struct vfio_pci_core_device *vdev)
|
|
{
|
|
struct pci_dev *pdev = vdev->pdev;
|
|
struct device *dev = &pdev->dev;
|
|
int ret;
|
|
|
|
/* Drivers must set the vfio_pci_core_device to their drvdata */
|
|
if (WARN_ON(vdev != dev_get_drvdata(dev)))
|
|
return -EINVAL;
|
|
|
|
if (pdev->hdr_type != PCI_HEADER_TYPE_NORMAL)
|
|
return -EINVAL;
|
|
|
|
if (vdev->vdev.mig_ops) {
|
|
if (!(vdev->vdev.mig_ops->migration_get_state &&
|
|
vdev->vdev.mig_ops->migration_set_state &&
|
|
vdev->vdev.mig_ops->migration_get_data_size) ||
|
|
!(vdev->vdev.migration_flags & VFIO_MIGRATION_STOP_COPY))
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (vdev->vdev.log_ops && !(vdev->vdev.log_ops->log_start &&
|
|
vdev->vdev.log_ops->log_stop &&
|
|
vdev->vdev.log_ops->log_read_and_clear))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Prevent binding to PFs with VFs enabled, the VFs might be in use
|
|
* by the host or other users. We cannot capture the VFs if they
|
|
* already exist, nor can we track VF users. Disabling SR-IOV here
|
|
* would initiate removing the VFs, which would unbind the driver,
|
|
* which is prone to blocking if that VF is also in use by vfio-pci.
|
|
* Just reject these PFs and let the user sort it out.
|
|
*/
|
|
if (pci_num_vf(pdev)) {
|
|
pci_warn(pdev, "Cannot bind to PF with SR-IOV enabled\n");
|
|
return -EBUSY;
|
|
}
|
|
|
|
if (pci_is_root_bus(pdev->bus)) {
|
|
ret = vfio_assign_device_set(&vdev->vdev, vdev);
|
|
} else if (!pci_probe_reset_slot(pdev->slot)) {
|
|
ret = vfio_assign_device_set(&vdev->vdev, pdev->slot);
|
|
} else {
|
|
/*
|
|
* If there is no slot reset support for this device, the whole
|
|
* bus needs to be grouped together to support bus-wide resets.
|
|
*/
|
|
ret = vfio_assign_device_set(&vdev->vdev, pdev->bus);
|
|
}
|
|
|
|
if (ret)
|
|
return ret;
|
|
ret = vfio_pci_vf_init(vdev);
|
|
if (ret)
|
|
return ret;
|
|
ret = vfio_pci_vga_init(vdev);
|
|
if (ret)
|
|
goto out_vf;
|
|
|
|
vfio_pci_probe_power_state(vdev);
|
|
|
|
/*
|
|
* pci-core sets the device power state to an unknown value at
|
|
* bootup and after being removed from a driver. The only
|
|
* transition it allows from this unknown state is to D0, which
|
|
* typically happens when a driver calls pci_enable_device().
|
|
* We're not ready to enable the device yet, but we do want to
|
|
* be able to get to D3. Therefore first do a D0 transition
|
|
* before enabling runtime PM.
|
|
*/
|
|
vfio_pci_set_power_state(vdev, PCI_D0);
|
|
|
|
dev->driver->pm = &vfio_pci_core_pm_ops;
|
|
pm_runtime_allow(dev);
|
|
if (!disable_idle_d3)
|
|
pm_runtime_put(dev);
|
|
|
|
ret = vfio_register_group_dev(&vdev->vdev);
|
|
if (ret)
|
|
goto out_power;
|
|
return 0;
|
|
|
|
out_power:
|
|
if (!disable_idle_d3)
|
|
pm_runtime_get_noresume(dev);
|
|
|
|
pm_runtime_forbid(dev);
|
|
out_vf:
|
|
vfio_pci_vf_uninit(vdev);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(vfio_pci_core_register_device);
|
|
|
|
void vfio_pci_core_unregister_device(struct vfio_pci_core_device *vdev)
|
|
{
|
|
vfio_pci_core_sriov_configure(vdev, 0);
|
|
|
|
vfio_unregister_group_dev(&vdev->vdev);
|
|
|
|
vfio_pci_vf_uninit(vdev);
|
|
vfio_pci_vga_uninit(vdev);
|
|
|
|
if (!disable_idle_d3)
|
|
pm_runtime_get_noresume(&vdev->pdev->dev);
|
|
|
|
pm_runtime_forbid(&vdev->pdev->dev);
|
|
}
|
|
EXPORT_SYMBOL_GPL(vfio_pci_core_unregister_device);
|
|
|
|
pci_ers_result_t vfio_pci_core_aer_err_detected(struct pci_dev *pdev,
|
|
pci_channel_state_t state)
|
|
{
|
|
struct vfio_pci_core_device *vdev = dev_get_drvdata(&pdev->dev);
|
|
|
|
mutex_lock(&vdev->igate);
|
|
|
|
if (vdev->err_trigger)
|
|
eventfd_signal(vdev->err_trigger, 1);
|
|
|
|
mutex_unlock(&vdev->igate);
|
|
|
|
return PCI_ERS_RESULT_CAN_RECOVER;
|
|
}
|
|
EXPORT_SYMBOL_GPL(vfio_pci_core_aer_err_detected);
|
|
|
|
int vfio_pci_core_sriov_configure(struct vfio_pci_core_device *vdev,
|
|
int nr_virtfn)
|
|
{
|
|
struct pci_dev *pdev = vdev->pdev;
|
|
int ret = 0;
|
|
|
|
device_lock_assert(&pdev->dev);
|
|
|
|
if (nr_virtfn) {
|
|
mutex_lock(&vfio_pci_sriov_pfs_mutex);
|
|
/*
|
|
* The thread that adds the vdev to the list is the only thread
|
|
* that gets to call pci_enable_sriov() and we will only allow
|
|
* it to be called once without going through
|
|
* pci_disable_sriov()
|
|
*/
|
|
if (!list_empty(&vdev->sriov_pfs_item)) {
|
|
ret = -EINVAL;
|
|
goto out_unlock;
|
|
}
|
|
list_add_tail(&vdev->sriov_pfs_item, &vfio_pci_sriov_pfs);
|
|
mutex_unlock(&vfio_pci_sriov_pfs_mutex);
|
|
|
|
/*
|
|
* The PF power state should always be higher than the VF power
|
|
* state. The PF can be in low power state either with runtime
|
|
* power management (when there is no user) or PCI_PM_CTRL
|
|
* register write by the user. If PF is in the low power state,
|
|
* then change the power state to D0 first before enabling
|
|
* SR-IOV. Also, this function can be called at any time, and
|
|
* userspace PCI_PM_CTRL write can race against this code path,
|
|
* so protect the same with 'memory_lock'.
|
|
*/
|
|
ret = pm_runtime_resume_and_get(&pdev->dev);
|
|
if (ret)
|
|
goto out_del;
|
|
|
|
down_write(&vdev->memory_lock);
|
|
vfio_pci_set_power_state(vdev, PCI_D0);
|
|
ret = pci_enable_sriov(pdev, nr_virtfn);
|
|
up_write(&vdev->memory_lock);
|
|
if (ret) {
|
|
pm_runtime_put(&pdev->dev);
|
|
goto out_del;
|
|
}
|
|
return nr_virtfn;
|
|
}
|
|
|
|
if (pci_num_vf(pdev)) {
|
|
pci_disable_sriov(pdev);
|
|
pm_runtime_put(&pdev->dev);
|
|
}
|
|
|
|
out_del:
|
|
mutex_lock(&vfio_pci_sriov_pfs_mutex);
|
|
list_del_init(&vdev->sriov_pfs_item);
|
|
out_unlock:
|
|
mutex_unlock(&vfio_pci_sriov_pfs_mutex);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(vfio_pci_core_sriov_configure);
|
|
|
|
const struct pci_error_handlers vfio_pci_core_err_handlers = {
|
|
.error_detected = vfio_pci_core_aer_err_detected,
|
|
};
|
|
EXPORT_SYMBOL_GPL(vfio_pci_core_err_handlers);
|
|
|
|
static bool vfio_dev_in_groups(struct vfio_device *vdev,
|
|
struct vfio_pci_group_info *groups)
|
|
{
|
|
unsigned int i;
|
|
|
|
if (!groups)
|
|
return false;
|
|
|
|
for (i = 0; i < groups->count; i++)
|
|
if (vfio_file_has_dev(groups->files[i], vdev))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static int vfio_pci_is_device_in_set(struct pci_dev *pdev, void *data)
|
|
{
|
|
struct vfio_device_set *dev_set = data;
|
|
|
|
return vfio_find_device_in_devset(dev_set, &pdev->dev) ? 0 : -ENODEV;
|
|
}
|
|
|
|
/*
|
|
* vfio-core considers a group to be viable and will create a vfio_device even
|
|
* if some devices are bound to drivers like pci-stub or pcieport. Here we
|
|
* require all PCI devices to be inside our dev_set since that ensures they stay
|
|
* put and that every driver controlling the device can co-ordinate with the
|
|
* device reset.
|
|
*
|
|
* Returns the pci_dev to pass to pci_reset_bus() if every PCI device to be
|
|
* reset is inside the dev_set, and pci_reset_bus() can succeed. NULL otherwise.
|
|
*/
|
|
static struct pci_dev *
|
|
vfio_pci_dev_set_resettable(struct vfio_device_set *dev_set)
|
|
{
|
|
struct pci_dev *pdev;
|
|
|
|
lockdep_assert_held(&dev_set->lock);
|
|
|
|
/*
|
|
* By definition all PCI devices in the dev_set share the same PCI
|
|
* reset, so any pci_dev will have the same outcomes for
|
|
* pci_probe_reset_*() and pci_reset_bus().
|
|
*/
|
|
pdev = list_first_entry(&dev_set->device_list,
|
|
struct vfio_pci_core_device,
|
|
vdev.dev_set_list)->pdev;
|
|
|
|
/* pci_reset_bus() is supported */
|
|
if (pci_probe_reset_slot(pdev->slot) && pci_probe_reset_bus(pdev->bus))
|
|
return NULL;
|
|
|
|
if (vfio_pci_for_each_slot_or_bus(pdev, vfio_pci_is_device_in_set,
|
|
dev_set,
|
|
!pci_probe_reset_slot(pdev->slot)))
|
|
return NULL;
|
|
return pdev;
|
|
}
|
|
|
|
static int vfio_pci_dev_set_pm_runtime_get(struct vfio_device_set *dev_set)
|
|
{
|
|
struct vfio_pci_core_device *cur;
|
|
int ret;
|
|
|
|
list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list) {
|
|
ret = pm_runtime_resume_and_get(&cur->pdev->dev);
|
|
if (ret)
|
|
goto unwind;
|
|
}
|
|
|
|
return 0;
|
|
|
|
unwind:
|
|
list_for_each_entry_continue_reverse(cur, &dev_set->device_list,
|
|
vdev.dev_set_list)
|
|
pm_runtime_put(&cur->pdev->dev);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* We need to get memory_lock for each device, but devices can share mmap_lock,
|
|
* therefore we need to zap and hold the vma_lock for each device, and only then
|
|
* get each memory_lock.
|
|
*/
|
|
static int vfio_pci_dev_set_hot_reset(struct vfio_device_set *dev_set,
|
|
struct vfio_pci_group_info *groups,
|
|
struct iommufd_ctx *iommufd_ctx)
|
|
{
|
|
struct vfio_pci_core_device *cur_mem;
|
|
struct vfio_pci_core_device *cur_vma;
|
|
struct vfio_pci_core_device *cur;
|
|
struct pci_dev *pdev;
|
|
bool is_mem = true;
|
|
int ret;
|
|
|
|
mutex_lock(&dev_set->lock);
|
|
cur_mem = list_first_entry(&dev_set->device_list,
|
|
struct vfio_pci_core_device,
|
|
vdev.dev_set_list);
|
|
|
|
pdev = vfio_pci_dev_set_resettable(dev_set);
|
|
if (!pdev) {
|
|
ret = -EINVAL;
|
|
goto err_unlock;
|
|
}
|
|
|
|
/*
|
|
* Some of the devices in the dev_set can be in the runtime suspended
|
|
* state. Increment the usage count for all the devices in the dev_set
|
|
* before reset and decrement the same after reset.
|
|
*/
|
|
ret = vfio_pci_dev_set_pm_runtime_get(dev_set);
|
|
if (ret)
|
|
goto err_unlock;
|
|
|
|
list_for_each_entry(cur_vma, &dev_set->device_list, vdev.dev_set_list) {
|
|
bool owned;
|
|
|
|
/*
|
|
* Test whether all the affected devices can be reset by the
|
|
* user.
|
|
*
|
|
* If called from a group opened device and the user provides
|
|
* a set of groups, all the devices in the dev_set should be
|
|
* contained by the set of groups provided by the user.
|
|
*
|
|
* If called from a cdev opened device and the user provides
|
|
* a zero-length array, all the devices in the dev_set must
|
|
* be bound to the same iommufd_ctx as the input iommufd_ctx.
|
|
* If there is any device that has not been bound to any
|
|
* iommufd_ctx yet, check if its iommu_group has any device
|
|
* bound to the input iommufd_ctx. Such devices can be
|
|
* considered owned by the input iommufd_ctx as the device
|
|
* cannot be owned by another iommufd_ctx when its iommu_group
|
|
* is owned.
|
|
*
|
|
* Otherwise, reset is not allowed.
|
|
*/
|
|
if (iommufd_ctx) {
|
|
int devid = vfio_iommufd_get_dev_id(&cur_vma->vdev,
|
|
iommufd_ctx);
|
|
|
|
owned = (devid > 0 || devid == -ENOENT);
|
|
} else {
|
|
owned = vfio_dev_in_groups(&cur_vma->vdev, groups);
|
|
}
|
|
|
|
if (!owned) {
|
|
ret = -EINVAL;
|
|
goto err_undo;
|
|
}
|
|
|
|
/*
|
|
* Locking multiple devices is prone to deadlock, runaway and
|
|
* unwind if we hit contention.
|
|
*/
|
|
if (!vfio_pci_zap_and_vma_lock(cur_vma, true)) {
|
|
ret = -EBUSY;
|
|
goto err_undo;
|
|
}
|
|
}
|
|
cur_vma = NULL;
|
|
|
|
list_for_each_entry(cur_mem, &dev_set->device_list, vdev.dev_set_list) {
|
|
if (!down_write_trylock(&cur_mem->memory_lock)) {
|
|
ret = -EBUSY;
|
|
goto err_undo;
|
|
}
|
|
mutex_unlock(&cur_mem->vma_lock);
|
|
}
|
|
cur_mem = NULL;
|
|
|
|
/*
|
|
* The pci_reset_bus() will reset all the devices in the bus.
|
|
* The power state can be non-D0 for some of the devices in the bus.
|
|
* For these devices, the pci_reset_bus() will internally set
|
|
* the power state to D0 without vfio driver involvement.
|
|
* For the devices which have NoSoftRst-, the reset function can
|
|
* cause the PCI config space reset without restoring the original
|
|
* state (saved locally in 'vdev->pm_save').
|
|
*/
|
|
list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list)
|
|
vfio_pci_set_power_state(cur, PCI_D0);
|
|
|
|
ret = pci_reset_bus(pdev);
|
|
|
|
err_undo:
|
|
list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list) {
|
|
if (cur == cur_mem)
|
|
is_mem = false;
|
|
if (cur == cur_vma)
|
|
break;
|
|
if (is_mem)
|
|
up_write(&cur->memory_lock);
|
|
else
|
|
mutex_unlock(&cur->vma_lock);
|
|
}
|
|
|
|
list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list)
|
|
pm_runtime_put(&cur->pdev->dev);
|
|
err_unlock:
|
|
mutex_unlock(&dev_set->lock);
|
|
return ret;
|
|
}
|
|
|
|
static bool vfio_pci_dev_set_needs_reset(struct vfio_device_set *dev_set)
|
|
{
|
|
struct vfio_pci_core_device *cur;
|
|
bool needs_reset = false;
|
|
|
|
/* No other VFIO device in the set can be open. */
|
|
if (vfio_device_set_open_count(dev_set) > 1)
|
|
return false;
|
|
|
|
list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list)
|
|
needs_reset |= cur->needs_reset;
|
|
return needs_reset;
|
|
}
|
|
|
|
/*
|
|
* If a bus or slot reset is available for the provided dev_set and:
|
|
* - All of the devices affected by that bus or slot reset are unused
|
|
* - At least one of the affected devices is marked dirty via
|
|
* needs_reset (such as by lack of FLR support)
|
|
* Then attempt to perform that bus or slot reset.
|
|
*/
|
|
static void vfio_pci_dev_set_try_reset(struct vfio_device_set *dev_set)
|
|
{
|
|
struct vfio_pci_core_device *cur;
|
|
struct pci_dev *pdev;
|
|
bool reset_done = false;
|
|
|
|
if (!vfio_pci_dev_set_needs_reset(dev_set))
|
|
return;
|
|
|
|
pdev = vfio_pci_dev_set_resettable(dev_set);
|
|
if (!pdev)
|
|
return;
|
|
|
|
/*
|
|
* Some of the devices in the bus can be in the runtime suspended
|
|
* state. Increment the usage count for all the devices in the dev_set
|
|
* before reset and decrement the same after reset.
|
|
*/
|
|
if (!disable_idle_d3 && vfio_pci_dev_set_pm_runtime_get(dev_set))
|
|
return;
|
|
|
|
if (!pci_reset_bus(pdev))
|
|
reset_done = true;
|
|
|
|
list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list) {
|
|
if (reset_done)
|
|
cur->needs_reset = false;
|
|
|
|
if (!disable_idle_d3)
|
|
pm_runtime_put(&cur->pdev->dev);
|
|
}
|
|
}
|
|
|
|
void vfio_pci_core_set_params(bool is_nointxmask, bool is_disable_vga,
|
|
bool is_disable_idle_d3)
|
|
{
|
|
nointxmask = is_nointxmask;
|
|
disable_vga = is_disable_vga;
|
|
disable_idle_d3 = is_disable_idle_d3;
|
|
}
|
|
EXPORT_SYMBOL_GPL(vfio_pci_core_set_params);
|
|
|
|
static void vfio_pci_core_cleanup(void)
|
|
{
|
|
vfio_pci_uninit_perm_bits();
|
|
}
|
|
|
|
static int __init vfio_pci_core_init(void)
|
|
{
|
|
/* Allocate shared config space permission data used by all devices */
|
|
return vfio_pci_init_perm_bits();
|
|
}
|
|
|
|
module_init(vfio_pci_core_init);
|
|
module_exit(vfio_pci_core_cleanup);
|
|
|
|
MODULE_LICENSE("GPL v2");
|
|
MODULE_AUTHOR(DRIVER_AUTHOR);
|
|
MODULE_DESCRIPTION(DRIVER_DESC);
|